Log in

Prediction of the Nature of Deformation of Bent Slag Concrete Elements

Number of journal: 3-2022
Autors:

Chernousov N.N.,
Bondarev B.A.,
Sturova V.A.,
Bondarev A.B.,
Liventseva A.A.

DOI: https://doi.org/10.31659/0585-430X-2022-800-3-15-24
УДК: 624:66.011

 

AbstractAbout AuthorsReferences
In the modern world of information technology, computers are increasingly replacing our daily life. All real, field experiments and experiments replace computer modeling, as this often saves time. Numerous calculations, including reinforced concrete structures, are most conveniently performed using deformation diagrams of concrete and reinforcement. It is this method makes it possible to achieve similar results with field tests, the difficulty lies only in the fact that it is necessary to reduce many parameters of the equations. The aim of the work is to propose a simplified model of the deformation diagram of a bent slag concrete element, the use of which will help to exclude complex equilibrium experiments. The tables of the article show the values of the parametric points of the deformation diagram, the analysis of which shows the discrepancy between the experimental and theoretical values, therefore, the procedure for making adjustments to the formulas taking into account the dynamic movement of the main crack is given below. As a result of research and mathematical modeling of the bending element diagram, a model is proposed that is able to predict the nature of the specimen’s operation at any stage of loading, based on the highest load and the initial modulus of elasticity, which can be determined from the integral structural characteristic of concrete – compressive strength.
N.N. CHERNOUSOV1, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. BONDAREV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. STUROVA2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.B. BONDAREV2, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. LIVENTSEVA2, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 OOO “NTO” EXPERT (9, Off. 314, Kommunalnaya sq., 398059, Lipetsk, Russian Federation)
2 Lipetsk State Technical University (30 Moskovskaya Street, 398055 Lipetsk, Russian Federation)

1. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General models of reinforced concrete mechanics]. Moscow: Stroyizdat. 1996. 416 p.
2. Berg O.Ya., Shcherbakov E.N., Pisanko G.N. Vysokoprochnyi beton [High-strength concrete]. Moscow: Stroyizdat. 1971. 208 p.
3. Sheikin A.E., Chekhovsky Yu.V., Brousser M.I. Struktura i svoistva tsementnykh betonov [Structure and properties of cement concrete]. Moscow: Stroyizdat. 1979. 344 p.
4. Ivanov I.A. Legkie betony na iskusstvennykh poristykh zapolnitelyakh [Light concretes on artificial porous aggregates]. Moscow: Stroyizdat. 1993. 182 p.
5. Ufimtsev V. M., Korobenikov L.A. Shlaki as part of concrete: new opportunities. Tekhnologii betonov. 2014. No. 6, pp. 50–53. (In Russian).
6. Chernousov N.N., Pantel’kin I.I. Zhelezobetonnye konstruktsii s ispol’zovaniem dispersno-armirovannogo shlakopemzobetona [Reinforced concrete structures using dispersed-reinforced slag-ground concrete]. Moscow: ASV. 1998. 230 p.
7. Chernousov N.N., Chernousov R.N., Sukhanov A.V. Study of the mechanics of fine-grained slag concrete in axial tension and compression. Stroitel’nye Materialy [Construction Materials]. 2014. No. 12, pp. 59–63. (In Russian).
8. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Study of the strength properties of steelfibroshlakobeton during axial tension and compression taking into account its age. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 20–24. (In Russian).
9. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Study of the deformative properties of steelfibroshlakobeton in axial tension and compression taking into account its age. Vestnik PNIPU. Stroitel’stvo i arkhitektura. 2017. Vol. 8, pp. 18–31. (In Russian).
10. Bazhenov Yu.M., Chernyshov E.M., Korotkikh D.N. Construction of structures of modern concretes: defining principles and technological platforms. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 6–14. (In Russian).
11. Maiorov V.I., Ratsirinivu De Russel’ Zhil’ber. Study and analytical description of the concrete work diagram when calculating reinforced concrete structures according to the deformation model. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya. 2000. No. 3, pp. 97–102. (In Russian).
12. Karpenko N.I., Radaikin O.V. To determine the deformations of bent reinforced concrete elements using concrete deformation and reinforcement diagrams. Stroitel’stvo i rekonstruktsiya. 2012. No. 2 (40), pp. 11–18. (In Russian).
13. Karpenko N.I., Radaikin O.V. To improve concrete deformation diagrams for determining the moment of cracking and breaking moment in bending reinforced concrete elements. Stroitel’stvo i rekonstruktsiya. 2012. No. 3 (41), pp. 10–17. (In Russian).
14. Karpenko N.I., Sokolov B.S., Radaikin O.V. To assess the strength, stiffness, moment of crack formation and their opening in the zone of clean bending of reinforced concrete beams using a nonlinear deformation model. Izvestiya vuzov. Stroitel’stvo. 2016. No. 3, pp. 5–12. (In Russian).
15. Panfilov D.A., Pishchulev A.A., Gimadetdinov K.I. Review of existing concrete deformation diagrams during compression in domestic and foreign regulatory documents. Promyshlennoe i grazhdanskoe stroitel’stvo. 2014. No. 3, pp. 80–83. (In Russian).
16. Varlamov A.A., Shishlonov E.A., Tkach E.N., Shumilin M.S., Goncharov D.V. Patterns of the connection of stresses and deformations in concrete. Academy. 2016. No. 2 (5), pp. 7–16. (In Russian).
17. Radaykin, O.V. To the construction of concrete deformation diagrams at uniaxial shortterm tension/compression using the deformation criterion of damage. Vestnik grazhdanskikh inzhenerov. 2017. No. 6 (65), pp. 71–78. (In Russian).
18. Radaikin O.V. Comparative analysis of various concrete deformation diagrams according to the criterion of energy consumption for deformation and destruction. Vestnik BGTU im. V.G. Shukhova. 2019. No. 10, pp. 29–39. (In Russian).
19. Fedorov V.S., Shavykina M.V., Yusupova E.V. Deflections of reinforced concrete structures in maximum condition. Stroitel’stvo i rekonstruktsiya. 2017. No. 4 (72), pp. 80–85. (In Russian).
20. Shah S.P., Jehu R. Strain rate effects an mode crack propagation in Concrete. Fract. Toughness and Fract. Energy: Coner. Proc. Conf. Lensaune. 1985. Oct. 1–3. Amsterdam, 1986, pp. 453–465.
21. Jeng Y., Shah S.P. Two berameter fracture model for concrete. Journal of Engineering Mechanics. 1985. No. 10, pp. 1227–1241.
22. Chernousov N.N., Sturova V.A. Mathematical model of the complete diagram of slag concrete deformation at three-point bending. Modern science-intensive technologies. 2020. No. 3, pp. 92–96. (In Russian).
23. Eryshev V.A. Deformation method of calculating the strength of reinforced concrete bent elements using deformation diagrams for elastoplastic materials. Sistemy. Metody. Tekhnologii. 2018. No. 1 (37), pp. 79–84. (In Russian).
24. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Dynamic and static modulus of elasticity of steelfibroshlakobeton (SFShB). Colloquium-journal. 2019. No. 15-1 (39), pp. 4–6. (In Russian).
25. Bondarev B.A., Chernousov R.N. Determination of the modulus of elasticity and ultimate strength of steel fiber concrete during tensile by the method of propping. Nauchnyi vestnik VGASU. Stroitel’stvo i arkhitektura. 2008. No. 3 (11), pp. 67–71. (In Russian).
26. Patent RF 2402008. Sposob ispytaniya dispersno-armirovannykh betonov na rastyazhenie [Method of testing dispersion-reinforced concrete for tension]. Chernousov N.N., Chernousov R.N. Declared 07.12.2009. Publ. 20.10.2010. Bul. No. 29. (In Russian).
27. Patent RF 2544299. Sposob ispytaniya obraztsov stroitel’nykh materialov na rastyazhenie [Method for testing samples of building materials for tension]. Chernousov N.N., Chernousov R.N., Sukhanov A.V., Prokofiev A.N. Declared. 23.07.2013. Publ. 20.03.15. Bul. No. 8. (In Russian).
28. Chernousov N.N., Chernousov R.N. Bending steel-fibroblock concrete elements. Beton i zhelezobeton. 2010. No. 4, pp. 7–11. (In Russian).

For citation: Chernousov N.N., Bondarev B.A., Sturova V.A., Bondarev A.B., Liventseva A.A. Prediction of the nature of deformation of bent slag concrete elements. Stroitel’nye Materialy [Construction Materials]. 2022. No. 3, pp. 15–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-800-3-15-24

Monitoring of Operation and Determination of Optimal Technological Parameters of Pallet Circulation Lines

Number of journal: 3-2022
Autors:

Gurinovich V.Yu.,
Pozdniakov D.A.,
Leonovich S.N.

DOI: https://doi.org/10.31659/0585-430X-2022-800-3-4-9
УДК: 69.057

 

AbstractAbout AuthorsReferences
During the reconstruction, modernization and technical re-equipment, a number of large-panel housing construction enterprises (hereinafter referred to as KPD) switched to the production of KPD products of new series of residential buildings on pallet circulation lines. The pallet circulation line is a conveyor technological line with a closed working cycle, which is divided into separate posts, the number of which is determined by the production program for the production of products. To ensure the production program for the production of products and safe working conditions that meet modern requirements for mechanization and automation of production processes, the pallet circulation line is equipped with basic, auxiliary technological equipment and tooling. After the launch of the pallet circulation line during their operation, in some cases, there are separate problems associated with reaching the design capacity and ensuring continuous-line organization of the production of products. Foreign suppliers of equipment when designing and supplying pallet circulation lines to ensure a given design production capacity do not take into account numerous factors in the conditions of operating efficiency of KPD plants. Among the significant factors should be highlighted: various requirements of domestic and foreign standards of technological design, features of the organizational structure of the production of existing efficiency plants, the orientation of new lines to strictly specified parameters of concrete mix components, a wide range of manufactured KPD products for modern series of residential buildings, etc. In addition, the introduction of modern high-tech lines at precast concrete enterprises, without the development of current technological design standards and norms regulating the labor intensity of the production of reinforced concrete products on such lines, leads to incorrect determination of the actual production capacity and to inconsistency of the working rhythms of elemental processes in the organization of the lines.
V.Yu. GURINOVICH1, Engineer, Senior Lecturer;
D.A. POZDNIAKOV2, Engineer;
S.N. LEONOVICH1, 3, Doctor of Sciences (Engineering), Professor, Foreign Member of RAACS

1 Belarusian National Technical University (65, Nezavisimosti Prospect, Minsk, 220013, Republic of Belarus)
2 Republican Unitary Enterprise “Institute of Housing” – NIPTIS named after S.S. Atatev (15, F. Skaryna Street, Minsk, 220076, Republic of Belarus)
3 Qingdao University of Technology (266033, China, 11 Fushun Rd, Qingdao)

1. Gurinovich V.Yu., Leonovich S.N. Substantiation of decisions on complex reconstruction of production. Vestnik BNTU: Arkhitektura i stroitel’stvo. 2011. No. 5, pp. 47–49. (In Russian).
2. Gurinovich V.Yu., Pozdnyakov D.A. Optimization of process modes of pallet circulation line operation for production of precast concrete products. 16th International Scientific and Technical Conference (71st Scientific and Technical Conference of the Faculty, Researchers, Doctoral Students and Postgraduates of BNTU). Minsk. 2018. 433 p. (In Russian).
3. Gurinovich V.Yu., Pozdnyakov D.A. Organization of production of precast concrete products on long stands. 16th International Scientific and Technical Conference (71st Scientific and Technical Conference of the Faculty, Researchers, Doctoral Students and Postgraduates of BNTU). Minsk. 2018, p. 434. (In Russian).
4. Pilipenko V. M., Potershchuk V. A., Petsol’d T. M. Prospects for the development of industrial house building in the Republic of Belarus. Modern problems of the implementation of European standards in the field of construction: a collection of international scientific and technical articles. Minsk. 2015, pp. 8–14. (In Russian).
5. Tertyshnik M.I. Define and evaluate plant capacity. Izvestiya Irkutskoi ekonomicheskoi akademii. 2011. No. 6, pp. 1–7. (In Russian).
6. Jieh-Haur Chen, Li-Ren Yang, Hsing-Wei Tai, Process reengineering and improvement for building precast production. Automation in Construction. 2016. Vol. 68, pp. 249–258. DOI: https://doi.org/10.1016/j.autcon.2016.05.015.
7. Vacharapoom Benjaoran, Nashwan Dawood. Intelligence approach to production planning system for bespoke precast concrete products. Automation in Construction. 2006. Vol. 15, Iss. 6, pp. 737–745. https://doi.org/10.1016/j.autcon.2005.09.007
8. Yiran Dan, Guiwen Liu, Yan Fu, Optimized flowshop scheduling for precast production considering process connection and blocking. Automation in Construction. 2021. Vol. 125. 103575. DOI: https://doi.org/10.1016/j.autcon.2021.103575
9. Leonovich S.N. Gurinovich V.Yu. Process design of reconstruction of precast concrete products plants: problems and solutions. Problems of Modern Construction: Proceedings of the International Scientific and Technical Conference. Minsk. 2019, pp. 379–395. (In Russian).
10. Standards for the duration of the development of design capacities of enterprises put into operation. Moscow: Economics. 1975. 43 p. (In Russian).
11. ONTP 07-85 All-Union norms of technological design of precast concrete enterprises. Moscow: Minstroimaterialov SSSR. 1986. 51 p. (In Russian).
12. Spravochnik po tekhnologii sbornogo zhelezobetona [Handbook on precast reinforced concrete technology]. Kiev: Vysshaya shkola. 1978. 256 p.
13. Instructions for determining the production capacity of precast concrete enterprises. Ministry of Industry of Building Materials of the USSR, All-Union Scientific Research Institute of Factory Technology of Prefabricated Reinforced Concrete Structures and Products VNIIZHELEZOBETON. Moscow. 1978. 71 p.
14. Stefanov B.V., Antonenko G.Ya. Organizatsiya tekhnologicheskikh protsessov na zavodakh sbornogo zhelezobetona [Organization of technological processes at prefabricated reinforced concrete plants]. Budivel’nik. 1965. 82 p.
15. Guidelines for determining the production capacity of large-panel housing construction enterprises. State Committee for Civil Engineering and Architecture under the Gosstroy of the USSR, Central Research and Design Institute for Standard and Experimental Design of Dwellings (TsNIIEP Dwellings). Moscow: 1971. 22 p. (In Russian).

For citation: Gurinovich V.Yu., Pozdniakov D.A., Leonovich S.N. Monitoring of operation and determination of optimal technological parameters of pallet circulation lines. Stroitel’nye Materialy [Construction Materials]. 2022. No. 3, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-800-3-4-9

Mathematical Modeling of Unsteady Mass Transfer in the Cement Concrete — Liquid Medium System, Limited by Internal Diffusion and External Mass Transfer

Number of journal: No.1-2-2022
Autors:

Fedosov S.V.,
Rumyantseva V.E.,
Krasilnikov I.V.,
Krasilnikova I.A.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-134-140
УДК: 666.97.031

 

AbstractAbout AuthorsReferences
The relevance of new scientific research aimed at modeling the physico-chemical processes occurring in cement concretes during their operation, which have a direct impact on their durability, is substantiated. The main types of concrete corrosion are described. The problem of mass transfer processes occurring in a flat reinforced concrete wall with liquid corrosion of concrete limited by internal diffusion and external mass transfer is mathematically formulated. The mathematical problem of mass transfer in dimensionless form and in the field of Laplace images is presented. The obtained solutions of the problem describing the dimensionless concentrations of the transferred component over the thickness of concrete, allowing to calculate the dynamics of the process, are presented.
S.V. FEDOSOV1,2, Doctor of Sciences (Engineering), Academician of the RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.E. RUMYANTSEVA2,3, Doctor of Sciences (Engineering), Corresponding Member of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. KRASILNIKOV2,3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.A. KRASILNIKOVA4, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
3 Ivanovo State Polytechnic University (21, Sheremetevskiy Avenue, 153000, Ivanovo, Russian Federation)
4 Vladimir State University named after Alexander and Nikolai Stoletovs (87, Gorky Street, Vladimir, 600000, Russian Federation)

1. Rozental’ N.K. Korrozionnaja stojkost’ cementnyh betonov nizkoj i osobo nizkoj pronicaemosti [Corrosion resistance of cement concretes of low and very low permeability]. Moscow: FGUP CPP. 2006. 520 p.
2. Nikolaev S.V., Nikolaev S.V., Travush V.I., Tabun-shhikov Ju.A., Kolubkov A.N., Solomanidin G.G., Magaj A.A., Dubynin N.V. Regulatory framework of high-rise construction in Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 1-2, pp. 3–7. (In Russian).
3. Mchedlov-Petrosjan O.P. Himija neorganicheskih stroitel’nyh materialov [Chemistry of inorganic building materials]. Moscow: Stroyizdat. 1988. 303 p.
4. Fedosov S.V., Rumjanceva V.E., Krasil’nikov I.V., Kas’janenko N.S. Non-stationary mass transfer in the processes of corrosion of the second type of cement concrete. Small Fourier numbers, with internal mass source. Izvestiya vysshih uchebnyh zavedeniy. Serija: Himiya i himicheskaya tehnologiya. 2015. Vol. 58. No. 1, pp. 97–99. (In Russian).
5. Fedosov S.V., Rumjanceva V.E., Krasil’nikov I.V., Kas’janenko N.S. Theoretical and experimental studies of processes of corrosion of the first kind of cement concretes in the presence of inner source of mass. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 44–47. (In Russian).
6. Fedosov S.V., Rumyanceva V.E., Krasil’nikov I.V., Kasyanenko N.S. Modeling of mass transfer in the processes of corrosion of the first type of cement concrete in the “liquid–reservoir” system in the presence of an internal source of mass in the solid phase. Vestnik grazhdanskih inzhenerov. 2013. No. 2 (37), pp. 65–70. (In Russian).
7. Fedosov S.V., Rumyanceva V.E., Krasil’nikov I.V. Metody matematicheskoj fiziki v prilozhenijah k problemam korrozii betona v zhidkih agressivnyh sredah [Methods of mathematical physics in applications to the problems of concrete corrosion in liquid aggressive media]. Moscow: ASV. 2021. 246 p.
8. Lykov A.V. Yavleniya perenosa v kapillyarno-poristyh telah [Transport phenomena in capillary-porous bodies]. Moscow: Gostehizdat. 1954. 296 p. (In Russian).
9. Fedosov S.V., Roumyantseva V.E., Krasilnikov I.V., Konovalova V.S., Evsyakov A.S. Monitoring of the penetration of chloride ions to the reinforcement surface through a concrete coating during liquid corrosion. IOP Conference Series Materials Science and Engineering. 2018. 463(4):042048. DOI:10.1088/1757-899X/463/4/042048
10. Fedosov S.V., Roumyantseva V.E., Krasilnikov I.V., Konovalova V.S. Physical and mathematical modelling of the mass transfer process in heterogeneous systems under corrosion destruction of reinforced concrete structures. IOP Conference Series: Materials Science and Engineering. 2018. 012039. DOI: 10.1088/1757-899X/456/1/012039
11. Fedosov S.V. Teplomassoperenos v tehnologicheskih processah stroitel’noy industrii [Heat and mass transfer in technological processes in the construction industry]. Ivanovo: IPK PresSto. 2010. 364 p.
12. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Loginova S.A. Study of effect of mass transfer processes on reliability and durability of reinforced concrete structures operating in liquid aggressive media. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 52–57. DOI: https://doi.org/10.31659/0585-430X-2017-755-12-52-57. (In Russian).
13. Fedosov S.V., Rumjanceva V.E., Krasil’nikov I.V., Fedosova N.L. Study of diffusion processes of mass transfer during liquid corrosion of the first type of cement concrete. Izvestija vysshih uchebnyh zavedenij. Serija: Himija i himicheskaja tehnologija. 2015. Vol. 58. No. 1, pp. 99–104. (In Russian).

For citation: Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Krasilnikova I.A. Mathematical modeling of unsteady mass transfer in the cement concrete-liquid medium system, limited by internal diffusion and external mass transfer. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 134–140.

Composite Cements of Low Water Demand. Possibilities and Prospects of Application in Building Materials

Number of journal: No.1-2-2022
Autors:

Khokhryakov O.V

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-123-133
УДК: 666.9.031

 

AbstractAbout AuthorsReferences
The possibilities of composite cements of low water demand for solving environmental problems, resource conservation and energy consumption in the construction industry are revealed. It is shown that they can be made with a low content of clinker – the main source of carbon dioxide, which leads to a greenhouse effect on the planet. Binders meet the criteria of the best available production technologies with minimal negative impact on the environment. At the same time, in terms of technological and operational-technical indicators, cements of low water demand are significantly superior to ordinary general-construction Portland cements of both Russian and European manufacturers. Depending on the type and hardness of mineral components, chemical additives and grinding procedure, the types of composite cements of low water demand based on carbonate rocks, fly ash and ash slag waste, blast furnace and electrothermophosphoric slags have been expanded. A number of building materials are presented in which they manifest themselves most effectively, such as low-clinker, sand and high-strength concrete, injection and self-leveling dry mixes for repair work. In general, it is shown that in the near future this type of binders should become the main product of the cement industry in Russia and abroad.
O.V. KHOKHRYAKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Civil Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)

1. Tkachenko A.A. Is the transition to a new climate economy possible? Ekonomika. Nalogi. Pravo. 2021. Vol. 14. No. 4, pp. 15–29. (In Russian). Doi: 10.26794/1999-849x-2021-14-4-15-29.
2. Kovalev Yu.Yu. Five years of the Paris Agreement: past, present and future of the global climate treaty. Istoriya i sovremennoye mirovozzreniye. 2021. Vol. 3. No. 1, pp. 20–29. (In Russian). Doi: 10.33693/2658-4654-2021-3-1-20-29.
3. Medvedeva O.E., Solovieva S.V., Stetsenko A.V. World climate agenda: economic challenges for Russia from the introduction of the EU carbon tax. Ekonomika i upravleniye narodnym khozyaystvom. 2021. No. 2 (233), pp. 39–52. (In Russian). Doi: 10.24411/2072-4098-2021-10202
4. Aleksandrova V.D. The modern concept of the circular economy. International Journal of Humanities and Natural Sciences. 2019. Vol. 5–1, pp. 87–93. (In Russian).
5. Gureva M.A. The theoretical basis of the concept of cir circular economy. Journal of international economic affairs. 2019. No. 3, pp. 2311–2336. Doi: 10.18334/eo.9.3.40990.
6. Schneider M. The cement industry on the way to a low carbon future innovation and technical trends in cement production. Proc. 8th Jntern VDZ Congr. 2018 (Duesseldort, 26–28 September 2018). Düsseldorf. 2018, pp. 55–72.
7. Cline J. Global changes in cement production on a global scale. ALITinform. 2017. No. 1, pp. 12–20. (In Russian).
8. Chatterjee A.K. Transition to construction based on cement with a low carbon footprint: requirements and obstacles. Tsement i ego primeneniye. 2018. No. 2, pp. 54–59. (In Russian).
9. Schneider M., Betzner Z. Economic and technical advantages of composite cements. Tsement i ego primeneniye. 2016. No. 3, pp. 36–39. (In Russian).
10. Ageeva M.S., Shapovalov S.M., Botsman A.N., Ishchenko A.V. To the question of the use of industrial waste in the production of binders. Vestnik of Belgorod State Technical University named after V.G. Shukhov. 2016. No. 9, pp. 58–62. (In Russian).
11. Yudovich B.E., Dmitriev A.M., Zubekhin S.A., Bashlykov N.F., Falikman V.R., Serdyuk V.N., Babaev Sh.T. Cements of low water demand – binders of a new generation. Tsement i ego primeneniye. 1997. No. 4 (July-August). pp. 15–18. (In Russian).
12. Khokhryakov O.V., Khozin V.G., Kharchenko I.Ya., Gazdanov D.V. Cements of low water demand – a way of efficient use of clinker and mineral fillers in concretes. Vestnik of Moscow State University of Civil Engineering. 2017. Vol. 12. Iss. 10 (109), pp. 1145–1152. (In Russian).
13. Khozin V.G., Khokhryakov O.V., Sibgatullin I.R., Kharchenko I.Ya., Gizzatullin A.R. Carbonate cements of low water demand - a green alternative to the cement industry in Russia. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 76–82. (In Russian).
14. Timashev V.V. Izbrannyye trudy. Sintez i gidratatsiya vyazhushchikh materialov [Selected works. Synthesis and hydration of binders]. Moscow: Nauka. 1986. 424 p.
15. Shcherbakov E. Ash and slag revolution. Sibirskiy energetik. 2015. No. 33 (444). URL: http://www.vsp.ru/2015/09/04/zoloshlakovaya-revolyutsiya-2/ (date of access: 10/12/2021). (In Russian).
16. Markov A.Yu., Strokova V.V., Markova I.Yu. Evaluation of properties of fuel ashes as components of composite materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 77–83. Doi: https://doi.org/10.31659/0585-430X-2019-769-4-77-83 (In Russian).
17. Volynkina E.P. Analysis of the state and problems of industrial waste processing in Russia. Vestnik of the Siberian State Industrial University. 2017. No. 2 (20), pp. 43–49. (In Russian).
18. Lieven Machiels, Peter Tom Jones. Green slag valorisation is now an industrial success story. Sixth International Slag Valorisation Symposium (Mechelen, Belgium). 2019. URL: https://new-mine.eu/green-slag-valorisation-industrial-success-story (date of access: 10.12.2021)
19. Khozin V.G., Khokhryakov O.V., Kozlov R.V. The environmental rating of “carbonate” cements is low water demand and concrete based on them. Izvestiya of the Kazan State University of Architecture and Construction. 2021. No. 2 (56), pp. 60–66. (In Russian). Doi: 10.52409/20731523_2021_2_60
20. Lvovich K.I. Sandy concrete - a building material in Russia. HBI i konstruktsii. 2017. No. 3, pp. 58–61. (In Russian).
21. Mirsayapov I.T., Akhmetzyanov D.R. The use of a column spacing of 18 m in reinforced concrete frames and an assessment of the effectiveness of the use of high-strength concrete in the frames of one-story industrial buildings with a different grid of columns. Izvestiya of the Kazan State University of Architecture and Construction. 2019. No. 3 (49), pp. 112–120. (In Russian).
22. Harcenko I.Ya., Panchenko A.I., Alekseev V.A., Harcenko A.I. Elimination of water manifestations when constructing and operating tunnel and near the tunnel structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 9, pp. 24–29. (In Russian).
23. Kalach F.N. Evaluation of the efficiency of using the technology of injection strengthening of weak soils at the base of shallow foundations with self-expanding mortars. Construction and Geotechnics. 2020. Vol. 11. No. 2, pp. 62–77. (In Russian).
24. Fedulov A.A. Floors for residential and public buildings. Stroitel’nye Materialy [Construction Materials]. 2015. No. 7, pp. 60–62. (In Russian).
25. Gusev N.I., Skachkov Yu.P., Kochetkova M.V. Self-leveling floors in premises for various purposes. Sukhiye stroitel’nyye smesi. 2015. No. 2, pp. 13–16. (In Russian).

For citation: Khokhryakov O.V. Composite cements of low water demand. Possibilities and prospects of application in building materials. Name. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 123–133. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-123-133

Polymorphism and Morphology of Calcium Carbonates in Construction Materials Technologies Using Microbial Biomineralization (Review)

Number of journal: 1-2-2022
Autors:

Strokova V.V.,
Dukhanina U.N.,
Balitsky D.A.,
Drozdov O.I.,
Nelubova V.V.,
Frank-Kamenetskaya O.V.,
Vlasov D.Yu.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-82-122
УДК: 666.9

 

AbstractAbout AuthorsReferences
The review systematizes the data of foreign and domestic scientists on polymorphism and morphology of calcium carbonate crystals (calcite, aragonite, waterite) formed using nature-like technologies for the production and restoration of construction materials via microbia biominerallization. The paper considers the influence of genus specificity of used bacteria, type and concentration parameters of precursors, as well as the method of introduction of biological agents and precursors into a concrete matrix. The frequency of formation of polymorphic modifications and morphological structures of calcium carbonate crystals and their clusters is ranked depending on formulation and technological factors of carbonate biomineralization. The paper lays the foundation for the atlas of morphostructures of carbonate biomineralization products in construction materials science biotechnologies. The obtained results may be considered as the first steps to identify the control factors of cement systems structurization and to create controlled technologies for using microbial biomineralization to obtain construction materials with specified properties.
V.V. STROKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
U.N. DUKhANINA1, Engineer,
D.A. BALITSKY1, Engineer,
O.I. DROZDOV1, Graduate student,
V.V. NELUBOVA1, Candidate of Sciences (Engineering);
O.V. FRANK-KAMENETSKAYA2, Doctor of Sciences (Geology and Mineralogy),
D.Yu. VLASOV2, Doctor of Sciences (Biology)

1 Belgorod State Technological University named after V.G. Shukhov (46 Kostyukova Street, 308012, Belgorod, Russian Federation)
2 St. Petersburg State University (7/9, Universitetskaya Embankment, 199034, St. Petersburg, Russian Federation)

1. Ortega-Villamagua E, Gudiño-Gomezjurado M, Palma-Cando A. Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials. Molecules. 2020. Vol. 24; 25 (23). 5499. doi: 10.3390/molecules25235499. PMID: 33255349; PMCID: PMC7727839
2. Anbu P, Kang C.H., Shin Y.J., So J.S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus. 2016. 5:250. 1. doi:10.1186/s40064-016-1869-2
3. Chuo S.C., Mohamed S.F., Mohd Setapar S.H., Ahmad A., Jawaid M., Wani W.A., Yaqoob A.A., Mohamad Ibrahim M.N. Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials (Basel). 2020. Vol. 13 (21):4993. doi:10.3390/ma13214993
4. Amiri A., Basaran Z. Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Construction and Building Materials. 2018. Vol. 165, pp. 655–662. https://doi.org/10.1016/j.conbuildmat.2018.01.070
5. Basaran Z., Amiri A., Ersan Y., Boon N., De Belie N. Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability. Cement and Concrete Research. 2017. Vol. 98, pp. 44–49 https://doi.org/10.1016/j.cemconres.2017.04.005
6. Nguyen T., Ghorbel E., Fares H., Cousture A. Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites. 2019. Vol. 104. https://doi.org/10.1016/j.cemconcomp.2019.103340
7. Reddy B., Revathi D. An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Materials today proceedings. 2019. Vol. 19. No. 2, pp. 803–809 https://doi.org/10.1016/j.matpr.2019.08.135
8. Joshi S., Goyal S., Reddy M. Influence of nutrient components of media on structural properties of concrete during biocementation. Construction and Building Materials. 2018. Vol. 158, pp. 601–613 https://doi.org/10.1016/j.conbuildmat.2017.10.055
9. Chakraborty A., Mondal S. Bacterial concrete: A way to enhance the durability of concrete structures. The Indian Concrete Journal. 2017. Vol. 91, pp. 30–36.
10. Dhami N., Mukherjee A., Reddy M. Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecological Engineering. 2016. Vol. 94, pp. 443–454. https://doi.org/10.1016/j.ecoleng.2016.06.013
11. Chahal N., Siddique R. Permeation properties of concrete made with fly ash and silica fume: Influence of ureolytic bacteria. Construction and Building Materials. 2013. Vol. 49, pp. 161–174 https://doi.org/10.1016/j.conbuildmat.2013.08.023
12. Achal V., Pan X., Özyurtb N. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering. 2011. Vol. 37, pp. 554–559. https://doi.org/10.1016/j.ecoleng.2010.11.009
13. Achal V., Mukerjee A., Reddy M. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials. 2013. Vol. 48, pp. 1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061
14. Siddique R., Nand V., Kadrib E., Khanc M., Singha M., Rajord A. Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Construction and Building Materials. 2016. Vol. 106, pp. 461–469. https://doi.org/10.1016/j.conbuildmat.2015.12.112
15. Lva J., Ma F., Lia F., Zhanga C., Chenb J. Vaterite induced by Lysinibacillus sp. GW-2 strain and its stability. Journal of Structural Biology. 2017. Vol. 200, pp. 97–105 https://doi.org/10.1016/j.jsb.2017.09.008
16. Perito B., Marvasi M., Barabesi C., Mastromei G., Bracci S., Vendrell M., Tiano P. Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: Biotechnological perspectives for monumental stone reinforcement. Journal of Cultural Heritage. 2014. Vol. 15, pp. 345–351 https://doi.org/10.1016/j.culher.2013.10.001
17. Rong H., Wei G., Ma G., Zhang Y., Zheng X., Zhang L., Xu R. Influence of bacterial concentration on crack self-healing of cement-based materials. Construction and Building Materials. 2020. Vol. 244 https://doi.org/10.1016/j.conbuildmat.2020.118372
18. Su Y., Feng J., Jin P., Qian C. Influence of bacterial self-healing agent on early age performance of cement-based materials. Construction and Building Materials. 2019. Vol. 218, pp. 224–234 https://doi.org/10.1016/j.conbuildmat.2019.05.077
19. Mondal S., Ghosh A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Construction and Building Materials. 2018. Vol. 183, pp. 202–214 https://doi.org/10.1016/j.conbuildmat.2018.06.176
20. Mondal S., Das P., Datta P., Ghosh A. Deinococcus radiodurans: A novel bacterium for crack remediation of concrete with special applicability to low-temperature conditions. Cement and Concrete Composites. 2020. Vol. 108 https://doi.org/10.1016/j.cemconcomp.2020.103523
21. Vaezia M., Zareei S., Jahadib M. Recycled microbial mortar: Effects of bacterial concentration and calcium lactate content. Construction and Building Materials. 2020. Vol. 234. https://doi.org/10.1016/j.conbuildmat.2019.117349
22. Khaliq W., Ehsan M. Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials. 2016. Vol. 102. Part 1, pp. 349–357 https://doi.org/10.1016/j.conbuildmat.2015.11.006
23. Jonkers H., Thijssen A., Muyzer G., Copuroglu O., Schlangen E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering. 2010. Vol. 36, pp. 230–235 https://doi.org/10.1016/j.ecoleng.2008.12.036
24. Priya T., Ramesh N., Agarwal A., Bhusnur S., Chaudhary K. Strength and durability characteristics of concrete made by micronized biomass silica and Bacteria-Bacillus sphaericus. Construction and Building Materials. 2019. Vol. 226, pp. 827–838 https://doi.org/10.1016/j.conbuildmat.2019.07.172
25. Zhang Z., Ding Y., Qian S. Influence of bacterial incorporation on mechanical properties of engineered cementitious composites (ECC). Construction and Building Materials. 2019. Vol. 196, pp. 195–203 https://doi.org/10.1016/j.conbuildmat.2018.11.089
26. Jafarnia M., Saryazdi M., Moshtaghioun S. Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite. Construction and Building Materials. 2020. Vol. 242 https://doi.org/10.1016/j.conbuildmat.2020.118059
27. Schwantes-Cezario N., Camargo G., Couto A., Porto M., Cremasco L., Andrello A., Toralles B. Mortars with the addition of bacterial spores: Evaluation of porosity using different test methods. Journal of Building Engineering. 2020. Vol. 30. https://doi.org/10.1016/j.jobe.2020.101235
28. Kalhori H., Bagherpour R. Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Construction and Building Materials. 2017. Vol. 148, pp. 249–260. https://doi.org/10.1016/j.conbuildmat.2017.05.074
29. Dovom H., Moghaddam A., Karrabi M. Induction of microbial carbonate precipitation as a sustainable strategy for post-improvement and remediation of cold mix asphalt. Construction and Building Materials. 2020. Vol. 256. https://doi.org/10.1016/j.conbuildmat.2020.119435
30. Qian C., Ren L., Xue B., Cao T. Bio-mineralization on cement-based materials consuming CO2 from atmosphere. Construction and Building Materials. 2016. Vol. 106, pp. 126–132 https://doi.org/10.1016/j.conbuildmat.2015.10.105
31. Abo-El-Enein S., Ali A., Talkhan F., Abdel-Gawwad H. Application of microbial biocementation to improve the physico-mechanical properties of cement mortar. HBRC Journal. 2013. Vol. 9, pp. 36–40. https://doi.org/10.1016/j.hbrcj.2012.10.004
32. Mondal S., Ghosh A. Spore-forming Bacillus subtilis vis-à-vis non-spore-forming Deinococcus radiodurans, a novel bacterium for self-healing of concrete structures: A comparative study. Construction and Building Materials. 2021. Vol. 266. DOI: 10.1016/j.conbuildmat.2020.121122
33. Nain N., Surabhi R., Yathish N., Krishnamurthy V., Deepa T., Tharannum S. Enhancement in strength parameters of concrete by application of Bacillus bacteria Construction and Building Materials. 2019. Vol. 202, pp. 904–908. https://doi.org/10.1016/j.conbuildmat.2019.01.059
34. Rauf M., Khaliq W., Khushnood A., Ahmed I. Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete. Construction and Building Materials. 2020. Vol. 258. https://doi.org/10.1016/j.conbuildmat.2020.119578
35. Zhangab J., Zhao C., Zhou A., Yang C., Zhao L., Li Z. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Construction and Building Mate-rials. 2019. Vol. 224, pp. 815–822. https://doi.org/10.1016/j.conbuildmat.2019.07.129
36. Wiktor V., Jonkers H. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites. 2011. Vol. 33, pp. 763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
37. Wang J., Tittelboom K., Belie N., Verstraeteb W. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials. 2012. Vol. 26, pp. 532–540 https://doi.org/10.1016/j.conbuildmat.2011.06.054
38. González A., Parraguez A., Corvalán L., Correac N., Castrod J., Stuckrath C., González M. Evaluation of Portland and Pozzolanic cement on the self-healing of mortars with calcium lactate and bacteria. Construction and Building Materials. 2020. Vol. 257. https://doi.org/10.1016/j.conbuildmat.2020.119558
39. Gupta S., Kua H., Pang S. Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration. Cement and Concrete Composites. 2018. Vol. 86, pp. 238–254. https://doi.org/10.1016/j.cemconcomp.2017.11.015
40. Chen H., Qian C., Huang H. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Construction and Building Materials. 2016. Vol. 126, pp. 297–303. https://doi.org/10.1016/j.conbuildmat.2016.09.023
41. Stuckrath C., Serpell R., Valenzuela L., Lopez M. Quantification of chemical and biological calcium carbonate precipitation: Performance of self-healing in reinforced mortar containing chemical admixtures. Cement and Concrete Composites. 2014. Vol. 50, pp. 10–15 https://doi.org/10.1016/j.cemconcomp.2014.02.005
42. Jiang L., Jia G., Jiang C., Li Z. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications. Construction and Building Materials. 2020. Vol. 232. https://doi.org/10.1016/j.conbuildmat.2019.117222
43. Erşan Y., Hernandez-Sanabria E., Boon N., De Belie N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cement and Concrete Composites. 2016. Vol. 70, pp. 159–170.
44. Tziviloglou E., Wiktor V., Jonkers H., Schlangen E. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials. 2016. Vol. 122, pp. 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080
45. Khushnood R., Qureshi Z., Shaheen S., Ali S. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Science of the Total Environment. 2020. Vol. 703. https://doi.org/10.1016/j.scitotenv.2019.135007
46. Xu J., Wang X., Wang B. Biochemical process of ureolysis-based microbial CaCO3 precipitation and its application in self-healing concrete. Applied Microbiology and Biotechnology. 2018. Vol. 102, pp. 3121–3132. https://doi.org/10.1007/s00253-018-8779-x
47. Xu J., Wang X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Construction and Building Materials. 2018. Vol. 167, pp. 1–14. https://doi.org/10.1016/j.conbuildmat.2018.02.020
48. Zhang J., Liu Y., Feng T., Zhou M., Zhao L., Zhou A., Li Z. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Construction and Building Materials. 2017. Vol. 148, pp. 610–617. https://doi.org/10.1016/j.conbuildmat.2017.05.021
49. Wang J., Mignon A., Trenson G., Vlierberghe S., Boon N., De Belie N. A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete. Cement and Concrete Composites. 2018. Vol. 93, pp. 309–322. https://doi.org/10.1016/j.cemconcomp.2018.08.007
50. Snoeck D., Wiktor V., Vliergerghe S., Boon N., Belie N., Wang J., Mignon A. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.01088
51. Pei R., Liu J., Wang S., Yang M. Use of bacterial cell walls to improve the mechanical performance of concrete. Cement and Concrete Composites. 2013. Vol. 39, pp. 122–130 https://doi.org/10.1016/j.cemconcomp.2013.03.024
52. Annamalai S., Arunachalam K., Sathyanarayanan K. Production and characterization of Bio Caulk by Bacillus pasteurii and its remediation properties with carbon nano tubes on concrete fractures and fissures. Materials Research Bulletin. 2012. Vol. 47, pp. 3362–3368. https://doi.org/10.1016/j.materresbull.2012.07.024
53. Wang J.,Dewanckele J., Cnudde V., Van Vlierberghe S., Verstraete W., Belie N. X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement and Concrete Composites. 2014. Vol. 53, pp. 289–304 https://doi.org/10.1016/j.cemconcomp.2014.07.014
54. Wu M., Hu X., Zhang Q., Cheng W., Xue D., Zhao Y. Application of bacterial spores coated by a green inorganic cementitious material for the self-healing of concrete cracks. Cement and Concrete Composites. 2020. Vol. 113. https://doi.org/10.1016/j.cemconcomp.2020.103718
55. Zheng T., Su Y., Qian C., Zhou H. Low alkali sulpho-aluminate cement encapsulated microbial spores for self-healing cement-based materials. Biochemical Engineering Journal. 2020. Vol. 163. https://doi.org/10.1016/j.bej.2020.107756
56. Wani I., Singh K. Effect of encapsulated bacteria on concrete properties: A review. Materials-today: proceeding. 2020. https://doi.org/10.1016/j.matpr.2020.07.540
57. Intarasoontron J., Pungrasmi W., Nuaklong P., Jongvivatsakul P., Likit-lersuang S. Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing. Construction and Building Materials. 2021. Vol. 302. 124227. https://doi.org/10.1016/j.conbuildmat.2021.124227
58. Tan L., Ke X., Li Q., Gebhard S., Ferrandiz-Mas V., Paine K., Chen W. The effects of biomineralization on the localised phase and microstructure evolutions of bacteria-based selfhealing cementitious composites. Cement and Concrete Composites. 2022. doi: https://doi.org/10.1016/ j.cemconcomp.2022.104421
59. Feurgard I., Lors C., Gagné R., Damidot D. Use of colloidal thickeners to inject and retain bacterial growth media to repair cracked concrete. Construction and Building Materials. 2020. Vol. 262. https://doi.org/10.1016/j.conbuildmat.2020.119993
60. Jongvivatsakul Р., Janprasit K., Nuaklong P., Pungrasmi W., Likitlersuang S. Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials. 2019. Vol. 212, pp. 737–744. https://doi.org/10.1016/j.conbuildmat.2019.04.035
61. Xu J., Wang X., Yao W. Coupled effects of carbonation and bio-deposition in concrete surface treatment. Cement and Concrete Composites. 2019. Vol. 104. https://doi.org/10.1016/j.cemconcomp.2019.103358
62. Kaur N.P., Majhi S., Dhami N.K., Mukherjee A. Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials. 2020. Vol. 242. https://doi.org/10.1016/j.conbuildmat.2020.118151
63. Bergh J., Miljević B., Šovljanski O., Vučetić S., Markov S., Ranogajec J., Bras A. Preliminary approach to bio-based surface healing of structural repair cement mortars. Construction and Building Materials. 2020. Vol. 248. https://doi.org/10.1016/j.conbuildmat.2020.118557
64. Lors C., Ducasse-Lapeyrusse J., Gagné R., Damidot D. Microbiologically induced calcium carbonate precipitation to repair microcracks remaining after autogenous healing of mortars. Construction and Building Materials. 2017. Vol. 141, pp. 461–469. https://doi.org/10.1016/j.conbuildmat.2017.03.026
65. De Muynck W., De Belie N., Verstraete W. Microbial carbonate precipitation in construction materials: A review. Ecological Engineering. 2010. Vol. 36, pp. 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
66. Chunxiang Q., Jianyun W., Ruixing W., Liang C. Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering: C. 2009. Vol. 29, pp. 1273–1280. https://doi.org/10.1016/j.msec.2008.10.025
67. Rodriguez-Navarro C., Rodriguez-Gallego M., Chekroun K., Teresa M. Conservation of ornamental stone by Myxococcus xanthus-Induced Carbonate Biomineralization. American Society for Microbiology Journals. 2003. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
68. Rodriguez-Navarro C., Jroundi F., Schiro M., Ruiz-Agudo E., González-Muñoz M. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. American Society for Microbiology Journals. 2012. https://doi.org/10.1128/AEM.07044-11
69. De Muynck W., Cox K., De Belie N., Verstraete  W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials. 2008. Vol. 22, pp. 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011
70. Liu M .,Xia J., Chin C., Liu Z. Improving the properties of recycled aggregate pervious pavement blocks through bio-mineralization. Construction and Building Materials. 2020. Vol. 262. https://doi.org/10.1016/j.conbuildmat.2020.120065
71. García-González J., Rodríguez-Robles D., Wang J., Belie N., Pozo J., Guerra-Romero M., Juan-Valdés A. Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate. Construction and Building Materials. 2017. Vol. 154, pp. 1015–1023. https://doi.org/10.1016/j.conbuildmat.2017.08.039
72. Zhu T., Lin Y., Lu X., Dittrich M. Assessment of cyanobacterial species for carbonate precipitation on mortar surface under different conditions. Ecological Engineering. 2018. Vol. 120, pp. 154–163. https://doi.org/10.1016/j.ecoleng.2018.05.038
73. Schwantes-Cezario N., Cremasco L., Medeiros L., Teixeira G., Albino U., Lescano L., Matsumoto L., De Oliveira A., Catarini da Silva P., Toralles B. Potential of cave isolated bacteria in self-healing of cement-based materials. Journal of Building Enginee-ring. 2022. Vol. 45. 103551. https://doi.org/10.1016/j.jobe.2021.103551
74. Son H., Kim H., Park S., Lee H. Ureolytic/non-ureolytic bacteria co-cultured self-healing agent for cementitious materials crack repair. Materials (Basel). 2018. https://doi.org/10.3390/ma11050782
75. Zhu T., Paulo C., Merroun M., Dittricha M. Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecological Engineering. 2015. Vol. 82. No. 2, pp. 459–468. https://doi.org/10.1016/j.ecoleng.2015.05.017
76. Kadapure S., Deshannavar U. Bio-smart material in self-healing of concrete. Materials Today: Proceedings. 2022. Vol. 49. Part 5, pp. 1498–1503. doi.org/10.1016/j.matpr.2021.07.245.
77. Abo-El-Enein S., Ali A., Talkhan F., Abdel-Gawwad  H. Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal. 2012. Vol. 8, pp. 185–192. https://doi.org/10.1016/j.hbrcj.2013.02.001
78. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В. Микробная карбонатная биоминерализация как инструмент природоподобных технологий в строительном материаловедении // Строительные материалы. 2019. № 7. С. 66–72. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
78. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V. Microbial сarbonate biomineralisation as a tool of natural-like technologies in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
79. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В., Духанина У.Н., Балицкий Д.А. Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития // Строительные материалы. 2019. № 9. С. 83–103. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
79. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V., Dukhanina U.N., Balitsky D.A. Application of microbial carbonate biomineralization in biotechnologies of building materials creation and restoration: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103

For citation: Strokova V.V., Dukhanina U.N., Balitsky D.A., Drozdov O.I., Nelubova V.V., Frank-Kamenetskaya O.V., Vlasov D.Yu. Polymorphism and morphology of calcium carbonates in construction materials technologies using microbial biomineralization (review). Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 82–122. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-82-122

Dry Building Mixtures for Floor Coverings Using Nanodispersted Additives

Number of journal: 1-2-2022
Autors:

Badmaeva E.V.,
Lkhasaranov S.A.,
Urkhanova L.A.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-76-81
УДК: 666.9

 

AbstractAbout AuthorsReferences
The article presents the results of studies on determining the compressive strength of a composite binder for floor dry building mixes, which makes it possible to judge the physical and mechanical properties of the binder, when cement is hydrated without additives and with the addition of superplasticizer and nanodispersed silicon dioxide – nanosilica. The hardening kinetics of composite binders was determined using thermal analysis by differential scanning calorimetry (DSC) on a Mettler Toledo Excellence instrument with a modular design. With the introduction of superplasticizer, a steric hindrance appears, allowing the particles of the composite binder to be effectively dispersed in the mixture. With the introduction of nanosilica into the composition of the composite binder, the physical, mechanical and operational properties of the floor covering are improved due to the directed formation of the composite structure. It is proved that when replacing cement with fly ash by 30%, the preservation of the strength characteristics of the cement stone was determined. An increase in the uniformity and density of the structure, the formation of the optimal composition of the new formations of the hardening composite, in the analysis of the phase composition, were noted. It has been established that the joint introduction of Portland cement, fly ash, superplasticizer and nanosilica into a dry mortar for floor coverings leads to an increase in physical and mechanical properties.
E.V. BADMAEVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. LKHASARANOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.A. URKHANOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

East Siberia State University of Technology and Management (40B, Klyuchevskaya Street, Ulan-Ude, 670013, Russian Federation)

1. Bazhenov Yu.M., Korovyakov V.F., Denisov G.A. Tekhnologiya sukhikh stroitel’nykh smesei [Technology of dry building mixtures: a tutorial]. Moscow: ASV. 2003. 96 p.
2. Bazhenov Yu.M., Korolev E.V. Technology of nanomodification of building materials. Collection of reports of the participants of the round table “Nanosystems in construction and production of building materials”. Moscow: ASV, 2007, pp. 33–38. (In Russian).
3. Zagorodnyuk L.Kh., Lesovik V.S., Shamshurov A.V., Belikov D.A. Composite binder based on a complex organo-mineral modifier for dry repair mixes. Vestnik BSTU named after V.G. Shukhov. 2014. No. 5, pp. 25–31. (In Russian).
4. Ivashchenko Yu.G., Timokhin D.K., Strakhov A.T. Modifying effect of organic additives on cement composite materials. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta. 2012. No. 4, pp. 220–226. (In Russian).
5. Korneev V.I., Zozulya P.V., Medvedeva I.N., Bogoyavlenskaya G.A., Nuzhdina N.I., Brykov A.S. Tekhnologiya sukhikh stroitel’nykh smesei [Techno-logy of dry building mixtures: a tutorial]. Sankt-Peterburg: Lan’. 2018. 372 p.
6. Lesovik V.S. Classification of active mineral additives for composite binders, taking into account the genesis. Vestnik BSTU named after V.G. Shukhov. 2012. No. 3, pp. 10–14. (In Russian).
7. Lesovik V.S., Zagorodnyuk L.Kh., Chulkova I.L. The law of affinity of structures in materials science. Fundamental’nye issledovaniya. 2014. No. 3. Part 2, pp. 267–271.
8. Loganina V.I., Makarova L.V., Mokrushina Yu.A. Fine-dispersed fillers based on calcium silicates for dry building mixtures. Stroitel’nye Materialy [Construction Materials]. 2010. No. 2, pp. 36–37. (In Russian).
9. Safarov K.B., Stepanova V.F., Falikman V.R. Effect of mechanical activated low-calcium fly ash on corrosion resistance of hydrotechnical concretes of the Rogun hydropower plant. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 20–25. (In Russian).
10. Semin D.A. Technology for the production of dry building mixtures based on composite binder with the addition of ash and slag. Nauchno-prakticheskie issledovaniya. 2021. No. 1–4 (36), pp. 57–59. (In Russian).
11. Urkhanova L.A., Lkhasaranov S.A., Bardakhanov S.P. Modifitsirovannyi beton s primeneniem nanokremnezema [Modified concrete using nanosilica: monograph]. Ulan-Ude: VSGUTU Publishing house. 2019. 104 p.
12. Chernyshov E.M. Applications of nanochemistry in the technology of solid-phase building materials: a scientific and engineering problem, directions and examples of implementation. Stroitel’nye Materialy [Construction Materials]. 2008. No. 2, pp. 32–36. (In Russian).
13. Yakovlev G.I., Drohitka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina A.F., Shaybadullina A.V., Pudov I.A., Elrefai A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10
14. Yakovlev G.I., Plekhanova T.A., Polyanskikh I.S., Gordina A.F. Fiziko-khimicheskie svoistva i dolgovechnost’ stroitel’nykh materialov [Physical and chemical properties and durability of building materials]. Izhevsk: IzhGTU Publishing house. 2015. 81 p.
15. Flores Y.C., Cordeiro G.C., Toledo Filho R.D. and Tavares L.M. Performance of Portland cement pastes containing nano-silica and different types of silica. Construction and Building Materials. 2017. No. 146, pp. 524–530. https://doi.org/10.1016/j.conbuildmat.2017.04.069
16. Rai S., Tiwari S. Nano silica in cement hydration. Materials Today: Proceedings. 2018. Vol. 5. Iss. 3, pp. 9196–9202. https://doi.org/10.1016/j.matpr.2017.10.044
17. Zhang B., Tan H., Shen W., Xu G., Ma B. and Ji X. Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cement and Concrete Composites. 2018. No. 92, pp. 7–17. https://doi.org/10.1016/j.matpr.2017.10.044

For citation: Badmaeva E.V., Lkhasaranov S.A., Urkhanova L.A. Dry building mixtures for floor coverings using nanodispersted additives. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 76–81. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-76-81

Study on the Properties of a Gypsum-Ceramic Material Based on Technogenic Anhydrite

Number of journal: 1-2-2022
Autors:

Neganova U.A.,
Gordina A.F.,
Ginchitskaya Yu.N.,
Saidova Z.S.,
Alexandrov A.M.,
Yakovlev G.I.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-70-75
УДК: 691.5

 

AbstractAbout AuthorsReferences
The article presents the results of a study on the properties and structure of gypsum ceramics based on fluoroanhydrite binder obtained by semi-dry pressing. To improve the properties of the fired compositions, a solution of sodium chloride was used instead of mixing water, which acted as a flux during firing. Based on the results of the differential thermal analysis and the main physical and technical characteristics of the compositions (compressive strength, shrinkage, softening coefficient), the optimal firing temperature was established, which was equal to 800оC. The optimal concentration of the NaCl salt in the solution was also determined. It has been found out that under conditions of high humidity the strength gain of the obtained gypsum-ceramic material continues even after reaching its project value due to the hydration of anhydrite.
U.A. NEGANOVA, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.N. GINCHITSKAYA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.S. SAIDOVA, Postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. ALEKSANDROV, Postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (426069 Izhevsk, Studencheskaya Street, 7)

1. Shishakina O.A., Palamarchuk A.A. Review of directions of utilization of technogenic wastes in the production of building materials. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nyi issledovanii. 2019. No. 4, pp. 198–199. (In Russian).
2. Ponomarenko A.A., Kapustin F.L. Technology of processing fluoroanhydrite for use in the production of Portland cement. Khimicheskaya tekhnologiya. 2011. No. 6, pp. 323–325. (In Russian).
3. Kudyakov A.I., Anikanova L.A., Redlikh V.V., Sarkisov Yu.S. Influence of sulfate and sodium sulfite on the processes of structure formation of fluoroanhydrite compositions. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 50–53. (In Russian).
4. Bondarenko S.A., Trofimov B.Ya., Chernykh T.N., Kramar L.Ya. The use of fluoroanhydrite in the production of tongue-and-groove partitions. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 68–69. (In Russian).
5. Anikanova L.A., Volkova O.V., Kurmangalieva A.I., Volkov K.S. Study of fluoroanhydrite raw materials for the production of composite binders. Vestnik TGASU. 2015. No. 4, pp. 160–164. (In Russian).
6. Yakovlev G., Pervushin G., Grahov V., Kalabina D., Gordina A., Ginchitskaya J., Drochytka R. Structural and thermal insulation materials based on high-strength anhydrite binder. IOP Conference Series: Materials Science and Engineering. 4th World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium. Prague. 2019. Vol. 603, 032071. DOI: 10.1088/1757-899X/603/3/032071
7. Anikanova L.A. Efficiency of fluoroanhydrite in the production of wall and finishing materials. Vestnik TGASU. 2015. No. 1, pp. 48–53. (In Russian).
8. Golik V.I., Razorenov Yu.I., Komashchenko V.I. Dry building mixtures based on mining waste. Sukhie stroitel’nye smesi. 2017. No. 5, pp. 19–25. (In Russian).
9. Plekhanova T.A., Krutikov V.A., Bondar’ A.Y. Production technology for gypsum-ceramic material. Glass and Ceramics. 2003. No. 60, pp. 411–413. DOI: 10.1023/B:GLAC.0000020802.15527.BB
10. Lei L., Yan H., Hong W.B., Wu S.Ya., Chen X.M. Dense gypsum ceramics prepared by room-temperature cold sintering with greatly improved mechanical properties. Journal of the European Ceramic Society. 2020. No. 40, pp. 89–93. DOI: 10.1016/j.jeurceramsoc.2020.06.003
11. Makarov D.V., Melkonyan R.G., Suvorova O.V., Kumarova V.A. Prospects for the use of industrial waste to obtain ceramic building materials. Gornyi informatsionno-analiticheskii byulleten’. 2016. No. 5, pp. 254–281. (In Russian).
12. Brencich A., Ltka D., Matysek P., Orban Z., Sterpi E. Compressive strength of solid clay brickwork of masonry bridges: Estimate through Schmidt Hammer tests. Construction and Building Materials. 2021. Vol. 306. 124494. DOI: https://doi.org/10.1016%2Fj.conbuildmat.2021.124494
13. Yakovlev G.I., Kodolov V.I. Liquid-phase sintering of fluoroanhydrite in the synthesis of gypsum-ceramic materials. Izvestiya VUZov. Khimiya i khimicheskaya tekhnologiya. 1999. Vol. 42. Iss. 1, pp. 97–100. (In Russian).
14. Yakovlev G.I., Lasis A.Yu. Gypsum-ceramic material based on fluoroanhydrite. Second Academic Readings of RAASN: Modern problems of building materials science. Part 2. Kazan, 1996, pp. 20–21. (In Russian).

For citation: Neganova U.A., Gordina A.F., Ginchitskaya Yu.N., Saidova Z.S., Alexandrov A.M., Yakovlev G.I. Study of the properties of gypsum-ceramic material based on technical anhydrite. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 70–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-70-75

Modification of Composite Binders with an Ultrafine Additive Obtained by Hydrolysis of Portland Cement

Number of journal: 1-2-2022
Autors:

Danzanov D.V.,
Urkhanova L.A.,
Lkhasaranov S.A.,
Dambaev Zh.G.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-65-69
УДК: 666.96

 

AbstractAbout AuthorsReferences
The article presents the results of studies on the production of binders using aluminosilicate rocks – perlites of the Mukhor-Tala deposit of the Republic of Buryatia and an ultrafine additive obtained by hydrolysis of Portland cement. Composite binder obtained by joint grinding of Portland cement, vitreous and crystallized perlite. To modify the composite binder, an ultrafine additive obtained by the hydrolysis of Portland cement was used. The particle size of the ultrafine additive was determined by laser diffraction. The strength indicators of composite binders with different contents of vitreous and crystallized perlite have been determined. Physical and mechanical parameters of the developed compositions of composite binders with the replacement of the clinker component up to 30 wt. %, are not inferior to those of ordinary Portland cement. The combined use of crystallized and vitreous perlite promotes the appearance of additional centers of crystallization of calcium hydrosilicates and the binding of portlandite by amorphous silica. An IR spectral analysis of composite binders modified with an ultrafine additive was carried out. Changes in the phase composition of the formed calcium hydrosilicates have been established. The combined use of perlites and ultrafine additives in the composition of composite binders contributes to an increase in the degree of hydration, the formation of a larger amount of CSH(B).
D.V. DANZANOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.A. URKHANOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. LKHASARANOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Zh.G. DAMBAEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

East Siberia State University of Technology and Management (40B, Klyuchevskaya Street, Ulan-Ude, 670013, Russian Federation)

1. Garkavi M.S., Dergunov S.A., Serikov S.V. Formation of the structure of composite cement in the grinding process. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 65–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68
2. Lesovik V.S., Fediuk R.S. New generation composites for special facilitie. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 9–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-9-17
3. Murtazaev S.A.Yu., Salamanova M.Sh., Bisultanov R.G., Murtazaeva T.S.A. High-quality modified concrete using a binder based on a reactive mineral component. Stroitel’nye Materialy [Construction Materials]. 2016. No. 8. pp. 74–79. (In Russian).
4. Safarov K.B., Stepanova V.F. Regulation of the reactivity of aggregates and increasing the sulfate resistance of concrete through the combined use of low-calcium fly ash and highly active metakaolin. Stroitel’nye Materialy [Construction Materials]. 2016. No. 5, pp. 70–73. (In Russian).
5. Grigoriev V.G., Kozlova V.K., Andryushina E.E., Shkrobko E.V., Likhosherstov A.A. Composite Portland cements for hydraulic engineering construction. Polzunovskiy Vestnik. 2012. No. 1, pp. 62–64. (In Russian).
6. Fomina E.V., Kudeyarova N.P., Tyukavkina V.V. Hydration activation of a composite binder based on technogenic raw materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 61–64. (In Russian).
7. Popov A.L., Strokova V.V. Fiber foam concrete of autoclave hardening with the use of composite binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 38–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-38-44
8. Lesovik V.S., Zhernovoi F.E., Glagolev E.S. The use of natural perlite in the composition of mixed cements. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 84–87. (In Russian).
9. Lesovik B.C., Zhernovoi F.E. Methodology for designing the composition of artificial conglomerates. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2008. No. 5, pp. 4–7. (In Russian).
10. Lebedev M.S., Zhernovsky I.V., Fomina E.V., Fomin A.E. Features of the use of clay rocks in the production of building materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 9. pp. 67–72. (In Russian).
11. Artamonova O.V., Sergutkina O.R., Ostankova I.V., Shvedova M.A. Synthesis of a nanodispersed modifier based on SiO2 for cement composites. Kondensirovan-nye sredy i mezhfaznye granitsy. 2014. Vol. 16. No. 2, pp. 152–162. (In Russian).
12. Shmit’ko E.I., Krylova A.V., Shatalova V.V. Khimiya tsementa i vyazhushchikh veshchestv [Chemistry of cement and binders]. Voronezh: VGASU. 2005. 164 p.
13. Chernyshov E.M., Artamonova O.V., Slavcheva G.S. Applied Nanotechnological problems of increasing the efficiency of cement concrete hardening processes. Nanotekhnologii v stroitel’stve. 2017. No. 1, pp. 25–41. DOI: dx.doi.org/10.15828/2075-8545-2017-9-1-25-41(In Russian).
14. Korolev E.V. Nanotechnology in building materials science. Analysis of the state and achievements. Ways of development. Stroitel’nye Materialy [Construction Materials]. 2014. No. 11, pp. 47–79. (In Russian).
15. Khozin V.G., Khokhryakov O.V., Nizamov R.K., Kashapov R.R., Baishev D.I. Experience of nanomodification of cements of low water demand. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 1, pp. 53–57. (In Russian).
16. Tyukavkina V.V., Kasikov A.G., Gurevich B.I. Structure formation of cement stone modified with additive of nano-disperse silicon dioxide. Stroitel’nye Materialy [Construction Materials]. 2018. No. 11, pp. 31–35. DOI: https://doi.org/10.31659/0585-430X-2018-765-11-31-35 (In Russian).

For citation: Danzanov D.V., Urkhanova L.A., Lkhasaranov S.A., Dambaev Zh.G. Modification of composite binders with an ultrafine additive obtained by hydrolysis of Portland cement. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 65–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-65-69

Modification of Fluorohydrite Binders with Ultrafine Diabase Powder

Number of journal: 1-2-2022
Autors:

Dimukhametova A.F.,
Yakovlev G.I.,
Pervushin G.N.,
Buryanov A.F.,
Gordina A.F.,
Saidova Z.S.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-57-64
УДК: 691.553.3

 

AbstractAbout AuthorsReferences
In this research, the influence of ultrafine diabase powder on the processes of fluoroanhydrite binder structure formation was studied. Assessed were the physical and mechanical characteristics of the modified fluoroanhydrite composition. It has been established that introduction of diabase powder in an amount of 7% into the technogenic anhydrite binder contributes to an increase in compressive strength of the modified compositions by 28% compared to the reference composition, which did not contain a modifying additive. An increase in strength was observed in the early stages of hardening. This can be explained by the creation of a dense crystalline structure in the developed composition due to the formation of calcium sulfoaluminate hydrates and amorphous calcium silicate hydrates of the tobermorite type, which fill the pores between calcium sulfate crystals. Here, in order to create conditions for the formation of a dense structure of the fluoroanhydrite matrix, it is important to provide an alkaline environment during the activation of fluoroanhydrite by adding sodium phosphate. The formation of new hydration products in the technogenic anhydrite composition in the early stages of hardening is confirmed by the methods of physical and chemical analysis, including X-ray phase analysis, X-ray microanalysis and scanning microscopy. The described technology makes it possible to obtain a composition with improved physical and mechanical properties, while solving problems of fluoroanhydrite utilization and preventing depletion of natural anhydrite binder reserves.
A.F. DIMUKHAMETOVA1, Master (Graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. PERVUSHIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. BURYANOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. GORDINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.S. SAIDOVA1, Master (Graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337 Russian Federation)

1. Kudyakov A.I., Anikanova L.A., Redlikh V.V. Materials for building envelopes from composite fluoroanhydrite binders. Sukhie stroitel’nye smesi. 2013. No. 3, pp. 12–14. (In Russian).
2. Yakovlev G.I., Kalabina D.A., Grakhov V.P., Buryanov A.F., Gordina A.F., Bazhenov K.A., Nikitina S.V. Fluoro-anhydrite compositions with a light filler based on expanded perlite sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 57–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-57-61
3. Yakovlev G.I., Polyanskikh I.S., Kislyakov M.A., Gyrdymov D.A. Structural and heat-insulating material based on fluoroanhydrite. In the collection: Fotin Readings-2021 (spring meeting). Materials of the VIII International Scientific and Practical Conference. Izhevsk, 2021, pp. 193–198. (In Russian).
4. Kalabina D.A., Yakovlev G.I., Vasilchenko Yu.M., Kuzmina N.V., Gordina A.F. Modification of fluoroanhydrite composition for flooring with carbon-containing additives. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 27–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-27-31
5. Gumeniuk A.N., Polyanskikh I.S., Khodyreva M.A., Shevchenko F.E., Pudov I.A., Pervushin G.N., Yakovlev G.I. Composite materials based on fluoranhydrite and industrial sulfur. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-4-10
6. Kurmangalieva A.I., Anikanova L.A., Volkova O.V., Kudyakov A.I., Sarkisov Yu.S., Abzaev Yu.A. Activation of hardening processes of fluorogypsum compositions by chemical additives of sodium salts. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Khimiya i Khimicheskaya Tekhnologiya. 2020. Vol. 63. Iss. 8, pp. 73–80. (In Russian).
7. Kalabina D.A., Yakovlev G. I., Drochitka R., Grakhov  V.P., Pervushin G.N., Bazhenov K.A., Troshkova V.V. Rheological activation of fluoroanhydrite compositions with polycarboxylate esters. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 38–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-38-47
8. Yakovlev G.I., Pervushin G.N., Grakhov V.P., Kalabina D.A., Gordina A.F., Ginchitskaya Yu.N., Bazhenov K.A., Troshkova V.V., Drohitka R., Khozin V.G. Structural and heat-insulating material based on high-strength anhydrite binder. Intellektual’nye sistemy v proizvodstve. 2019. Vol. 17. No. 1, pp. 144–151. (In Russian).
9. Babailova E.S., Novikova V.A. Possibilities of using a composite material based on fluoroanhydrite with a technogenic modifier during reconstruction. Collection of reports of the XII international scientific-practical conference of students, graduate students and young scientists «Youth and scientific and technological progress». 2019, pp. 267–271. (In Russian).
10. Ruzina N.S., Lushnikova E.S., Gordina A.F., Polyanskikh I.S. Ecologically effective composite materials based on fluoroanhydrite with technogenic modifiers. Resursoenergoeffektivnye tekhnologii v stroitel’nom komplekse regiona. 2018. No. 10, pp. 144–149. (In Russian).
11. Anikanova L.A., Kudyakov A.I., Kovler K. Control of the processes of structure formation of binders, wall and finishing materials based on fluoroanhydrite raw materials. Collection of the National Scientific and Technical Conference with International Participation “Improving the quality and efficiency of building and special materials”. 2019, pp. 106–110. (In Russian).
12. Korkmaz A.V., Mechanical activation of diabase and its effect on the properties and microstructure of Portland cement. Case Studies in Construction Materials. 2022. Vol. 16. e00868. https://doi.org/10.1016/j.cscm.2021.e00868
13. Butakova M.D., Gorbunova S.P. Study of the influence of complex additives on properties of the gypsum-cement-puzzolan binder and concretes on its basis. Procedia Engineering. 2016. No. 150, pp. 1461–1467. https://doi.org/10.1016/j.proeng.2016.07.082
14. Li. H., Liu Y., Xu C., Guan X., Zou D., Jing G. Synergy effect of synthetic ettringite modified by citric acid on the properties of ultrafine sulfoaluminate cement-based materials. Cement and Concrete Composites. 2022. Vol. 125. 104312. https://doi.org/10.1016/j.cemconcomp.2021.104312
15. Kapustin F.L., Spiridonova A.M., Pomazkin E.P. The use of penetrating waterproofing to improve the corrosion resistance of cement stone. Tekhnologii betonov. 2015. No. 3–4. pp. 44–47. (In Russian).
16. Garkavi M.S., Nekrasova S.A., Troshkina E.A. Kinetics of contact formation in nanomodified gypsum materials. Stroitel’nye Materialy [Construction Materials]. 2013. No. 2, pp. 38–40. (In Russian).
17. Andreev V.V., Semikova S.G. Thermodynamic studies of the process of decomposition and sulfation of calcium bicarbonate. Leningrad: AN SSS. Journal of Applied Chemistry. 1985. 19 p. (In Russian).
18. Haev T.Eh., Tkach E.V., Oreshkin D.V. Lightweight strengthened gypsum stone for restoration of architectural monuments. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 68–72. (In Russian).
19. Petropavlovskii K.S., Buryanov A.F., Petropavlovskaya V.В., Novichenkova T.B. Lightened self-reinforced gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 40–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-40-45
20. Turchin V.V., Yudina L.V., Ibatullina A.R., Sattaro-va A.R. Increasing the sulfate resistance of cement-containing compositions due to the crystallization of nanophases. Intellektual’nye sistemy v proizvodstve. 2012. No. 2 (20), pp. 173–180. (In Russian).
21. Hoang Nguyen, Malena Staudacher, Paivo Kinnunen, Valter Carvelli, Mirja Illikainen. Multi-fiber reinforced ettringite-based composites from industrial side streams. Journal of Cleaner Production. 2019. Vol. 211, pp. 1065–1077. https://doi.org/10.1016/j.jclepro.2018.11.241
22. Nguyen H., Kinnunen P., Carvelli V., Mastali M., Illikainen M. Strain hardening polypropylene fiber reinforced composite from hydrated ladle slag and gypsum. Composites Part B: Engineering. 2019. Vol. 158, pp. 328–338. https://doi.org/10.1016/j.compositesb.2018.09.056
23. Borisov D.K., Shevchenko F.E., Gordina A.F. Study of the effect of mineral additives on the structure and properties of building gypsum. Collection of materials of the XXVII Republican exhibition-session of student innovation projects “Innovation Exhibition-2019” (spring session). 2019, pp. 3–8. (In Russian).

For citation: Dimukhametova A.F., Yakovlev G.I., Pervushin G.N., Buryanov A.F., Gordina A.F., Saidova Z.S. Modification of fluorohydrite binders with ultrafine diabase powder. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 57–64. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-57-64

Synthesis of a Colloid Additive Based on Aluminosilicate Rocks for Cement Stone Modification

Number of journal: 1-2-2022
Autors:

Urkhanova L.A.,
Dorzhieva E.V.,
Gonchikova E.V.,
Yakovlev A.P.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-50-56
УДК: 691.542

 

AbstractAbout AuthorsReferences
The article presents the results of the research on obtaining a colloidal additive based on aluminosilicate rocks for the modification of cement stone. It has been established that on the basis of perlite rocks of the Mukhor-Talinsky deposit of the Republic of Buryatia, using sol-gel technologies, it is possible to obtain a colloidal modifier having particles ranging in size from 70 to 100 nm and with their total content of about 30%. As a result of experimental studies carried out using modern instruments and equipment, and after having analyzed the elemental composition, structure of vitreous perlite and the structural features of the particles surface of dispersed systems based on it, it was established that the synthesized colloidal modifier consists of the sol of silicic acid and the sol of aluminum hydroxide; it has an amorphous structure; the surface of the particles of the synthesized additive contains mainly silanol groups, adsorbed water. There have been established the dependences of the physical and mechanical properties of cement stone on the concentration of the additive and the pH of the colloidal solution. The possibility of using the synthesized colloidal additive for the cement stone modification has been stated.
L.A. URKHANOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. DORZHIEVA1, Candidate of Sciences (Engineering),
E.V. GONCHIKOVA1, Candidate of Sciences (Engineering),
A.P. YAKOVLEV2, Engineer

1 East Siberia State University of Technology and Management (40B, Klyuchevskaya Street, Ulan-Ude, 670013, Russian Federation)
2 Research, Design and Technological institute of Concrete and Reinforced Concrete – NIIZHB named after A.A. Gvozdev JSC “Research Center “Stroitel’stvo” (6, build. 5, 2-nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. Urkhanova L.A., Zubakin B.A., Struganov V.N. Mukhor-Talinskoye deposit of perlite raw materials: opportunities and prospects for its use in the construction industry. Stroitel’nyye materialy i izdeliya: Kiyev. 2005. No. 7, pp. 78–85. (In Russian).
2. Magdeev U.Kh., Bazhenov Yu.M., Tsyrempilov A.D. Energy-saving technologies of binders and concretes based on effusive rocks [Energosberegayushchiye tekhnologii vyazhushchikh i betonov na osnove effuzivnykh porod]. Moscow: RAACS Publishing House. 2002. 344 p.
3. Bazhenov Yu.M. Сoncrete technology [Tekhnologii betonov]. Moscow: ASV. 2002. 500 p.
4. Komokhov P.G. Sol-gel as a concept of cement composite nanotechnology. Stroitel’nye Materialy [Construction Materials]. 2006. No. 9, pp. 89–90. (In Russian).
5. Svatovskaya L.B. et al. Nanoadditives from silicon- and iron-containing (III) sol for heavy concrete on ordinary cements. Nanotekhnalogii v stroitel’stve: scientific Internet journal. 2010. Vol. 2. No. 5, pp. 61–68. (In Russian).
6. Lukutsova N.P. Nano Modifying additives in concrete. Stroitel’nye Materialy [Construction Materials]. 2010. No. 9, pp. 101–104. (In Russian).
7. Zhernovoi F.E. Composite binders using perlite. Diss…Candidate of Sciences (Engineering). Belgorod. 2010. 203 p.
8. On the integrated use of the main and associated rocks of the Mukhor-Talinsky perlite deposit of the Republic of Buryatia: Feasibility report of PTI Rosvostokstroy. Moscow. 1991. Vol. 1.2. (In Russian).
9. Gornostaeva E. Yu., Lasman I. A., Fedorenko E. A., Khamaza E. V. Wood-cement compositions with a modified structure at macro-, micro- and nanolevels. Stroitel’nye Materialy [Construction Materials]. 2015. No. 11, p. 13–16. (In Russian).
10. Selyaev V.P., Kupriyashkina L.V., Selyaev P.V., Kiselev N.N., Kechutkina E.L. Production of fine amorphous microsilica from diatomite by precipitation of silicon dioxide from a colloidal system. Technologii textilnoy promishlennosti. 2018. No. 3 (375), pp. 46–55. (In Russian).
11. Zemnukhov L.A., Panasenko A.E., Tsoi E.A. Composition and structure of samples of amorphous silica from rice husk and straw. Neorganicheskie materialy. 2014. Vol. 50. No. 1, pp. 82–89.
12. Patent RF 2378194. Reaktsiya sinteza dioksida kremniya i sposob ego polucheniya plamennym gidrolizom [The reaction of the synthesis of silicon dioxide and the method of its production by flame hydrolysis]. Vavilov V.V., Sudyarov G.I., Storozhenko P.A., Polivanov A.N., Kochurkov A.A. Declared. 06.02.08. Published 01.10.10.
13. Ailer R. Khimiya kremnezema [Silica Chemistry: 2 parts]. Moscow: Mir. 1982. 1128 p.
14. Dorzhieva E.V. Concrete modified with silicic acid sol. Diss…Candidate of Sciences (Engineering). Ulan-Ude. 2013. 124 p. (In Russian).
15. Urkhanova L.A., Dorzhieva E.V., Gonchikova E.V. et al. Development of technology for the production of wood concrete with modifying additives. Topical issues of building materials science: Articles of All-Russian Scientific and Practical Conference. Ulan-Ude: Publishing house of ESSUTU. 2021, pp.141–145. (In Russian).

For citation: Urkhanova L.A., Dorzhieva E.V., Gonchikova E.V., Yakovlev A.P. Synthesis of a colloid additive based on aluminosilicate rocks for cement stone modification. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 50–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-50-56

Non-Autoclaved Cement Foam Concrete with Thermal Modified Peat Additive

Number of journal: 1-2-2022
Autors:

Kudyakov A.I.,
Prishchepa I.A.
Osipov S.P.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-40-49
УДК: 691.327.333

 

AbstractAbout AuthorsReferences
The results of research of cement-based structural and heat-insulating foam concrete for individual housing construction are presented. It has been suggested to use microporous organomineral peat additive TMT600 as a modifying additive increasing homogeneity of structure and quality of foam concrete. It has been shown that the introduction of the peat additive TMT600 into the water solution of synthetic foaming agent stabilizes the resistance of positively influences the reduction of the delaminability of foam concrete mixture and increases manufacturability at individual construction. As a result of conducted researches it was established, that the use of additive TMT600 in foamed concrete allows to get a stable high strength В2,5 with average density D700 due to more dense and strong cement stone and microporous structure of partitions (practically without changing of average density); thermal conductivity – 0,1 W/(m·K); shrinkage – 1,7 mm/m and freeze-resistance F50.
A.I. KUDYAKOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.A. PRISCHEPA1, Master, senior lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.P. OSIPOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Tomsk State University of Architecture and Building (2, Solyanaya Square, Tomsk, 634003, Russia)
2 National Research Tomsk Polytechnic University (30, Lenina Avenue, Tomsk, 634050 Russian Federation)

1. Tretyachenko T., Pivovarova G., Sogomonyan S. COVID-19: assessment and forecast of the development of the residential real estate market of the Russian Federation using the housing affordability factor model. SHS Web of Conferences. – EDP Sciences. 2021. Vol. 101. 02013. DOI: 10.1051/shsconf/202110102013
2. Blokhin A.A., Sternik S.G., Teleshev G.V. Institutio-nal Transformations of Russia’s Housing Construc-tion Sector in 2020. Studies on Russian Economic Development. 2021. Vol. 32. No. 2, pp. 147–154. DOI: 10.1134/S1075700721020039
3. Shon C.S., Mukangali I., Zhang D., Ulykbanov A., Kim J. Evaluation of non-autoclaved aerated concrete for energy behaviors of a residential house in Nur-Sultan Kazakhstan. Buildings. 2021. Vol. 11. No. 12. 610. DOI: 10.3390/buildings11120610
4. Kejkar R.B., Madhukar A., Agrawal R., Wanjari S.P. Performance evaluation of cost-effective non-autoclaved aerated geopolymer (NAAG) blocks. Arabian Journal for Science and Engineering. 2020. Vol. 45. No. 10, pp. 8027–8039. DOI: 10.1007/s13369-020-04581-9.
5. Arzumanyan A. Technological peculiarities of non autoclaved foam concrete production on the base of volcanic pumice aggregates. Materials Science Forum. Vol. 974, pp. 206–210. DOI: 10.4028/www.scientific.net/MSF.974.206
6. Моргун В.Н., Моргун Л.В. Обоснование одного из методов совершенствования структуры пенобетонов // Строительные материалы. 2018. № 5. С. 24–26. DOI: https://doi.org/10.31659/0585-430X-2018-759-5-24-266.
6. Morgun V.N., Morgun L.V. Substantiation of one of the methods for improving the structure of foam concretes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 24–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-759-5-24-26
7. Местников А.Е., Кудяков А.И., Рожин В.К. Цементный пенобетон из портландцементного клинкера и природного минерального сырья Арктической зоны России // Цемент и его применение. 2020. № 2. С. 2–5.
7. Mestnikov A.E., Kudyakov A.I., Rozhin V.K. Cement foam concrete from Portland cement clinker and natural mineral raw materials of the Arctic zone of Russia. Cement i ego primenenie. 2020. No. 2, pp. 2–5. (In Russian).
8. Федосов С.В., Голованов В.И., Лазарев А.А. О проблеме совершенствования строительных изделий, обеспечивающих пожарную безопасность малоэтажных зданий // Строительные материалы. 2021. № 3. С. 57–63. DOI: 10.31659/0585-430X-2021-789-3-57-63
8. Fedosov S.V., Golovanov V.I., Lazarev A.A., Toropova M.V., Malichenko V.G. On the problem of improving construction products that ensure fire safety of low-rise buildings. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 57–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-57-63
9. Yuanliang X., Baoliang L., Chun C., Yamei Z. Properties of foamed concrete with Ca (OH)2 as foam stabilizer. Cement and Concrete Composites. 2021. Vol. 118. 103985. DOI: 10.1016/j.cemconcomp.2021.103985
10. Hashim M., Tantray M. Comparative study on the performance of protein and synthetic-based foaming agents used in foamed concrete. Case Studies in Construction Materials. 2021. Vol. 14. DOI: 10.1016/j.cscm.2021.e00524
11. Kudyakov A.I., Steshenko A.B. Cement foam concrete with low shrinkage. Advanced Materials Research. 2015. Vol. 1085, pp. 245–249. doi:10.4028/www.scientific.net/AMR.1085.245
12. Федоров В.И., Местников А.Е. Модификация технической пены для монолитного пенобетона введением вторичной целлюлозной фибры // Промышленное и гражданское строительство. 2018. № 1. С. 48–52.
12. Fedorov V.I., Mestnikov A.E. Modification of technical foam for monolithic foam concrete by introducing secondary cellulose fiber. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 1, pp. 48–52. (In Russian).
13. Christina Krämer, Matthias Schauerte, Torsten L. Kowald, Reinhard H.F. Trettin, Three-phase-foams for foam concrete application. Materials Cha-racterization. 2015. Vol. 102, pp. 173–179.
14. Steshenko A.B., Kudyakov A.I. Cement based foam concrete with aluminosilicate microspheres for monolithic construction. Magazine of Civil Engineering. 2018. No. 8 (84), pp. 86–96. DOI: 10.18720/MCE.84.9
15. Русина В.В., Шестакова Ю.А. Бесклинкерные вяжущие на основе торфяной золы // Строительные материалы. 2019. № 10. С. 70–74.
15. Rusina V.V., Shestakova Yu.A. Clinkerless binders based on peat ash. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 70–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-70-74
16. Kim D.V., Cong L.N., Van L.T., Bazhenova S.I. Foamed concrete containing various amounts of organic-mineral additives. Journal of Physics: Conference Series. 2019. Vol. 1425. No. 1. 012199. DOI: 10.1088/1742-6596/1425/1/012199
17. Копаница Н.О., Кудяков А.И., Ковалева М.А. Торфодревесные теплоизоляционные строительные материалы. Томск: ТГАСУ, 2009. 183 с.
17. Kopanitsa N.O., Kudyakov A.I., Kovaleva M.A. Torfodrevesnyye teploizolyatsionnyye stroitel’nyye materialy [Peat wood thermal insulation building materials]. Tomsk: TGASU. 2009. 183 p.
18. Цветков Н.А., Саркисов Ю.С., Горленко Н.П., Прищепа И.А., Зубкова О.А. Структурообразо-вание цементного камня с добавкой термомодифицированного торфа // Известия высших учебных заведений. Строительство. 2018. № 12 (720). С. 52–61.
18. Tsvetkov N.A., Sarkisov Yu.S., Gorlenko N.P., Prishchepa I.A., Zubkova O.A. Structure formation of cement stone with the addition of thermally modified peat. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2018. No. 12 (720), pp. 52–61. (In Russian).
19. Kudyakov A.I., Kopanitsa N.O., Kasatkina A.V., Prischepa I.A. Sarkisov J.S. Foam concrete of increased strength with the thermomodified peat additives. IOP Conference Series: Materials Science and Engineering. Advanced Materials in Construction and Engineering. Tomsk, TSUAB. 2015. 012012. DOI: 10.1088/1757-899X/71/1/012012
20. Прищепа И.А., Кудяков А.И., Саркисов Ю.С., Горленко Н.П., Журавлев В.А., Сусляев В.И., Угоденко Д.О. Формирование структуры пенобетона с термомодифицированной торфяной добавкой в ранние сроки твердения // Вестник Томского государственного университета. Химия. 2020. № 18. С. 35–46. DOI: 10/17223/24135542/18/4
20. Prishchepa I.A., Kudyakov A.I., Sarkisov Yu.S., Gorlenko N.P., Zhuravlev V.A., Suslyaev V.I., Ugodenko D.O. Formation of the structure of foam concrete with thermally modified peat additive in the early stages of hardening. Vestnik Tomskogo gosudarstvennogo universiteta. Khimiya. 2020. No. 18, pp. 35–46. DOI: 10/17223/24135542/18/4
21. Осипов С.П., Прищепа И.А., Чахлов С.В., Осипов О.С., Усачёв Е.Ю. Алгоритмы моделирования и обработки информации в рентгенов-ской томографии пеноматериалов // Дефектоскопия. 2021. № 3. С. 53–65. DOI: 10.31857/S0130308221030052
21. Osipov S.P., Prishchepa I.A., Chakhlov S.V., Osipov O.S., Usachyov E.Yu. Algorithms for modeling and processing information in X-ray tomography of foam materials. Defectoscopy. 2021. No. 3. S. 53–65. DOI: 10.31857/S0130308221030052
22. Chung S.Y., Kim J.S., Han T.S., Stephan D., Kamm P.H., Abd Elrahman M. Characterization of foamed concrete with different additives using multi-scale micro-computed tomography. Construction and Building Materials. 2022. Vol. 319. 125953. DOI: 10.1016/j.conbuildmat.2021.125953

For citation: Kudyakov A.I., Prishchepa I.A. Osipov S.P. Non-autoclaved cement foam concrete with thermal modified peat additive. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 40–49. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-40-49

Determination of the Specific Free Surface Energy of Clinker-Free Composites on an Alkaline Activation Binder

Number of journal: 1-2-2022
Autors:

Salamanova M.Sh.,
Nakhaev M.R.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-30-39
УДК: 691.32

 

AbstractAbout AuthorsReferences
he fact of pollution of the environment and the air basin with carbon dioxide, cement dust, dioxins, sulfur and other harmful and hazardous substances in the production of traditional Portland cement is known. The development of clinker-free binders of alkaline activation of fine aluminosilicate powders (geopolymers) is quite relevant at the present time, since this will partially abandon the carbonate technology and reduce emissions into the atmosphere. Formulations of clinker-free binders of alkaline activation using wastes from the cement industry and natural raw materials of aluminosilicate nature and composites based on them will make it possible to find practical application of this technology in the construction field. The work investigated the free surface energy by the OVRK method, the results of studies of samples “reaction component+filler+Na2SiO3” water and air dry storage, 28 days and 1 year of hardening showed that the polar and dispersive components of surface tension indicate a less reactive and poorly wetted surface; surface free energy values guarantee high durability and strength of concrete. The obtained regularities confirm the efficiency of clinkerless technology, and the development of alkaline mixing binders will occupy a competitive position in the construction market.
M.Sh. SALAMANOVA1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.R. NAKHAEV1,3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Grozny State Oil technical university named after M.D. Millionshikov (100, Avenue Isaev, Grozny, 364021, Russian Federation)
2 Kh. Ibragimov Complex Institute of the Russian Academy of Sciences (21, Staropromyslovskoe highway, Grozny, 364051, Russian Federation)
3 Kadyrov Chechen State University (32, А. Sheripova Street, Grozny, 364024, Russian Federation)

1. Chen L., Wang Z., Wang Y. and Feng J. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials (Basel). 2016. No. 9. 767. DOI: 10.3390/ma9090767
2. Zhang Z., Provis J., Zou J., Reid A. and Wang H. Toward an indexing approach to evaluate fly ashes for geopolymer manufacture. Cement and Concrete Research. 2016. Vol. 85, рр. 167–173. https://doi.org/10.1016/j.cemconres.2016.04.007
3. Gao Х.Х., Michaud P., Joussein Е., Rossignol S. Behavior of metakaolin-based potassium geopolymers in acidic solutions. Journal of Non-Crystalline Solids. 2013. Vol. 380, рр. 95–102. OI:10.1016/j.jnoncrysol.2013.09.002
4. Kadhim A., Sadique M., Al-Mufti R. and Hashim Kh. Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust. Journal of Building Engineering. 2020. Vol. 32. 101766. https://doi.org/10.1016/j.jobe.2020.101766
5. Sturm P., Gluth G.J.G., Brouwers H.J.H. and Kühne H.-C. Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials. 2016. Vol. 124, рр. 961–966. https://doi.org/10.1016/j.conbuildmat.2016.08.017
6. Nuruddin F., Demie S., Memon F.A. and Shafiq N. Effect of superplasticizer and naoh molarity on workability, compressive strength and microstructure properties of self-compacting geopolymer concrete. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering. 2011. Vol. 5. No. 3, рр. 187–194.
7. Villa C., Pecina E., Torres R. and Gómez-Zamorano L. Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials. 2010. Vol. 24 (11), рр. 2084–2090. https://doi.org/10.1016/j.conbuildmat.2010.04.052
8. Alex T., Nath S.K., Kumar S., Kalinkin B., Gurevich E. at al. Utilization of zinc slag through geopolymerization: Influence of milling atmosphere. International Journal of Mineral Processing. 2013. Vol. 123, рр. 102–107. https://doi.org/10.1016/j.minpro.2013.06.001
9. Ali A. Shubbar, Monower Sadique, Mohammed S. Nasr, Zainab S. Al-Khafaji, Khalid S. Hashim. The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash. Karbala International Journal of Modern Sciеnce. 2020. Vol. 6. Iss. 4. Art.7. DOI: 10.33640/2405-609X.2149
10. Nan Ye, Ye Chen, Jiakuan Yang, Sha Liang, Yong Hu, Bo Xiao, Qifei Huang, Yafei Shi, Jingping Hu, Xu Wu. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. Journal of Hazardous Materials. 2016. Vol. 318, рр. 70–78. DOI: 10.1016/j.jhazmat.2016.06.042
11. Bataev D.K-S., Murtazaev S-A.Yu., Salamano-va M.Sh. Fine-grained concretes on non-clinker binders with highly disperse mineral components. Materials Science Forum. 2018. Vol. 931, рр. 552–557. DOI: https://doi.org/10.4028/www.scientific.net/MSF.931.552
12. Саламанова М.Ш., Муртазаев С.-А.Ю. Цементы щелочной активации: возможность снижения энергоемкости получения строительных композитов // Строительные материалы. 2019. № 7. С. 32–40. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
12. Salamanova M.Sh., Murtazaev S.-A.Yu. Cements of alkaline activation the possibility of reducing the energy intensity of building composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, рр. 32–40. (In Russian). DOI: https://doi. org/10.31659/0585-430X-2019-772-7-32-40
13. Муртазаев С.-А.Ю., Саламанова М.Ш. Перспективы использования термоактивированного сырья алюмосиликатной природы // Приволжский научный журнал. 2018. Т. 46. № 2. С. 65–70.
13. Murtazayev S-A.Yu., Salamanova M.Sh. Prospects of the use of thermoactivated raw material of alumosilicate nature. Privolzhskii nauchnyi zhurnal. 2018. Vol. 46. No. 2, рр. 65–70. (In Russian).
14. Саламанова М.Ш., Алиев С.А., Муртазаева Р.С.-А.Структура и свойства вяжущих щелочной активации с использованием цементной пыли // Вестник Дагестанского государственного технического университета. Технические науки. 2019. Т. 46. № 2. С. 148–158.
14. Salamanova M.Sh., Aliyev S.A., Murtazayev R.S-A. The structure and properties of binders alkaline activation using cement dust. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2019. Vol. 46. No. 2, рр. 148–158. (In Russian).
15. Murtazaev S-A.Yu., Salamanova M.Sh., Ismailova Z.Kh. The Use of highly active additives for the рroduction of clinkerless binders. Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research”(ISEES 2018). https://doi.org/10.2991/isees-18.2018.68
16. Murtazayev S-A.Yu., Salamanova M.Sh., Alasha-nov A., Ismailova Z. Features of production of fine concretes based on clinkerless binders of alkaline mixing. 14th International Congress for Applied Mineralogy (ICAM 2019) Belgorod State Technological University named after V.G. Shukhov. 23–27 September 2019. Belgorod, рр. 385–388.
17. Murtazayev S-A.Yu., Salamanova M.Sh., Min-tsaev M.Sh., Bisultanov R.G Fine-grained concretes with clinker-free binders on an alkali gauging. Proceedings of the International Symposium «Engineering and Earth Sciences: Applied and Fundamental Research» dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019). Atlantis Highlights
in Material Sciences and Technology (AHMST). April 2019. Vol. 1, рр. 500–503.
18. Sturm P., Gluth G.J.G., Jäger C., Brouwers H.J.H., Kühne H.-C. Sulfuric acid resistance of one-part alkali-activated mortars. Cement and Concrete Research. 2018. Vol. 109, рр. 54–63. https://doi.org/10.1016/j.cemconres.2018.04.009
19. Koenig A., Herrmann A., Overmann S., Dehn F. Resistance of alkali-activated binders to organic acid attack: Assessment of evaluation criteria and damage mechanisms. Construction and Building Materials. 2017. Vol. 151, рр. 405–413. DOI: 10.1016/j.conbuildmat.2017.06.117
20. Khater A., and Gawwad H. Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT. Advances in Nano Research, 2015. No. 3 (4), рр. 225–242. DOI: 10.12989/anr.2015.3.4.225
21. Khater A., Nagar A.M. and Ezzat M. Optimization of alkali activated grog/ceramic wastes geopolymer bricks. International Journal of Innovative Research in Science, Engineering and Technology. 2016. No. 5 (1), рр. 37–46. DOI: 10.15680/IJIRSET.2015.0501005
22. Nagajothi S. and Elavenil S. Strength assessment of geopolymer concrete using M-sand. International Journal of Chemical Sciences. 2016. No. 14 (1), рр. 115–126.
23. Stelmakh S.A., Nazhuev M.P., Shcherban E.M., Yanovskaya A.V., Cherpakov A.V. Selection of the composition for centrifuged concrete, types of centrifuges and compaction modes of concrete mixtures. Physics and Mechanics of New Materials and Their Applications (PHENMA 2018). Abstracts & Schedule. Busan, Republic of Korea, 9–11 August 2018, p. 337.
24. Salamanova M.Sh., Murtazayev S.Yu. Clinker-free binders based on finely dispersed mineral components. 20 Internationale Baustofftagung, Tagungsbericht. 12–14 September 2018, Bauhaus-Universität Weimar. Band 1 und 2. Weimar: 2018. В. 2, рр. 707–714.

For citation: Salamanova M.Sh., Nakhaev M.R. Determination of the specific free surface energy of clinker-free composites on an alkaline activation binder. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 30–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-30-39

https://www.traditionrolex.com/10