Non-Autoclaved Cement Foam Concrete with Thermal Modified Peat Additive

Number of journal: 1-2-2022
Autors:

Kudyakov A.I.,
Prishchepa I.A.
Osipov S.P.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-40-49
УДК: 691.327.333

 

AbstractAbout AuthorsReferences
The results of research of cement-based structural and heat-insulating foam concrete for individual housing construction are presented. It has been suggested to use microporous organomineral peat additive TMT600 as a modifying additive increasing homogeneity of structure and quality of foam concrete. It has been shown that the introduction of the peat additive TMT600 into the water solution of synthetic foaming agent stabilizes the resistance of positively influences the reduction of the delaminability of foam concrete mixture and increases manufacturability at individual construction. As a result of conducted researches it was established, that the use of additive TMT600 in foamed concrete allows to get a stable high strength В2,5 with average density D700 due to more dense and strong cement stone and microporous structure of partitions (practically without changing of average density); thermal conductivity – 0,1 W/(m·K); shrinkage – 1,7 mm/m and freeze-resistance F50.
A.I. KUDYAKOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.A. PRISCHEPA1, Master, senior lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.P. OSIPOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Tomsk State University of Architecture and Building (2, Solyanaya Square, Tomsk, 634003, Russia)
2 National Research Tomsk Polytechnic University (30, Lenina Avenue, Tomsk, 634050 Russian Federation)

1. Tretyachenko T., Pivovarova G., Sogomonyan S. COVID-19: assessment and forecast of the development of the residential real estate market of the Russian Federation using the housing affordability factor model. SHS Web of Conferences. – EDP Sciences. 2021. Vol. 101. 02013. DOI: 10.1051/shsconf/202110102013
2. Blokhin A.A., Sternik S.G., Teleshev G.V. Institutio-nal Transformations of Russia’s Housing Construc-tion Sector in 2020. Studies on Russian Economic Development. 2021. Vol. 32. No. 2, pp. 147–154. DOI: 10.1134/S1075700721020039
3. Shon C.S., Mukangali I., Zhang D., Ulykbanov A., Kim J. Evaluation of non-autoclaved aerated concrete for energy behaviors of a residential house in Nur-Sultan Kazakhstan. Buildings. 2021. Vol. 11. No. 12. 610. DOI: 10.3390/buildings11120610
4. Kejkar R.B., Madhukar A., Agrawal R., Wanjari S.P. Performance evaluation of cost-effective non-autoclaved aerated geopolymer (NAAG) blocks. Arabian Journal for Science and Engineering. 2020. Vol. 45. No. 10, pp. 8027–8039. DOI: 10.1007/s13369-020-04581-9.
5. Arzumanyan A. Technological peculiarities of non autoclaved foam concrete production on the base of volcanic pumice aggregates. Materials Science Forum. Vol. 974, pp. 206–210. DOI: 10.4028/www.scientific.net/MSF.974.206
6. Моргун В.Н., Моргун Л.В. Обоснование одного из методов совершенствования структуры пенобетонов // Строительные материалы. 2018. № 5. С. 24–26. DOI: https://doi.org/10.31659/0585-430X-2018-759-5-24-266.
6. Morgun V.N., Morgun L.V. Substantiation of one of the methods for improving the structure of foam concretes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 24–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-759-5-24-26
7. Местников А.Е., Кудяков А.И., Рожин В.К. Цементный пенобетон из портландцементного клинкера и природного минерального сырья Арктической зоны России // Цемент и его применение. 2020. № 2. С. 2–5.
7. Mestnikov A.E., Kudyakov A.I., Rozhin V.K. Cement foam concrete from Portland cement clinker and natural mineral raw materials of the Arctic zone of Russia. Cement i ego primenenie. 2020. No. 2, pp. 2–5. (In Russian).
8. Федосов С.В., Голованов В.И., Лазарев А.А. О проблеме совершенствования строительных изделий, обеспечивающих пожарную безопасность малоэтажных зданий // Строительные материалы. 2021. № 3. С. 57–63. DOI: 10.31659/0585-430X-2021-789-3-57-63
8. Fedosov S.V., Golovanov V.I., Lazarev A.A., Toropova M.V., Malichenko V.G. On the problem of improving construction products that ensure fire safety of low-rise buildings. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 57–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-57-63
9. Yuanliang X., Baoliang L., Chun C., Yamei Z. Properties of foamed concrete with Ca (OH)2 as foam stabilizer. Cement and Concrete Composites. 2021. Vol. 118. 103985. DOI: 10.1016/j.cemconcomp.2021.103985
10. Hashim M., Tantray M. Comparative study on the performance of protein and synthetic-based foaming agents used in foamed concrete. Case Studies in Construction Materials. 2021. Vol. 14. DOI: 10.1016/j.cscm.2021.e00524
11. Kudyakov A.I., Steshenko A.B. Cement foam concrete with low shrinkage. Advanced Materials Research. 2015. Vol. 1085, pp. 245–249. doi:10.4028/www.scientific.net/AMR.1085.245
12. Федоров В.И., Местников А.Е. Модификация технической пены для монолитного пенобетона введением вторичной целлюлозной фибры // Промышленное и гражданское строительство. 2018. № 1. С. 48–52.
12. Fedorov V.I., Mestnikov A.E. Modification of technical foam for monolithic foam concrete by introducing secondary cellulose fiber. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 1, pp. 48–52. (In Russian).
13. Christina Krämer, Matthias Schauerte, Torsten L. Kowald, Reinhard H.F. Trettin, Three-phase-foams for foam concrete application. Materials Cha-racterization. 2015. Vol. 102, pp. 173–179.
14. Steshenko A.B., Kudyakov A.I. Cement based foam concrete with aluminosilicate microspheres for monolithic construction. Magazine of Civil Engineering. 2018. No. 8 (84), pp. 86–96. DOI: 10.18720/MCE.84.9
15. Русина В.В., Шестакова Ю.А. Бесклинкерные вяжущие на основе торфяной золы // Строительные материалы. 2019. № 10. С. 70–74.
15. Rusina V.V., Shestakova Yu.A. Clinkerless binders based on peat ash. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 70–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-70-74
16. Kim D.V., Cong L.N., Van L.T., Bazhenova S.I. Foamed concrete containing various amounts of organic-mineral additives. Journal of Physics: Conference Series. 2019. Vol. 1425. No. 1. 012199. DOI: 10.1088/1742-6596/1425/1/012199
17. Копаница Н.О., Кудяков А.И., Ковалева М.А. Торфодревесные теплоизоляционные строительные материалы. Томск: ТГАСУ, 2009. 183 с.
17. Kopanitsa N.O., Kudyakov A.I., Kovaleva M.A. Torfodrevesnyye teploizolyatsionnyye stroitel’nyye materialy [Peat wood thermal insulation building materials]. Tomsk: TGASU. 2009. 183 p.
18. Цветков Н.А., Саркисов Ю.С., Горленко Н.П., Прищепа И.А., Зубкова О.А. Структурообразо-вание цементного камня с добавкой термомодифицированного торфа // Известия высших учебных заведений. Строительство. 2018. № 12 (720). С. 52–61.
18. Tsvetkov N.A., Sarkisov Yu.S., Gorlenko N.P., Prishchepa I.A., Zubkova O.A. Structure formation of cement stone with the addition of thermally modified peat. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2018. No. 12 (720), pp. 52–61. (In Russian).
19. Kudyakov A.I., Kopanitsa N.O., Kasatkina A.V., Prischepa I.A. Sarkisov J.S. Foam concrete of increased strength with the thermomodified peat additives. IOP Conference Series: Materials Science and Engineering. Advanced Materials in Construction and Engineering. Tomsk, TSUAB. 2015. 012012. DOI: 10.1088/1757-899X/71/1/012012
20. Прищепа И.А., Кудяков А.И., Саркисов Ю.С., Горленко Н.П., Журавлев В.А., Сусляев В.И., Угоденко Д.О. Формирование структуры пенобетона с термомодифицированной торфяной добавкой в ранние сроки твердения // Вестник Томского государственного университета. Химия. 2020. № 18. С. 35–46. DOI: 10/17223/24135542/18/4
20. Prishchepa I.A., Kudyakov A.I., Sarkisov Yu.S., Gorlenko N.P., Zhuravlev V.A., Suslyaev V.I., Ugodenko D.O. Formation of the structure of foam concrete with thermally modified peat additive in the early stages of hardening. Vestnik Tomskogo gosudarstvennogo universiteta. Khimiya. 2020. No. 18, pp. 35–46. DOI: 10/17223/24135542/18/4
21. Осипов С.П., Прищепа И.А., Чахлов С.В., Осипов О.С., Усачёв Е.Ю. Алгоритмы моделирования и обработки информации в рентгенов-ской томографии пеноматериалов // Дефектоскопия. 2021. № 3. С. 53–65. DOI: 10.31857/S0130308221030052
21. Osipov S.P., Prishchepa I.A., Chakhlov S.V., Osipov O.S., Usachyov E.Yu. Algorithms for modeling and processing information in X-ray tomography of foam materials. Defectoscopy. 2021. No. 3. S. 53–65. DOI: 10.31857/S0130308221030052
22. Chung S.Y., Kim J.S., Han T.S., Stephan D., Kamm P.H., Abd Elrahman M. Characterization of foamed concrete with different additives using multi-scale micro-computed tomography. Construction and Building Materials. 2022. Vol. 319. 125953. DOI: 10.1016/j.conbuildmat.2021.125953

For citation: Kudyakov A.I., Prishchepa I.A. Osipov S.P. Non-autoclaved cement foam concrete with thermal modified peat additive. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 40–49. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-40-49


Print   Email