Modification of Fluorohydrite Binders with Ultrafine Diabase Powder

Number of journal: 1-2-2022
Autors:

Dimukhametova A.F.,
Yakovlev G.I.,
Pervushin G.N.,
Buryanov A.F.,
Gordina A.F.,
Saidova Z.S.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-57-64
УДК: 691.553.3

 

AbstractAbout AuthorsReferences
In this research, the influence of ultrafine diabase powder on the processes of fluoroanhydrite binder structure formation was studied. Assessed were the physical and mechanical characteristics of the modified fluoroanhydrite composition. It has been established that introduction of diabase powder in an amount of 7% into the technogenic anhydrite binder contributes to an increase in compressive strength of the modified compositions by 28% compared to the reference composition, which did not contain a modifying additive. An increase in strength was observed in the early stages of hardening. This can be explained by the creation of a dense crystalline structure in the developed composition due to the formation of calcium sulfoaluminate hydrates and amorphous calcium silicate hydrates of the tobermorite type, which fill the pores between calcium sulfate crystals. Here, in order to create conditions for the formation of a dense structure of the fluoroanhydrite matrix, it is important to provide an alkaline environment during the activation of fluoroanhydrite by adding sodium phosphate. The formation of new hydration products in the technogenic anhydrite composition in the early stages of hardening is confirmed by the methods of physical and chemical analysis, including X-ray phase analysis, X-ray microanalysis and scanning microscopy. The described technology makes it possible to obtain a composition with improved physical and mechanical properties, while solving problems of fluoroanhydrite utilization and preventing depletion of natural anhydrite binder reserves.
A.F. DIMUKHAMETOVA1, Master (Graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. PERVUSHIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. BURYANOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. GORDINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.S. SAIDOVA1, Master (Graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337 Russian Federation)

1. Kudyakov A.I., Anikanova L.A., Redlikh V.V. Materials for building envelopes from composite fluoroanhydrite binders. Sukhie stroitel’nye smesi. 2013. No. 3, pp. 12–14. (In Russian).
2. Yakovlev G.I., Kalabina D.A., Grakhov V.P., Buryanov A.F., Gordina A.F., Bazhenov K.A., Nikitina S.V. Fluoro-anhydrite compositions with a light filler based on expanded perlite sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 57–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-57-61
3. Yakovlev G.I., Polyanskikh I.S., Kislyakov M.A., Gyrdymov D.A. Structural and heat-insulating material based on fluoroanhydrite. In the collection: Fotin Readings-2021 (spring meeting). Materials of the VIII International Scientific and Practical Conference. Izhevsk, 2021, pp. 193–198. (In Russian).
4. Kalabina D.A., Yakovlev G.I., Vasilchenko Yu.M., Kuzmina N.V., Gordina A.F. Modification of fluoroanhydrite composition for flooring with carbon-containing additives. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 27–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-27-31
5. Gumeniuk A.N., Polyanskikh I.S., Khodyreva M.A., Shevchenko F.E., Pudov I.A., Pervushin G.N., Yakovlev G.I. Composite materials based on fluoranhydrite and industrial sulfur. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-4-10
6. Kurmangalieva A.I., Anikanova L.A., Volkova O.V., Kudyakov A.I., Sarkisov Yu.S., Abzaev Yu.A. Activation of hardening processes of fluorogypsum compositions by chemical additives of sodium salts. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Khimiya i Khimicheskaya Tekhnologiya. 2020. Vol. 63. Iss. 8, pp. 73–80. (In Russian).
7. Kalabina D.A., Yakovlev G. I., Drochitka R., Grakhov  V.P., Pervushin G.N., Bazhenov K.A., Troshkova V.V. Rheological activation of fluoroanhydrite compositions with polycarboxylate esters. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 38–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-38-47
8. Yakovlev G.I., Pervushin G.N., Grakhov V.P., Kalabina D.A., Gordina A.F., Ginchitskaya Yu.N., Bazhenov K.A., Troshkova V.V., Drohitka R., Khozin V.G. Structural and heat-insulating material based on high-strength anhydrite binder. Intellektual’nye sistemy v proizvodstve. 2019. Vol. 17. No. 1, pp. 144–151. (In Russian).
9. Babailova E.S., Novikova V.A. Possibilities of using a composite material based on fluoroanhydrite with a technogenic modifier during reconstruction. Collection of reports of the XII international scientific-practical conference of students, graduate students and young scientists «Youth and scientific and technological progress». 2019, pp. 267–271. (In Russian).
10. Ruzina N.S., Lushnikova E.S., Gordina A.F., Polyanskikh I.S. Ecologically effective composite materials based on fluoroanhydrite with technogenic modifiers. Resursoenergoeffektivnye tekhnologii v stroitel’nom komplekse regiona. 2018. No. 10, pp. 144–149. (In Russian).
11. Anikanova L.A., Kudyakov A.I., Kovler K. Control of the processes of structure formation of binders, wall and finishing materials based on fluoroanhydrite raw materials. Collection of the National Scientific and Technical Conference with International Participation “Improving the quality and efficiency of building and special materials”. 2019, pp. 106–110. (In Russian).
12. Korkmaz A.V., Mechanical activation of diabase and its effect on the properties and microstructure of Portland cement. Case Studies in Construction Materials. 2022. Vol. 16. e00868. https://doi.org/10.1016/j.cscm.2021.e00868
13. Butakova M.D., Gorbunova S.P. Study of the influence of complex additives on properties of the gypsum-cement-puzzolan binder and concretes on its basis. Procedia Engineering. 2016. No. 150, pp. 1461–1467. https://doi.org/10.1016/j.proeng.2016.07.082
14. Li. H., Liu Y., Xu C., Guan X., Zou D., Jing G. Synergy effect of synthetic ettringite modified by citric acid on the properties of ultrafine sulfoaluminate cement-based materials. Cement and Concrete Composites. 2022. Vol. 125. 104312. https://doi.org/10.1016/j.cemconcomp.2021.104312
15. Kapustin F.L., Spiridonova A.M., Pomazkin E.P. The use of penetrating waterproofing to improve the corrosion resistance of cement stone. Tekhnologii betonov. 2015. No. 3–4. pp. 44–47. (In Russian).
16. Garkavi M.S., Nekrasova S.A., Troshkina E.A. Kinetics of contact formation in nanomodified gypsum materials. Stroitel’nye Materialy [Construction Materials]. 2013. No. 2, pp. 38–40. (In Russian).
17. Andreev V.V., Semikova S.G. Thermodynamic studies of the process of decomposition and sulfation of calcium bicarbonate. Leningrad: AN SSS. Journal of Applied Chemistry. 1985. 19 p. (In Russian).
18. Haev T.Eh., Tkach E.V., Oreshkin D.V. Lightweight strengthened gypsum stone for restoration of architectural monuments. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 68–72. (In Russian).
19. Petropavlovskii K.S., Buryanov A.F., Petropavlovskaya V.В., Novichenkova T.B. Lightened self-reinforced gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 40–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-40-45
20. Turchin V.V., Yudina L.V., Ibatullina A.R., Sattaro-va A.R. Increasing the sulfate resistance of cement-containing compositions due to the crystallization of nanophases. Intellektual’nye sistemy v proizvodstve. 2012. No. 2 (20), pp. 173–180. (In Russian).
21. Hoang Nguyen, Malena Staudacher, Paivo Kinnunen, Valter Carvelli, Mirja Illikainen. Multi-fiber reinforced ettringite-based composites from industrial side streams. Journal of Cleaner Production. 2019. Vol. 211, pp. 1065–1077. https://doi.org/10.1016/j.jclepro.2018.11.241
22. Nguyen H., Kinnunen P., Carvelli V., Mastali M., Illikainen M. Strain hardening polypropylene fiber reinforced composite from hydrated ladle slag and gypsum. Composites Part B: Engineering. 2019. Vol. 158, pp. 328–338. https://doi.org/10.1016/j.compositesb.2018.09.056
23. Borisov D.K., Shevchenko F.E., Gordina A.F. Study of the effect of mineral additives on the structure and properties of building gypsum. Collection of materials of the XXVII Republican exhibition-session of student innovation projects “Innovation Exhibition-2019” (spring session). 2019, pp. 3–8. (In Russian).

For citation: Dimukhametova A.F., Yakovlev G.I., Pervushin G.N., Buryanov A.F., Gordina A.F., Saidova Z.S. Modification of fluorohydrite binders with ultrafine diabase powder. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 57–64. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-57-64


Print   Email