Prediction of the Nature of Deformation of Bent Slag Concrete Elements

Number of journal: 3-2022
Autors:

Chernousov N.N.,
Bondarev B.A.,
Sturova V.A.,
Bondarev A.B.,
Liventseva A.A.

DOI: https://doi.org/10.31659/0585-430X-2022-800-3-15-24
УДК: 624:66.011

 

AbstractAbout AuthorsReferences
In the modern world of information technology, computers are increasingly replacing our daily life. All real, field experiments and experiments replace computer modeling, as this often saves time. Numerous calculations, including reinforced concrete structures, are most conveniently performed using deformation diagrams of concrete and reinforcement. It is this method makes it possible to achieve similar results with field tests, the difficulty lies only in the fact that it is necessary to reduce many parameters of the equations. The aim of the work is to propose a simplified model of the deformation diagram of a bent slag concrete element, the use of which will help to exclude complex equilibrium experiments. The tables of the article show the values of the parametric points of the deformation diagram, the analysis of which shows the discrepancy between the experimental and theoretical values, therefore, the procedure for making adjustments to the formulas taking into account the dynamic movement of the main crack is given below. As a result of research and mathematical modeling of the bending element diagram, a model is proposed that is able to predict the nature of the specimen’s operation at any stage of loading, based on the highest load and the initial modulus of elasticity, which can be determined from the integral structural characteristic of concrete – compressive strength.
N.N. CHERNOUSOV1, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. BONDAREV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. STUROVA2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.B. BONDAREV2, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. LIVENTSEVA2, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 OOO “NTO” EXPERT (9, Off. 314, Kommunalnaya sq., 398059, Lipetsk, Russian Federation)
2 Lipetsk State Technical University (30 Moskovskaya Street, 398055 Lipetsk, Russian Federation)

1. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General models of reinforced concrete mechanics]. Moscow: Stroyizdat. 1996. 416 p.
2. Berg O.Ya., Shcherbakov E.N., Pisanko G.N. Vysokoprochnyi beton [High-strength concrete]. Moscow: Stroyizdat. 1971. 208 p.
3. Sheikin A.E., Chekhovsky Yu.V., Brousser M.I. Struktura i svoistva tsementnykh betonov [Structure and properties of cement concrete]. Moscow: Stroyizdat. 1979. 344 p.
4. Ivanov I.A. Legkie betony na iskusstvennykh poristykh zapolnitelyakh [Light concretes on artificial porous aggregates]. Moscow: Stroyizdat. 1993. 182 p.
5. Ufimtsev V. M., Korobenikov L.A. Shlaki as part of concrete: new opportunities. Tekhnologii betonov. 2014. No. 6, pp. 50–53. (In Russian).
6. Chernousov N.N., Pantel’kin I.I. Zhelezobetonnye konstruktsii s ispol’zovaniem dispersno-armirovannogo shlakopemzobetona [Reinforced concrete structures using dispersed-reinforced slag-ground concrete]. Moscow: ASV. 1998. 230 p.
7. Chernousov N.N., Chernousov R.N., Sukhanov A.V. Study of the mechanics of fine-grained slag concrete in axial tension and compression. Stroitel’nye Materialy [Construction Materials]. 2014. No. 12, pp. 59–63. (In Russian).
8. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Study of the strength properties of steelfibroshlakobeton during axial tension and compression taking into account its age. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 20–24. (In Russian).
9. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Study of the deformative properties of steelfibroshlakobeton in axial tension and compression taking into account its age. Vestnik PNIPU. Stroitel’stvo i arkhitektura. 2017. Vol. 8, pp. 18–31. (In Russian).
10. Bazhenov Yu.M., Chernyshov E.M., Korotkikh D.N. Construction of structures of modern concretes: defining principles and technological platforms. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 6–14. (In Russian).
11. Maiorov V.I., Ratsirinivu De Russel’ Zhil’ber. Study and analytical description of the concrete work diagram when calculating reinforced concrete structures according to the deformation model. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya. 2000. No. 3, pp. 97–102. (In Russian).
12. Karpenko N.I., Radaikin O.V. To determine the deformations of bent reinforced concrete elements using concrete deformation and reinforcement diagrams. Stroitel’stvo i rekonstruktsiya. 2012. No. 2 (40), pp. 11–18. (In Russian).
13. Karpenko N.I., Radaikin O.V. To improve concrete deformation diagrams for determining the moment of cracking and breaking moment in bending reinforced concrete elements. Stroitel’stvo i rekonstruktsiya. 2012. No. 3 (41), pp. 10–17. (In Russian).
14. Karpenko N.I., Sokolov B.S., Radaikin O.V. To assess the strength, stiffness, moment of crack formation and their opening in the zone of clean bending of reinforced concrete beams using a nonlinear deformation model. Izvestiya vuzov. Stroitel’stvo. 2016. No. 3, pp. 5–12. (In Russian).
15. Panfilov D.A., Pishchulev A.A., Gimadetdinov K.I. Review of existing concrete deformation diagrams during compression in domestic and foreign regulatory documents. Promyshlennoe i grazhdanskoe stroitel’stvo. 2014. No. 3, pp. 80–83. (In Russian).
16. Varlamov A.A., Shishlonov E.A., Tkach E.N., Shumilin M.S., Goncharov D.V. Patterns of the connection of stresses and deformations in concrete. Academy. 2016. No. 2 (5), pp. 7–16. (In Russian).
17. Radaykin, O.V. To the construction of concrete deformation diagrams at uniaxial shortterm tension/compression using the deformation criterion of damage. Vestnik grazhdanskikh inzhenerov. 2017. No. 6 (65), pp. 71–78. (In Russian).
18. Radaikin O.V. Comparative analysis of various concrete deformation diagrams according to the criterion of energy consumption for deformation and destruction. Vestnik BGTU im. V.G. Shukhova. 2019. No. 10, pp. 29–39. (In Russian).
19. Fedorov V.S., Shavykina M.V., Yusupova E.V. Deflections of reinforced concrete structures in maximum condition. Stroitel’stvo i rekonstruktsiya. 2017. No. 4 (72), pp. 80–85. (In Russian).
20. Shah S.P., Jehu R. Strain rate effects an mode crack propagation in Concrete. Fract. Toughness and Fract. Energy: Coner. Proc. Conf. Lensaune. 1985. Oct. 1–3. Amsterdam, 1986, pp. 453–465.
21. Jeng Y., Shah S.P. Two berameter fracture model for concrete. Journal of Engineering Mechanics. 1985. No. 10, pp. 1227–1241.
22. Chernousov N.N., Sturova V.A. Mathematical model of the complete diagram of slag concrete deformation at three-point bending. Modern science-intensive technologies. 2020. No. 3, pp. 92–96. (In Russian).
23. Eryshev V.A. Deformation method of calculating the strength of reinforced concrete bent elements using deformation diagrams for elastoplastic materials. Sistemy. Metody. Tekhnologii. 2018. No. 1 (37), pp. 79–84. (In Russian).
24. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Dynamic and static modulus of elasticity of steelfibroshlakobeton (SFShB). Colloquium-journal. 2019. No. 15-1 (39), pp. 4–6. (In Russian).
25. Bondarev B.A., Chernousov R.N. Determination of the modulus of elasticity and ultimate strength of steel fiber concrete during tensile by the method of propping. Nauchnyi vestnik VGASU. Stroitel’stvo i arkhitektura. 2008. No. 3 (11), pp. 67–71. (In Russian).
26. Patent RF 2402008. Sposob ispytaniya dispersno-armirovannykh betonov na rastyazhenie [Method of testing dispersion-reinforced concrete for tension]. Chernousov N.N., Chernousov R.N. Declared 07.12.2009. Publ. 20.10.2010. Bul. No. 29. (In Russian).
27. Patent RF 2544299. Sposob ispytaniya obraztsov stroitel’nykh materialov na rastyazhenie [Method for testing samples of building materials for tension]. Chernousov N.N., Chernousov R.N., Sukhanov A.V., Prokofiev A.N. Declared. 23.07.2013. Publ. 20.03.15. Bul. No. 8. (In Russian).
28. Chernousov N.N., Chernousov R.N. Bending steel-fibroblock concrete elements. Beton i zhelezobeton. 2010. No. 4, pp. 7–11. (In Russian).

For citation: Chernousov N.N., Bondarev B.A., Sturova V.A., Bondarev A.B., Liventseva A.A. Prediction of the nature of deformation of bent slag concrete elements. Stroitel’nye Materialy [Construction Materials]. 2022. No. 3, pp. 15–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-800-3-15-24


Print   Email