Log in

Volcanic Tuff as an Active Mineral Additive for Portland Cement

Number of journal: 6-2022
Autors:

Bessonov I.V.,
Zhukov A.D.,
Zhuk P.M.,
Demissi B.A.,
Govryakov I.S.,
Minaeva A.M.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-25-29
УДК: 666.94

 

AbstractAbout AuthorsReferences
The use of some rocks as a component and an active mineral additive in the composition of a hydraulic binder reduces the consumption of energy-intensive and expensive clinker and thereby reduces both the cost of the binder and the size of the “carbon footprint” during its production. An important criterion for the suitability of a rock is its activity: ability to react with cement clinker components, including pozzolan activity. The purpose of the research is to study the possibility of using finely ground tuff-scoria and ash from the burning of coffee husks as an active mineral additive as a component of a hydraulic binder. The criterion of suitability is the pozzolan activity of a complex additive, which is evaluated by various methods. The evaluation of pozzolan activity was carried out by the method of absorption by the addition of lime from lime mortar for 30 days, recommended by national standards. The evaluation of the effect of the coffee husk ash consumption on the pozzolan activity of the composite mineral additive was carried out using statistical methods and analytical optimization. The experiment was carried out in two stages: at the first, the optimal ash content in a complex additive was determined; at the second, the kinetics of CaO absorption was studied for 30 days. It was found that finely ground tuff-scoria absorbs up to 330–332 mg/g in 30 days, and depending on the ash content of the coffee husk, the absorption of a complex mineral additive increases to 341–343 mg/g. The express method showed that the activity coefficient of tuff scoria and the complex mineral supplement is in the range of 40–44%. Tuff-scoria, as well as a mineral composite additive based on it containing coffee husk ash, belong to the group of additives with medium pozzolan activity and can be used as part of mineral binders of hydraulic hardening. Composite binder can be used for the produce of fine-grained concrete for a wide range of functional purposes, including reinforced concrete textiles and concrete canvas.
I.V. BESSONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.M. ZHUK3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. DEMISSI2, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.S. GOVRYAKOV1,2, Engineer, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. MINAEVA2, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 Moscow Architectural Institute – MARKHI (11/4, Rozhdestvenka Street, building 1, sector 4, Moscow, 107031, Russian Federation)

1. Dhir R.K., Limbachiya M.C., McCarthy M.J., Chaipanich A. Evaluation of Portland limestone cements for use in concrete construction. Materials and Structures. 2007. Vol. 40. Iss. 5, pp. 459–473. DOI: 10.1617/s11527-006-9143-7
2. Танг Ван Лам, Нго Суан Хунг, Ву Ким Зиен, Булгаков Б.И., Баженова С.И., Александрова О.В. Геополимерный бетон с использованием многотоннажных техногенных отходов // Строительство: наука и образование. 2021. № 2. С. 17–37. DOI: 10.22227/2305-5502.2021.2.2
2. Tang Van Lam, Ngo Suan Khung, Vu Kim Zien, Bulgakov B.I., Bazhenova S.I., Aleksandrova O.V. Geopolymer concrete using multi-tonnage technogenic waste. Stroitelstvo, nauka, obrazovanie. 2021. Vol. 11. No. 2, pp. 17–37. (In Russian). DOI: 10.22227/2305-5502.2021.2.2
3. Ramachandran V.S. (ed) Concrete Admixtures Handbook – Properties, Science and Technology. 2-nd ed. William Andrew Publishing, New York. 1995. 1066 p.
4. Seiichi Hoshino, Kazuo Yamada, Hiroshi Hirao, XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. Journal of Advanced Concrete Technology. 2006. Vol. 4. No. 3, pp. 357–367. DOI: 10.3151/JACT.4.357
5. Mateusz Radlinski, Jan Olek. Investigation into the synergistic effects in ternary cementitious systems containing Portland cement, fly ash and silica fume. Cement&Concrete Composites. 2012. Vol. 34, рp. 451–459 https://doi.org/10.1016/j.cemconcomp.2011.11.014
6. Ву Ким Зиен, Баженова С.И., Танг Ван Лам. Влияние минеральных добавок, летучей золы, доменного шлака на механические свойства пенобетона // Строительство и реконструкция. 2020. № 2 (88). С. 25–34. DOI: https://doi.org/10.33979/2073-7416-2020-88-2-25-34
6. Vu Kim Zien, Bazhenova S.I., Tang Van Lam. Influence of mineral additives, fly ash, blast furnace slag on the mechanical properties of foam concrete. Stroitel’stvo i rekonstruktsiya. 2020. No. 2 (88), pp. 25–34. DOI: https://doi.org/10.33979/2073-7416-2020-88-2-25-34
7. Vitruvius M. Ten books on architecture. Ingrid Rowland T.N. Howe. 1999, 2014. Cambridge University Press. 324 p. DOI: 10.1017/CBO9780511840951
8. Zhukov A.D., Bessonov I.V., Demissi Bekele A., Zinoveva E.A. Analytical optimization of the dispersion-reinforced fine-grained concrete composition. CATPID 2020. IOP Conf. Series: Materials Science and Engineering. 1083. (2021) 012037. doi:10.1088/1757-899X/1083/1/012037
9. Рахимов Р.З., Рахимова Н.Р. Строительство и минеральные вяжущие прошлого, настоящего и будущего // Строительные материалы. 2013. № 1. С. 124–128.
9. Rakhimov R.Z., Rakhimova N.R. Construction and mineral binders of the past, present and future. Stroitel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 124–128. (In Russian).
10. Sigh N.D., Middendort B. Chemistry of blended cements. Silica fume, metacaolin, reactive ash from agricultural wastes, inert materials and non-Portland blended cements. Cement International. 2009. Vol. 7. No. 6, рр. 78–92.
11. Fernandez R., Martirena F., Scrivener K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research. 2001. Vol. 41 (1), рр. 113–122. https://doi.org/10.1016/j.cemconres.2010.09.013
12. Shannag M., Charif A., Naser S., Faisal F., Karim A. Structural behavior of lightweight concrete made with scoria aggregates and mineral admixtures. International Conference World Academy of Science, Engineering and Technology. London, UK. 2014. Vol. 8, рр. 105–109. DOI: 10.13140/2.1.4582.1124
13. Рахимов Р.З., Рахимова Н.Р., Гайфуллин А.Р., Стоянов О.В. Влияние добавки в портландцемент прокаленной и молотой полиминеральной каолинитсодержащей глины на прочность цементного камня // Вестник Казанского технологического университета. 2015. № 5. С. 80–83.
13. Rakhimov R.Z., Rakhimova N.R., Gayfullin A.R., Stoyanov O.V. The effect of the addition of calcined and young polymineral kaolinite-containing clay to Portland cement on the strength of cement stone. Vestnik of Kazan Technological University. 2015. Vol. 18. No. 5, pp. 80–83.
14. Bessonov I.V., Ushakov A.Yu., Zhukov A.D., Vidiborenko V.G. Assessment of light concrete frost resistance. International Science and Technology Conference (FarEastСon 2020). IOP Conf. Series: Materials Science and Engineering. 1079 (2021) 022078. doi:10.1088/1757-899X/1079/2/022078
15. Tchamdjou W.H.J., Grigoletto S., Michel F., Courard L., Abidi M.L., Cherradi T. An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar. Case Studies in Construction Materials. 2017. No. 7, pp. 191–206. https://doi.org/10.1016/j.cscm.2017.07.005
16. Николаенко Е.А. Исследования пуццолановых портландцементов на основе эффузивных горных пород // Известия вузов. Инвестиции. Строительство. Недвижимость. 2014. № 1 (6). С. 66–73.
16. Nikolaenko E.A. Studies of pozzolan Portland cement based on effusive rocks. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2014. No. 1, pp. 69–73. (In Russian).
17. Бутт Ю.М., Сычев М.М., Тимашев В.В. Химическая технология вяжущих материалов. М.: Высшая школа, 1980. 472 с.
17. Butt Yu.M., Sychev M.M., Timashev V.V. Khimicheskaya tekhnologiya vyazhushchikh materialov [Chemical technology of binders]. Moscow: Vysshaya shkola. 1980. 472 p.
18. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Медведев А.А., Демисси Б.А. Применение статистических методов для решения задач строительного материаловедения // Нанотехнологии в строительстве: Науч-ный интернет-журнал. 2020. Т. 12. №. 6. С. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
18. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Demissi B.A. Application of statistical methods for solving problems of building materials science. Nanotekhnologii v stroitel’stve: nauchnyi internet zhurnal. 2020. Vol. 12. No. 6, pp. 313–319. (In Russian). DOI: 10.15828/2075-8545-2020-12-6-313-319
19. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Горбунова Э.А., Демисси Б.А. Материалы на основе модифицированного гипса для фасадных систем // Нанотехнологии в строительстве: Научный интернет-журнал. 2021. Т. 13. № 3. С. 144–149.
19. Zhukov A.D., Bessonov I.V., Bobrova E.Yu., Gorbunova E.A., Demissie B.A. Materials based on modified gypsum for facade systems. Nanotekhnologii v stroitel’stve: nauchnyi internet zhurnal. 2021. Vol. 13 (3), pp. 144–149. (In Russian). DOI: 10.15828/2075-8545-2021-13-3-144-149
20. Потапова Е.Н., Манушина А.С., Зырянов М.С., Урбанов А.В. Методы определения пуццолановой активности минеральных добавок // Строительные материалы: оборудование, технологии XXI века. 2017. № 7–8. С. 29–33.
20. Potapova E.N., Manushina A.S., Zyryanov M.S., Rubanov A.V. Methods for determining the pozzolan activity of mineral additives. Stroitel’nye materialy: oborudovanie, tekhnologii XXI veka. 2017. No. 7–8, pp. 29–33. (In Russian).

For citation: Bessonov I.V., Zhukov A.D., Zhuk P.M., Demissi B.A., Govryakov I.S., Minaeva A.M. Volcanic tuff as an active mineral additive for portland cement. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 25–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-25-29

Digital Methods for Optimizing Textile Concrete Technology

Number of journal: 6-2022
Autors:

Poudel R.S.,
Bessonov I.V.,
Zhukov A.D.,
Gudkov P.K.,
Gorbunova E.A.,
Mihaylik E.D.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24
УДК: 666.972

 

AbstractAbout AuthorsReferences
The practice of digital technologies in the analysis of technological processes makes it possible to solve such problems effectively and successfully as ensuring the selection of the composition of these materials, the selection and optimization of parameters characterizing the processes of manufacturing materials, modelling technologies. The basis is the methods of mathematical planning and processing of the test results and the subsequent analytical optimization of the dependencies obtained. The purpose of the research presented in the article was the implementation of digital technologies as part of the implementation of optimization solutions for selecting the composition of fine concrete, which is the mineral component of the concrete wall. The investigation of the properties of fine-grained modified dispersion concrete was carried out according to standard methods and using experimental design, mathematical processing of its results and analytical optimization. The Concrete Canvas is a flexible fabric material impregnated with concrete, which, in the process of interaction with water, hardens and creates a strong, thin layer of concrete that is resistant to fire and water. The average density of the material is 1400–1440 kg/m3, compressive strength of less than 40 MPa, puncture strength of at least 3 kN. The thickness of the web is 5–20 mm. Concrete canvas is used in the construction of hydraulic structures, strengthening the slopes of roads laid in mountainous areas, in the construction of prefabricated buildings. The obtained mathematical dependencies, optimization solutions, models and their graphical interpretation can be used when choosing the composition of the fine-grained, dispersed rein-forced concrete, which is the basis of the concrete canvas. The calculated data obtained are necessarily verified by conducting control batches with the determination of the properties of the samples obtained by standard methods.
R.S. POUDEL1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. BESSONOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.K. GUDKOV1, Teacher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.A. GORBUNOVA2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.D. MIHAYLIK2, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Demissi B.A. Application of statistical methods for solving problems of construction materials science. Nanotechnologies in Construction. 2020. Vol. 12. No. 6, pp. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
2. Zhukov A., Shokod’ko E. Mathematical methods for optimizing the technologies of building materials. VIII International Scientific Siberian Transport Forum. Trans Siberia 2019. Advances in Intelligent Systems and Computing. 2020. Vol. 1116, pp. 413–421. DOI: https://doi.org/10.1007/978-3-030-37919-3_40
3. Bessonov I., Zhukov A., Shokod’ko E., Chernov A. Optimization of the technology for the production of foam glass aggregate. TPACEE 2019, E3S Web of Conferences. 2020. Vol. 164. 14016. DOI: https://doi.org/10.1051/e3sconf/202016414016
4. Gudkov P., Kagan P., Pilipenko A., Zhukova E.Yu., Zinovieva E.A., Ushakov N.A. Usage of thermal isolation systems for low-rise buildings as a component of information models. E3S Web of Conferences. 01039. 2019. DOI: https://doi.org/10.1051/e3sconf/20199701039
5. Zhukov A., Bessonov I., Bobrova E., Medvedev A., Zinovieva E. Optimization of technology of special-purpose mineral wool products. E3S Web of Conferences, EMMFT-2020. 2020. Vol. 244. 04003. DOI: https://doi.org/10.1051/e3sconf/202124404003
6. Kodzoev M.-B., Isachenko S., Bobrova E., Efimov B., Bessonov I. Ceramic products and energy-efficient systems. XXIII International Scientific Conference on Advance in Civil Engineering: FORM-2020. 23–26 September 2020. Hanoi, Vietnam. DOI: 10.1088/1757-899X/869/3/032006
7. Pyataev E.R., Medvedev A.A., Poserenin A.I., Burtseva M.A., Mednikova E.A., Mukhametzyanov V.M. Theoretical principles of creation of cellular concrete with the use of secondary raw materials and dispersed reinforcement. IPICSE. Published online: 14 December 2018. DOI: https://doi.org/10.1051/matecconf/201825101012
8. Лесовик В.С. Строительные материалы. Настоящее и будущее // Вестник МГСУ. 2017. Т. 12. № 1 (100). С. 9–16. DOI: 10.22227/1997-0935.2017.1.9-16
8. Lesovik V.S. Construction materials. Present and future. Vestnik MGSU. 2017. Vol. 12. No. 1 (100), pp. 9–16. (In Russian).
9. Лесовик В.С., Попов Д.Ю., Глаголев Е.С. Текстиль-бетон – эффективный армированный композит будущего // Строительные материалы. 2017. № 3. С. 81–84.
9. Lesovik V.S., Popov D.Yu., Glagolev E.S. Textile-concrete-effective reinforced composite of the future. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, рр. 81–84. (In Russian).
10. Efimov B., Isachenko S., Kodzoev M.-B., Dosanova G., Bobrova E. Dispersed reinforcement in concrete technology. E3S Web of Conferences Published online: 09 August 2019 DOI: https://doi.org/10.1051/e3sconf/201911001032
11. Пухаренко Ю.В., Пантелеев Д.А., Морозов В.И., Магдеев У.Х. Прочность и деформативность фибробетона с применением аморфной металлической фибры // Academia. Архитектура и Строительство. 2016. № 1. С. 107–111.
11. Pukharenko Yu.V., Panteleev D.A., Morozov V.I., Magdeev U.Kh. Strength and deformability of fiber-reinforced concrete using amorphous metal fibers. Academia. Arkhitektura i stroitel’stvo. 2016. No. 1, pp. 107–111. (In Russian).
12. Scherer S., Michler H., Curbach M. Brücken aus Textilbeton. Handbuch Brücken: Entwerfen, Konstruieren, Berechnen, Bauen und Erhalten. 2014, рр. 118–129.
13. Hegger J., Goralksi C., Kulas C. Schlanke Fuβgängerbrücke aus Textilbeton – Sechsfeldrige Fuβgängerbrücke mit einer Gesamtlänge von 97 m. Beton-und Stahlbetonbau. 2011. Vol. 106. Heft 2, рр. 64–71. https://doi.org/10.1002/best.201000081
14. Schladitz F., Lorenz E., Jesse F., Curbach M. Verstärkung einer denkmalgeschätzten Tonnenschale mit Textilbeton. Beton-und Stahlbetonbau. 2009. Vol. 104. Heft 7, рр. 432–437. https://doi.org/10.1002/best.200908241
15. Gelbrich S. Organisch geformter Hybridwerkstoff aus textil-bewehrtem Beton und glasfaserverstrktem. Kunststoff. Leichter bauen – Zukunft formen. 2012. No. 7, р. 9.
16. Ehlig D., Schladitz F., Frenzel M., Curbach M. Textilbeton – Ausgeführte Projekte im überblick. Beton-und Stahlbetonbau. 2012. 107. No. 11, рр. 777–785. https://doi.org/10.1002/best.201200034
17. Pyataev E., Zhukov A., Vako K., Burtseva M., Mednikova E., Prusakova M., Izumova E. Effective polymer concrete on waste concrete production. E3S Web of Conferences. 2019. DOI: https://doi.org/10.1051/e3sconf/20199702032
18. Pyataev E.R., Pilipenko E.S., Burtseva M.A., Mednikova E.A., Zhukov A.D. Composite material based on recycled concrete. FORM 2019. E3S Web of Conferences 97. 02032. 2019. IOP Conf. Series: Materials Science and Engineering. 032015. 2018. doi:10.1088/1757-899X/365/3/032041
19. Efimov B., Isachenko S., Kodzoev M.-B., Dosanova G., Bobrova E. Dispersed reinforcement in concrete technology. E3S Web of Conferences. 2019. Vol. 110. DOI: https://doi.org/10.1051/e3sconf/201911001032

For citation: Poudel R.S., Bessonov I.V., Zhukov A.D., Gudkov P.K., Gorbunova E.A., Mihaylik E.D. Digital methods for optimizing textile concrete technology. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 20–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24

Physical-Chemical Bases for the Creation of Extra-Light Concretes of New Modifications with High Rates of Thermal Engineering Quality

Number of journal: 6-2022
Autors:

Yarmakovsky V.N.,
Kadiev D.Z.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-15-19
УДК: 691.32

 

AbstractAbout AuthorsReferences
Analysis of modern ideas about the mechanism of the main heat transfer processes in capillary-porous building materials, including extra-lightweight aggregate concretes (ELAC) shows that when assessing, regulating and predicting their thermal conductivity, one should proceed from the moment that heat transfer in them, as in a multiphase dispersed system, is carried out either through conductive thermal conductivity (TC), which is the main heat transfer mechanism for such a capillary-porous material as lightweight aggregate concrete, or together with TC and thermal radiation (TR). The data analysis of the domestic and foreign studies on the thermal conductivity of both capillary-porous building materials and ELAC shows that there is a reserve for increasing the heat-shielding functions of the external enclosing structures of buildings made from such concretes, estimated at least 30%. As a result of the analysis and generalization of literature data on experimental studies, the regularities of the influence of the following structural and technological factors on the thermal conductivity of lightweight concretes and their components at a constant density of concrete were established: the grain shape of a large porous aggregate and the glass phase content in it, the optimality of the factor determined by the relative content of fine (F) and coarse (C) aggregates (F/(F+C)), the use of active mineral additives in the ELAC. On the basis of the established laws, the main provisions of the technology of heat-insulating lightweight concretes are determined, which, in the current state of their production, reduces the coefficient of thermal conductivity in a state of equilibrium humidity by 20–30% while maintaining the density of aggregates and concretes, which determines their strength and deformation characteristics.
V.N. YARMAKOVSKY, Candidate of Sciences (Engineering), Chief Researcher, Honorary Member of the Russian Academy of Architecture and Construction Sciences, Expert of the Russian Academy of Sciences, member of the International Federation for Structural Concrete (fib) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.Z. KADIEV, Junior Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAACS) (21, Lokomotivny Driveway, Moscow, 127238, Russian Federation)

1. Bogoslovsky V.N. Stroitel’naya teplofizika [Construction thermophysics]. Moscow: Vysshaya shkola, 1982. 415 p.
2. Kammerer I.S. Teploizolyatsiya v promyshlennosti i stroitel’stve [Thermal insulation in industry and construction]. Moscow: Stroyizdat, 1965. 377 p.
3. Kaufman B.N. Teploprovodnost’ stroitel’nykh materialov [Thermal conductivity of building materials]. Moscow: Stroyizdat, 1955. 159 p.
4. Misnar A. Teploprovodnost’ tverdykh tel, zhidkostei, gazov i ikh kompozitsii [Thermal conductivity of solids, liquids, gases and their compositions]. Moscow: Mir, 1968. 460 p.
5. Tachkova N.A. The influence of the grain composition of porous aggregates and other factors on the thermal conductivity of lightweight aggregate concrete. Diss... Candidate of Technical Sciences. Moscow, 1966. 217 p.
6. Itskovich S.M. Krupnoporistyi beton [Large-pored concrete]. Moscow: Stroyizdat, 1977. 117 p.
7. Meinert Z. Teplozashchita zhilykh zdanii [Thermal protection of residential buildings]. Moscow: Stroyizdat, 1985. 204 p.
8. Yarmakovsky V.N., Pustovgar A.P. The scientific basis for the creation of the composite binders class characterized of the low heat conductivity and low sorption activity of the cement stone. Procedia Engineering. 2015. No. 5, pp. 12–17.

For citation: Yarmakovsky V.N., Kadiev D.Z. Physical-chemical bases for the creation of extra-light concretes of new modifications with high rates of thermal engineering quality. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 15–19. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-15-19

Studies of the Bearing Capacity of Non-Centrally Compressed Steel-Tube Concrete Columns

Number of journal: 6-2022
Autors:

Rimshin V.I.,
Semenova M.N.,
Shubin I.L.,
Krishan A.L.,
Astafieva M.A.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-8-14
УДК: 691.328

 

AbstractAbout AuthorsReferences
The widespread use of structures made of steel-tube concrete columns (STBC) is currently constrained by the lack of a reliable method for calculating their bearing capacity, adequately taking into account the main features of the stress-strain state of the concrete core and steel shell. World trends in the development of methods for calculating the strength of STBR are similar. The proposed methods for calculating the bearing capacity of the normative documents of a number of countries – Australia, Brazil, India, Canada, China, the USA, Japan, etc., as well as сommon European standards are essentially based on empirical formulas. Therefore, they have significant limitations on the scope of application. Firstly, these formulas are valid only for heavy concrete. For composite elements made of other types of concrete (for example, fine-grained), they give unreliable results. Secondly, their use often leads to significant errors in determining the bearing capacity of compressed elements with large cross-sectional dimensions (500 mm or more). In addition, it is not possible to perform calculations of non-centrally compressed composite elements that have any differences from the “classical” design. As a result, the problem of developing theoretical foundations for assessing the strength resistance of STBC, taking into account the main features of the stress-strain state of concrete and steel, is very relevant. To achieve this goal, experimental studies of the bearing capacity of non-centrally compressed laboratory samples of round cross-section STBC made of medium and high strength concrete were carried out.
V.I. RIMSHIN1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
M.N. SEMENOVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.L. SHUBIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.L. KRISHAN3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
M.A. ASTAFIEVA3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivny Driveway, Moscow,127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
3 Nosov Magnitogorsk State Technical University (38, Lenin Avenue, Magnitogorsk, 455000, Russian Federation)

1. Патент РФ 2725162. Способ определения параметров трещиностойкости бетона в изделии / Шубин И.Л., Римшин В.И., Варламов А.А., Давыдова А.М. Заявл. 21.10.2019. Опубл. 30.06.20
1. Patent RF 2725162. Sposob opredeleniya parametrov treshchinostoikosti betona v izdelii [Method for determining the parameters of crack resistance of concrete in a product]. Shubin I.L., Rimshin V.I., Varla-mov A.A., Davydova A.M. Declared 21.10.2019. Pablished 30.06.2020. (In Russian).
2. Костюченко Я.Б., Шафрановская Т.Ю., Варламов А.А., Римшин В.И., Быков Г.С. Несущая способность сталеполистиролбетонной плиты // БСТ. 2020. № 9 (1033). С. 46–47.
2. Kostyuchenko Ya.B., Shafranovskaya T.Yu., Varlamov A.A., Rimshin V.I., Bykov G.S. Bearing capacity of steel-polystyrene concrete slab. BST. 2020. No. 9 (1033), pp. 46–47. (In Russian).
3. Римшин В.И., Кецко Е.С., Трунтов П.С., Кузина И.С., Быков Г.С. Результаты расчета усиления строительных конструкций здания методом конечных элементов // Вестник Вологодского государственного университета. Сер. Технические науки. 2020. № 4 (10). С. 67–78.
3. Rimshin V.I., Ketsko E.S., Truntov P.S., Kuzina I.S., Bykov G.S. Results of calculation of reinforcement of building structures by the finite element method. Vestnik Vologodskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki. 2020. No. 4 (10), pp. 67–78. (In Russian).
4. Варламов А.А., Теличенко В.И., Римшин В.И. Модели материалов по теории деградации // Известия высших учебных заведений. Технология текстильной промышленности. 2019. № 4 (382). С. 59–65.
4. Varlamov A.A., Telichenko V.I., Rimshin V.I. Models of materials on the theory of degradation. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2019. No. 4 (382), pp. 59–65. (In Russian).
5. Меркулов С.И., Римшин В.И., Акимов Э.К. Огнестойкость бетонных конструкций с композитной стержневой арматурой // Промышленное и гражданское строительство. 2019. № 4. С. 50–55.
5. Merkulov S.I., Rimshin V.I., Akimov E.K. Fire resistance of concrete structures with composite rod reinforcement. Promyshlennoe i grazhdanskoe stroitel’stvo. 2019. No. 4, pp. 50–55. (In Russian).
6. Кришан А.Л., Римшин В.И., Астафьева М.А., Трошкина Е.А. Расчет предельных осевых деформаций бетонного ядра сжатых трубобетонных элементов // Жилищное строительство. 2019. № 6. С. 39–42.
6. Krishan A.L., Rimshin V.I., Astafyeva M.A., Troshkina E.A. Calculation of marginal axial deformations of the concrete core of compressed pipe-concrete elements. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 39–42. (In Russian).
7. Римшин В.И., Варламов А.А., Курбатов В.Л., Анпилов С.М. Развитие теории деградации бетонного композита // Строительные материалы. 2019. № 6. С. 12–17.
7. Rimshin V.I., Varlamov A.A., Kurbatov V.L., Anpilov S.M. Development of the theory of degradation of concrete composite. Stroitel’nye Materialy [Consrtuction Materials]. 2019. No. 6, pp. 12–17. (In Russian).
8. Варламов А.А., Римшин В.И. Человек. Информация. Деградация // Биосферная совместимость: человек, регион, технологии. 2019. № 3 (27). С. 44–53.
8. Varlamov A.A., Rimshin V.I. Man. information. Degradation. Biosfernaya sovmestimost’: chelovek, region, tekhnologii. 2019. No. 3 (27), pp. 44–53. (In Russian).
9. Патент РФ 2672697. Способ для разделения сыпучих материалов по фракциям методом метания смеси частиц с одинаковой скоростью и устройство для его осуществления / Курбатов В.Л., Фурсов А.В., Римшин В.И. Заявл. 13.10.2017.
9. Patent RF 2672697. Sposob dlya razdeleniya sypuchikh materialov po fraktsiyam metodom metaniya smesi chastits s odinakovoi skorost’yu i ustroistvo dlya ego osushchestvleniya [A method for separating bulk materials into fractions by throwing a mixture of particles at the same speed and a device for its implementation] Kurbatov V.L., Fursov A.V., Rimshin V.I. Zayavl. 13.10.2017. (In Russian).
10. Римшин В.И., Варламов А.А. Объемные модели упругого поведения композита // Известия высших учебных заведений. Технология текстильной промышленности. 2018. № 3 (375). С. 63–68.
10. Rimshin V.I., Varlamov A.A. Volumetric models of elastic behavior of composite Izvestia of higher educational institutions. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2018. No. 3 (375), pp. 63–68. (In Russian).
11. Rimshin V.I., Kuzina E.S., Shubin I.L. Analysis of the structures in water treatment and sanitation facilities for their strengthening. Journal of Physics: Conference Series. International Scientific Conference on Modelling and Methods of Structural Analysis 2019, MMSA 2019. 2020. С. 012074.
12. Kablov E.N., Erofeev V.T., Zotkina M.M., Dergunova A.V., Moiseev V.V., Rimshin V.I. Plasticized epoxy composites for manufacturing of composite reinforcement. Journal of Physics: Conference Series. «International Conference on Engineering Systems 2020». 2020. С. 012031.
13. Kuzina E.S., Rimshin V.I. Calculation method analysis for structure strengthening with external reinforcement. IOP Conference Series: Materials Science and Engineering. International Science and Technology Conference «FarEastCon 2019». 2020. С. 022004.
14. Eryshev V.A., Karpenko N.I., Rimshin V.I. The parameters ratio in the strength of bent elements calculations by the deformation model and the ultimate limit state method. IOP Conference Series: Materials Science and Engineering. International Science and Technology Conference «FarEastCon 2019». 2020. С. 022076.
15. Merkulov S.I., Rimshin V.I., Shubin I.L., Esipov S.M. Modeling of the stress-strain state of a composite external strengthening of reinforced concrete bending elements. IOP Conference Series: Materials Science and Engineering. International Science and Technology Conference «FarEastCon 2019». 2020. С. 052044.
16. Krishan A., Troshkina E., Rimshin V. Experimental research of the strength of compressed concrete filled steel tube elements. Advances in Intelligent Systems and Computing. 2020. V. 1116 AISC. С. 560–566.
17. Krishan A.L., Rimshin V.I., Troshkina E.A. Compressed and bending concrete elements with confinement reinforcement meshes. IOP Conference Series: Earth and Environmental Science. 2020. V. 753. С. 022052.
18. Krishan A.L., Narkevich M.Yu., Sagadatov A.I., Rimshin V.I. The strength of short compressed concrete elements in a fiberglass shell. Civil Engineering. 2020. No. 2 (94), pp. 3–10.
19. Varlamov A., Rimshin V., Tverskoi S. A method for assessing the stress-strain state of reinforced concrete structures. E3S Web of Conferences. 2018 Topical Problems of Architecture, Civil Engineering and Environmental Economics, TPACEE 2018. 2019. С. 02046.
20. Telichenko V., Rimshin V., Eremeev V., Kurbatov V. Mathematical modeling of groundwaters pressure distribution in the underground structures by cylindrical form zone. MATEC Web of Conferences. 2018. С. 02025.
21. Krishan A.L., Narkevich M.Yu., Sagadatov A.I., Rimshin V.I. Experimental investigation of selection of warm mode for highperformance self-stressing self-compacting concrete. IOP Conference Series: Materials Science and Engineering. Novosibirsk, 2018. С. 012049.
22. Krishan A.L., Rimshin V.I., Troshkina E.A. Strength of short concrete filled steel tube columns of annular cross section. IOP Conference Series: Materials Science and Engineering. Vladivostok, 2018. С. 022062.
23. Krishan A.L., Rimshin V.I., Astafeva M.A. Deformability of a volume-compressed concrete. IOP Conference Series: Materials Science and Engineering. Vladivostok, 2018. С. 022063.
24. Karpenko N.I., Eryshev V.A., Rimshin V.I. The limiting values of moments and deformations ratio in strength calculations using specified material diagrams. IOP Conference Series: Materials Science and Engineering. Vladivostok, 2018. С. 032024

For citation: Rimshin V.I., Semenova M.N., Shubin I.L., Krishan A.L., Astafieva M.A. Studies of the bearing capacity of non-centrally compressed steel-tube concrete columns. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 8–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-8-14

Changing the Deformation Modules of the Coupling Joints of Reinforcement During Cyclic Loading

Number of journal: 6-2022
Autors:

Karpenko S.N.,
Chepizubov I.G.,
Moiseenko G.A.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-4-7
УДК: 624.012.45

 

AbstractAbout AuthorsReferences
Currently, the practice of calculating and designing reinforced concrete structures for two groups of limit states is increasingly beginning to include the diagrammatic method, which is considered the most accurate. This method should be based on real diagrams of reinforcement and concrete deformation when calculating reinforced concrete structures. The above applies, among other things, to the calculation of reinforced concrete elements in the places of installation of coupling joints of reinforcement. However, this issue requires additional research both from an experimental and theoretical point of view, in particular, it is necessary to identify the effect of cyclic loading on the deformation diagrams of the reinforcement. In addition, the issue of constructing a universal dependence for deformation diagrams of various classes of reinforcement and its coupling joints in secant modules requires research. This type of dependence seems to be the most acceptable for the diagram calculation method. This article discusses the change in the deformation modules of coupling joints of reinforcement and solid reinforcement rods under medium cycle loading (up to 100,000 cycles) in the linear stage of deformation of class A500 reinforcement in the stress range from 150 MPa to 300 MPa. The experimental studies conducted at the Research Institute of Construction Physics are analyzed. The development of a diagrammatic methodology for calculating coupling joints is proposed, taking into account the changes in their deformation modules.
S.N. KARPENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.G. CHEPIZUBOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.A. MOISEENKO, Lead Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Building Physics Russian Academy Architecture and Construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Liang J., Nie X., Masud M., Li J., Mo Y. L. A study on the simulation method for fatigue damage behavior of reinforced concrete structures. Engineering Structures. 2017. No. 150, pp. 25–38.
2. Luo X., Tan Z., Chen Y. F., Wang Y. Comparative study on fatigue behavior between unbounded prestressed and ordinary reinforced reactive powder concrete beams. Materialpruefung. Materials Testing. 2019. No. 4 (61), pp. 323–328.
3. Mirsayapov Ilshat T. Detection of stress concentration regions in cyclic loading by the heat monitoring method. Mechanics of Solids. 2010. No. 1 (45), pp. 133–139.
4. Song L., Fan Z., Hou J. Experimental and analytical investigation of the fatigue flexural behavior of corroded reinforced concrete beams. International Journal of Concrete Structures and Materials. 2019. No. 1 (13).
5. Zhang G., Zhang Y., Zhou Y. Fatigue tests of concrete slabs reinforced with stainless steel bars. Advances in Materials Science and Engineering. 2018. No. 1.
6. Мирсаяпов И.Т. Усталостное сопротивление изгибаемых элементов действию поперечных сил при средних пролетах среза // Бетон и железобетон. 2006. № 3. С. 23–25.
6. Mirsayapov I.T. Fatigue resistance of bending elements to the action of transverse forces at average cross-section spans. Beton i Zhelezobeton [Concrete and reinforced concrete]. 2006. No. 3, pp. 23–25. (In Russian).
7. Мирсаяпов И.Т., Тамразян А.Г. К разработке научных основ теории выносливости железобетонных конструкций // Промышленное и гражданское строительство. 2017. № 1. С. 50–56.
7. Mirsayapov I.T., Tamrazyan A.G. On develop the scientific basis of the theory of endurance of reinforced concrete structures. Promishlennoye i grajdanskoye stroitelstvo. 2017. No. 1, pp. 50–56. (In Russian).
8. Mirsayapov I.T. A study of stress concentration zones under cyclic loading by thermal imaging method. Strength of Materials. 2009. No. 3 (41), pp. 339–344.
9. Zhang C., Duan P., Zheng B., Li M. Numerical analysis of diaphragm fatigue of reinforced concrete simply supported T-beams. Journal of Engineering Science and Technology Review. 2018. No. 5 (11), pp. 193–201.
10. Ерышев В.А., Тошин Д.С. Диаграмма деформирования бетона при немногократных повторных нагружениях // Известия вузов. Строительство и архитектура. 2005. № 10. С. 109–114.
10. Yeryshev V.A., Toshin D.S. Diagram of concrete deformation under multiple repeated loadings. Izvestiya vuzov. Stroitel’stvo i Arhitektura. 2005. No. 10, pp. 109–114. (In Russian).
11. Карпенко Н.И., Ерышев В.А., Латышева Е.В. К построению диаграмм деформирования бетона повторными нагрузками сжатия при постоянных уровнях напряжений // Строительные материалы. 2013. № 6. С. 48–52.
11. Karpenko N.I., Yeryshev V.A., Latysheva E.V. On the construction of diagrams of concrete deformation by repeated compression loads at constant stress levels. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 48–52. (In Russian).
12. Карпенко С.Н., Чепизубов И.Г., Шифрин К.С. О результатах проверки прочности муфтовых соединений арматуры на резьбе по диаграммной методике // Промышленное и гражданское строительство. 2008. № 11. С. 44–46.
12. Karpenko S.N., Chepizubov I.G., Shifrin K.S. On the results of checking the strength of the coupling joints of reinforcement on the thread according to the diagram method. Promyshlennoe i grazhdanskoe stroitel’stvo. 2008. No. 11, pp. 44–46. (In Russian).
13. Карпенко С.Н., Чепизубов И.Г., Андрианов А.А. Определение деформативности муфтовых соединений арматуры при среднецикловом нагружении (до 100000 циклов). Фундаментальные исследования РААСН по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской Федерации в 2012 году: Сборник научных трудов. Волгоград, 2013. С. 361–363.
13. Karpenko S.N., Chepizubov I.G., Andrianov A.A. Determination of deformability of the coupling joints of reinforcement under medium cycle loading (up to 100,000 cycles). Fundamental research of the RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2012. Collection of scientific papers. Volgograd. 2013, pp. 361–363. (In Russian).
14. Карпенко С.Н., Чепизубов И.Г. Определение деформативности и прочности муфтовых Российской академии архитектуры и строительных наук. 2009. № 3. С. 147–151.
14. Karpenko S.N., Chepizubov I.G. Determination of deformability and strength of the coupling joints of reinforcement under cyclic loading. Bulletin of the Department of Construction Sciences of the Russian Academy of Architecture and Construction Sciences. 2009. No. 3, pp. 147–151. (In Russian).

For citation: Karpenko S.N., Chepizubov I.G., Moiseenko G.A. Changing the deformation modules of the coupling joints of reinforcement during cyclic loading. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 4–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-4-7

Calculation of Thermal Conditions Generated During the Radiant-Convective Heat Exchange Process in a Room of a Building with Enhanced Thermal Protection

Number of journal: 5-2022
Autors:

Malyavina E.G.,
Uryadov M.I.,
Elohov A.E.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-77-82
УДК: 621.785–97

 

AbstractAbout AuthorsReferences
Within the regulatory limits, the standards require maintaining the air temperature and the resulting temperature at the border of its serviced area. The resulting temperature is a local indicator, since it includes the radiation temperature, which mainly depends on the location and temperature of the surfaces facing the premises. The article is devoted to the development of a methodology for calculating these indicators in the estimated cold winter period according to experimental data obtained during warmer weather. The article presents the results of measurements of air temperature, the resulting and radiation temperature at an outdoor temperature of -7°C, the values of radiation temperature obtained by calculation simulation of measurements with a globe thermometer and the predicted values of these parameters in the design winter conditions.
E.G. MALYAVINA1, Candidate of Sciences (Engineering), Professor, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.I. URYADOV1, Master‘s Degree Student (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.E. ELOHOV2, Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation)
2 «Passive house institute Russia» (building 2/1, Kirpichnye vyemki Street, Moscow, 117405, Russian Federation)

1. Malyavina E.G., Frolova A.A., Landyrev S.S. Microclimate parameters evaluation for spaces with windows of different thermal protection. Light&Engineering. 2021. No. 29(5), pp. 61–67. DOI: 10.33383/2021-078
2. Musy M., Malys L., Inard Cr. Assessment of direct and indirect impacts of vegetation on building comfort: a comparative study of lawns, green walls and green roofs. Procedia Environmental Sciences. 2017. Vol. 38, pp. 603–610. https://doi.org/10.1016/j.proenv.2017.03.134
3. Naboni E., Meloni M., Coccolo S., Kaempf Jé., Scartezzini Jean-L. An overview of simulation tools for predicting the mean radiant temperature in an outdoor space. Energy Procedia. 2017. Vol. 122, pp. 1111–1116. https://doi.org/10.1016/j.egypro.2017.07.471
4. Liang Yu., Zhang Nan, Huang G. Thermal environment and thermal comfort built by decoupled radiant ooling units with low radiant cooling temperature. Building and Environment. 2021. Vol. 206. 108342. https://doi.org/10.1016/j.buildenv.2021.108342
5. Vytchikov Y.S., Belyakov I.G., Saparev M.E. Assessment of heat protection characteristics of building enclosing structures of the building of the men’s monastery. Gradostroitel’stvo i arhitektura. 2021. Vol. 11. No. 4, pp. 72–80. (In Russian). DOI: 10.17673/Vestnik.2021.04.9
6. Borisoglebskaya A.P. Specifics of creation of micro climate in medical institutions. AVOK. 2017. No. 5, pp. 3–6. (In Russian).
7. Avdyushin D.A. Archives: specific of climate control. AVOK. 2019. No. 4, pp. 34–39. (In Russian).
8. Kochev A.G. Sokolov M.M., Kocheva E. A., Fedotov A.A. Practical use of alternative energy resources in orthodox temples. Izvestiya vuzov. Stroitelstvo. 2019. No. 7, pp. 78-85. (In Russian). DOI: 10.32683/0536-1052-2019-727-7-78-85
9. Starkova L.G., Moreva Y.A., Novoselova Y.N. Optimization of the microclimate in an Orthodox church by modeling air flows. Bulletin of the South Ural State University. The series “Construction and Architecture”. 2018. Vol. 18. No. 3, pp. 53–59. (In Russian). DOI: 10.14529/build180308
10. Burkov A.I., Ivashkin V.S. Modern trends in the development of microclimate systems for public buildings. Modern technologies in construction. Theory and practice. 2020. Vol. 1, pp. 139–144. (In Russian).
11. Sladkova Y., Smirnov V., Zaritskaya E. On hygienic regulation of microclimate and air quality in office rooms. Meditcina truda i promishlennaya ecologia. 2018. No. 5, pp. 35–39. (In Russian). DOI: http://dx.doi.org/10.31089/1026–9428–2018–5–35–39
12. Microclimate measurement unit Meteoscope-M. Operation manual. 2020. BVEK.431110.04 RE [Operation manual]. LLC «NTM - Zaschita» 115230, Moscow, 1st Nagatinskiy proezd, building 10/1. (In Russian).
13. Malyavina E.G., Landyrev S.S. Checking for compliance with GOST 30494–2011 requirements for indoor environment parameters at the service zone border. AVOK. 2022. No. 2, pp. 40–42. (In Russian).

For citation: Malyavina E.G., Uryadov M.I., Elohov A.E. Calculation of thermal conditions generated during the radiant-convective heat exchange process in a room of a building with enhanced thermal protection. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 77–82. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-77-82

Properties of Cement Matrices Modified with Nickel-Carbon Nanocomposite

Number of journal: 5-2022
Autors:

Semenova S.N.,
Yakovlev G.I.,
Gordina A.F.,
Kuzmina N.V.,
Polyanskikh I.S.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-73-76
УДК: 666.973.2:620.3

 

AbstractAbout AuthorsReferences
Samples of silicate compositions modified by dispersions of metals intercalated into a carbon structure have been studied. To create samples, a technology has been developed for the functionalization of metal-containing carbon dispersion and its introduction into a silicate composite. Plasticizer C-3 was used to functionalize the dispersions. The physico-mechanical and structural properties of the studied composite are investigated. Mechanical tests for bending and compression of samples and the study of the structure of the material by infrared spectroscopy, differential thermal analysis and energy dispersion analysis were carried out. It is established that the increase in the physico-mechanical properties of the modified material is due to the interaction of metal-carbon dispersions with the cement matrix in the emerging structure of cement stone.
S.N. SEMYONOVA, Engineer (post-graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KUZMINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Sanchez F., Sobolev K. Nanotechnology in Concrete – A Review. Construction and Building Materials. 2010. Vol. 24, pp. 2060–2071.DOI: 10.1016/j.conbuildmat.2010.03.014
2. Niewiadomski P. Short overview of the effects of nanoparticles on mechanical properties of concrete. Key Engineering Materials. 2015. Vol. 662, pp. 257–260. DOI: 10.4028/www.scientific.net/KEM.662.257
3. Chung D. Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance. 2000. Vol. 9, pp. 350–354. DOI: 10.1361/105994900770346042
4. Li Z., Ding S., Yu X., B. Han, J. Ou. Multifunctional cementitious composites modified with nano titanium dioxide: a review. Composites Part A: Applied Science and Manufacturing. 2018. Vol. 111, pp. 115–137. DOI:10.1016/j.compositesa.2018.05.019
5/ Baránek Š., Černý V., Yakovlev G., Drochytka R. Silicate conductive composites with graphite-based fillers. IOP Conf. Series: Materials Science and Engineering. 2021. 1209. DOI: 10.1088/1757-899X/1209/1/012035
6. Korotkih D.N., Artamonova O.V., Chernyshov E.M On the requirements for nano-modifying additives for high-strength cement concrete. Nanotekhnologii v stroitel’stve. 2009. Vol. 1. No. 2, pp. 42–49. http://www.nanobuild.ru/ru_RU/journal/Nanobuild_2_2009_RUS.pdf (Date of access29.04.2022). (In Russian).
7. Karavaeva N.M., Pershin YU.V., Kodolov V.I. Properties and high reactivity of metal/carbon nanocomposites. Vestnik of Kazan Technological University. 2017. No. 19, pp. 54–56. (In Russian).
8. Ahmetshina L.F., Kodolov V.I., Tereshkin I.P., Korotin A.I. Influence of carbon metal-containing nanostructures on the strength properties of concrete composites. Nanotekhnologii v stroitel’stve. 2010. No. 6, pp. 35–46. http://www.nanobuild.ru/magazine/nb/Nanobuild_6_2010.pdf (Date of access 29.04.2022). (In Russian).
9. Kopylova A.A., Kodolov V.I. Study of the interaction of a copper/carbon nanocomposite with silicon atoms in the composition of silicon-containing compounds. Himicheskaya fizika i mezoskopiya. 2014. No. 4, pp. 556–560. (In Russian).
10. Kodolov V.I., Trineeva V.V. Prospects for the development of the direction of self-organization of nanosystems in polymer matrices. Himicheskaya fizika i mezoskopiya. 2011. Vol. 13. No. 3, pp. 363–375. (In Russian).
11. Kodolov V.I., Trineeva V.V., Kopylova A.A. Mechanochemical modification of metal/carbon nanocomposites. Himicheskaya fizika i mezoskopiya. 2017. Vol. 19. No. 4, pp. 569–580. (In Russian).
12. Hohryakov N.V. Quantum-chemical calculations of metal-carbon nanocomposites. Vestnik of the Izhevsk State Agricultural Academy. 2019. No. 3 (59), pp. 63–70. (In Russian).
13. Babkov V.V., Mohov V.N., Kapitonov S.M., Komohov P.G. Strukturoobrazovanie i razrushenie cementnyh betonov [Structure formation and destruction of cement concretes]. Ufa: Ufimskij poligrafkombinat. 2002. 371 p.
14. Yakovlev G.I., Černý Vit, Pudov I.A., Polyanskikh I.S., Saidova Z.S., Begunova E.V., Semenova S.N. Properties of cement matrices with increased electrical conductivity. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 11–20. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-11-20

For citation: Semenova S.N., Yakovlev G.I., Gordina A.F., Kuzmina N.V., Polyanskikh I.S. Properties of cement matrices modified with nickel-carbon nanocomposite. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 73–76. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-73-76

The Role of a Polyfractive Slag Additive in the Structure of Fine-Grained Concrete

Number of journal: 5-2022
Autors:

Povarova O.A.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-68-72
УДК: 666.973

 

AbstractAbout AuthorsReferences
The results of studies of the rational composition of fine-grained slag concrete for the production of reinforced concrete products by the method of formless molding are presented. The paper presents the results of experimental studies on the use of screening of slag crushed stone as a mineral fine-ground additive and filler in fine-grained structural cinder blocks. The rational composition of the fine ground additive at the joint grinding of granulated blast furnace slag and the screening of slag rubble was established. When introducing a slag additive, there is an increase in the activity of the binder by 15-20%; the thermal conductivity decreases with an increase in the proportion of the additive. The compositions of fine-grained slag concrete recommended for the production of reinforced concrete products by the method of formless molding are given. According to the test results, the consumption of cement binder per strength unit in the recommended compositions is 40-45% less than in traditional concretes without fine ground polyfractive slag additive. The practical significance of the research results will make it possible to rationally use the screening of slag rubble in the production of effective mineral fine ground slag additives and structural fine-grained slag concrete with low thermal conductivity and specific consumption of cement binder.
О.A. POVAROVA, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Cherepovets State University (5, Lunacharsky Street, Cherepovets, 162602, Russian Federation)

1. Bazhenov Yu.M., Chernyshov E.M., Korotkikh D.N. Construction of structures of modern concretes: defining principles and technological platforms. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 6–14. (In Russian).
2. Karpenko N.I., Yarmakovsky V.N., Shkolnik Y.Sh. The state and prospects of using byproducts of manmade formations in the construction industry. Ecologiya i promyshlennost Rossii. 2012. No. 10, pp. 50–55. (In Russian).
3. Yarmakovsky V.N., Semchenkov A.S., Kozelkov M.M., Shevtsov D.A. On resource saving when using innovative technologies in the design systems of buildings in the process of creation and construction. Vestnik MGSU. 2011. No. 3. Vol. 1, pp. 209–215. (In Russian).
4. Bolshakov V.I., Eliseeva M.A., Shcherbak S.A. Contact strength of mechanically activated fine-grained concrete from blast furnace granulated slags. Nauka i progress transportu. 2014. No. 5 (53), pp. 138–149. (In Russian).
5. Chernousov N.N., Chernousov R.N., Sukhanov A.V. Study of the mechanics of fine-grained slag concrete in axial tension and compression. Stroitel’nye Materialy [Construction Materials]. 2014. No. 12, pp. 59–63. (In Russian).
6. Panova V.F., Panov S.A. Regulation of grain composition of decorative slag concrete. Izvestiya vuzov. Stroitel’stvo. 2007. No. 8, pp. 24–29. (In Russian).
7. Chernousov N.N., Chernousov R.N, Sukhanov A.V., Bondarev B.A. The influence of the age of fine-grained slagging on its strength characteristics. Sovremennoe stroitelstvo i architectura. 2015. No. 1 (37), pp. 41–50. (In Russian).
8. Ivanov I.A. Legkie betony na iskusstvennykh poristykh zapolnitelyakh [Light concretes on artificial porous aggregates]. Moscow: Stroyizdat. 1993. 182 p.
9. Gryzlov V.S. Formirovanie struktury shlacobetonov [Formation of the structure of slag concrete]. Lambert Academic Publishing Saarbucken Deutchland. 2012. 347 p.
10. Gryzlov V.S. Slag concrete in large-panel house building. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, pp. 40–41. (In Russian).
11. Gryzlov V.S. Zavialova D.V. Screening of Crushing of Broken Slag as an Efficient Component of Concrete. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 40–43. (In Russian).
12. Gatyliuk A.G., Gryzlov V.S. Determining the optimal composition of fine-grained slag concrete on waste from metallurgical production. Vestnik Cherepovetskogo Gosudarstvennogo Universiteta. 2013. Vol. 1. No. 2 (47), pp.  9–11. (In Russian).

For citation: Povarova O.A. The role of a polyfractive slag additive in the structure of fine-grained concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 68–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-68-72

Analytical Dependences of the Effect of Material Density on the Strength and Deformability of Structural Concrete under Axial Compression

Number of journal: 5-2022
Autors:

Chernousov N.N.,
Bondarev B.A.,
Sturova V.A.,
Bondarev A.B.,
Liventseva A.A.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-58-67
УДК: 624.012.45

 

AbstractAbout AuthorsReferences
The study of the strength of materials and the use in further calculations of the main analytical dependencies obtained on the basis of ongoing experimental studies has always been an urgent and everyday task for scientists and engineers involved in the design of new material objects, including buildings and structures erected by builders. In the course of the work done, analytical dependences of the influence of material density on the strength and deformability of structural concrete under axial compression were derived, for this, the article considered the process of concrete destruction, analyzed existing views on the causes of destruction and hypotheses of the strength of bodies, modern building codes and rules. It was established that the modern approach to determining strength can no longer fully describe the process of material deformation, which establishes the relationship between stresses and relative deformations. Based on the results of the tests of prototypes of cubes 40х40х40 mm, 70х70х70 mm and prisms 40х40х160 mm, 70х70х280 mm from fine-grained slag concrete (FGSC), unified formulas were obtained for determining the compressive strength, the initial modulus of elasticity and limiting (maximum) relative deformations depending on the density of the material. Experimental and calculated strength and deformation characteristics of FGSC are given in the article. All this led to the conclusion that the main parameter that determines the strength is the initial modulus of elasticity of the material, in connection with this, the physical meaning of the modulus of elasticity was considered in more detail in the work.
N.N. CHERNOUSOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. BONDAREV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. STUROVA2, graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.B. BONDAREV2, Candidate of Sciences (Engineering),
A.A. LIVENTSEVA2, student

1 OOO “NTO” EXPERT “ (office 314, 9, Kommunalnaya Square, Lipetsk, 398059, Russian Federation)
2 Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Bondarenko V.M. Nekotorye voprosy nelineinoi teorii zhelezobetona [Some questions of the nonlinear theory of reinforced concrete]. Kharkov: KhSU. 1968. 324 p.
2. Krichevsky A.P., Likhachev V.D., Popov V.V. Kon-struktsionnyi shlakopemzobeton dlya promyshlennogo stroitel’stva [Structural slag-pemzobeton for industrial construction]. Moscow: Stroyizdat. 1986. 84 p.
3. Chernousov N.N., Pantelkin I.I. Zhelezobetonnye konstrukcii s ispol’zovaniem dispersno-armirovannogo shlakopemzobetona. Moscow: ACV. 1998. 230 p.
4. Chernousov N.N., Chernousov R.N., Sukhanov A.V. Study of the mechanics of fine-grained slag concrete in axial tension and compression. Stroitel’nye Materialy [Construction Materials]. 2014. No. 12, pp. 59–63. (In Russian).
5. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Investigation of the strength properties of steel fiber slag concrete in axial tension and compression, taking into account its age. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 20–24. (In Russian).
6. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Study of the deformation properties of steel fiber slag concrete under axial tension and compression, taking into account its age. Vestnik PNRPU. Stroitelstvo i architectura. 2017. Vol. 8. No. 1, pp. 18–31. (In Russian).
7. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Dynamic and static modulus of elasticity of steel fiber slag concrete (SFB). Colloquium-journal. 2019. No. 15–1 (39), pp. 4–6. (In Russian).
8. Bondarev B.A., Chernousov R.N. Determination of the modulus of elasticity and tensile strength of steel fiber concrete in tension by the wedging method. Nauchniy vestnik VGASU. Stroitelstvo i architectura. 2008. No. 3 (11), pp. 67–71. (In Russian).
9. Patent RF 2402008. Sposob ispytaniya dispersno-armirovannykh betonov na rastyazhenie [Method for testing dispersed-reinforced concrete for tension]. Chernousov N.N., Chernousov R.N. Declared 07.12.2009. Publ. 20.10.2010. Bull. No. 29. (In Russian).
10. Patent RF 2544299. Sposob ispytaniya obraztsov stroitel’nykh materialov na rastyazhenie [Method for testing samples of building materials for tension]. Chernousov N.N., Chernousov R.N., Sukhanov A.V., Prokofiev A.N. Declared 23.07.2013. Publ. 20.03.2015. Bull. No. 8. (In Russian).
11. Nikishkin V.A. Vliyanie struktury i plotnosti na prochnost’ i deformativnost’ plotnogo stroitel’nogo betona i ego sostavlyayushchikh [Influence of structure and density on the strength and deformability of dense building concrete and its components]. Ekaterinburg: USTU-UPI. 2009. 269 p.
12. Savchenko N.L., Sablina Yu. T., Sevostyanova I.N., Buyakova S.P., Kulkov S.N. Deformation and destruction of porous brittle materials under various loading schemes. Novosti universiteta. Physics. 2015. Vol. 58. No. 11, pp. 56–60. (In Russian).
13. Kuhling H. Spravochnik po fizike [Handbook of Physics]. Moscow: Mir. 1982. 520 p.
14. Sheikin A.E., Chekhovskiy Yu.V., Brusser M.I. Struktura i svoistva tsementnykh betonov [Structure and properties of cement concretes]. Moscow: Stroyizdat. 1979. 344 p.

For citation: Chernousov N.N., Bondarev B.A., Sturova V.A., Bondarev A.B., Liventseva A.A. Аnalytical dependences of the effect of material density on the strength and deformability of structural concrete under axial compression. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 58–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-58-67

Evaluation of Elastic Modulus of Mixtures of Polyvinyl Chloride with a Number of Synthetic Polymers

Number of journal: 5-2022
Autors:

Matseevich T.A.,
Zhdanova T.V.,
Askadskii A.A.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-52-57
УДК: 691.175.5/8

 

AbstractAbout AuthorsReferences
The method for predicting the elastic modulus of materials based on mixtures of compatible and incompatible polymers is described. These materials contain fine dispersions of one of the polymers in a polymer matrix of another polymer. The dispersion of a solid amorphous polymer of a certain chemical structure in a solid amorphous matrix of a polymer of a different chemical structure is analyzed. Moduli of elasticity under uniaxial tension, shear moduli and bulk moduli are analyzed. The dependences of the elas tic moduli on the mole, weight and volume fractions are determined by the van der Waals volume of the components, the molecular weight of the repeating units, and the density of the components. The dependences of the elastic modulus of mixtures of polyvinyl chloride with a number of polymers, including aromatic polyesters, polyether ketones, polysulfone, and polycarbonate, have been plotted. The greatest increase in the modulus of elasticity from 2400 to 3980 MPa under uniaxial tension is given by anilinein polypyromellitimide.
T.A. MATSEEVICH1, Doctor of Sciences (physics and mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.V. ZHDANOVA1 (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. ASKADSKII1,2, Doctor of Sciences (chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federation)

1. Buthaina A. Ibrahim, Karrer M. Kadum. Influence of Polymer Blending on Mechanical and Thermal Properties. Modern Applied Science. 2010. Vol. 4. No. 9, pp. 157–161.
2. Saxe P., Freeman C., Rigby D. Mechanical Properties of Glassy Polymer Blends and Thermosets. Materials Design, Inc., Angel Fire, NM and San Diego, CA. LAMMPS Users’ Workshop and Symposium, Albuquerque. NM, August 8, 2013.
3. Doi M., Ohta T. Dynamics and rheology of complex interfaces. J. Chem. Phys. 1991. Vol. 95, pp. 1242–1248.
4. Anastasiadis S.H., Gancarz I., Koberstein J.T. Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules. 1988. Vol. 21 (10), pp. 2980–2987.
5. Biresaw G., Carriere C., Sammler R. Effect of temperature and molecular weight on the interfacial tension of PS/ PDMS blends. Rheol. Acta. 2003. Vol. 42. No. 1–2, pp. 142–147.
6. Ellingson P.C., Strand D.A., Cohen A., Sammler R.L., Carriere C.J. Molecular Weight Dependence of Polystyrene / Poly(Methyl Methacrylate) Interfacial Tension Probed by Imbedded-Fiber Retraction. Macromolecules. 1994. Vol. 27. No. 6, pp. 1643–1647.
7. Gramespacher H., Meissner J. Interfacial tension between polymer melts measured by shear oscillations of their blends. J. Rheol. 1992. Vol. 36. No. 6, pp. 1127–1141.
8. Lacroix C., Bousmina M., Carreau P.J., Favis B.D., Michel A. Properties of PETG/EVA Blends: 1. Viscoelastic, Morphological and Interfacial Properties. Polymer. 1996. Vol. 37. No. 14, pp. 2939–2947.
9. Li R., Yu W., Zhou C. Rheological characterization of droplet-matrix versus co-continous morphology. J. Macromol. Sci. Series B. Physics. 2006. Vol. 45, No. 5, pp. 889–898.
10. Chopra D., Kontopoulou M., Vlassopoulos D., Hatzikiriakos S. Effect of Maleic Anhydride Content on the Rheology and Phase behavior of Poly(styrene-co-maleic anhydride)/Poly(methyl methacrylate) blends. G. Rheol. Acta. 2001. Vol. 41, pp. 10–24.
11. Guenther G.K., Baird D.G. An evaluation of the Doi-Ohta theory for an immiscible polymer blend. J. Rheol. 1996. Vol. 40. No. 1, pp. 1–20.
12. Hashimoto T., Takenaka M., Jinnai H. Scattering Studies of Self-assembling Processes of Polymer Blends in Spinodal Decomposition. J. Appl. Crystallogr. 1991. Vol. 24, pp. 457–466.
13. Аскадский А.А., Попова М.Н., Кондращенко В.И. Физико-химия полимерных материалов и методы их исследования: Учебное издание / Под общ. ред. А.А. Аскадского. М.: АСВ, 2015. 408 с.
13. Askadskiy A.A., Popova M.N., Kondrashchenko V.I. Fiziko-khimiya polimernykh materialov i metody ikh issledovaniya [Physics and chemistry of polymer materials and methods of their research] : Uchebnoe izdanie / Pod obshch. red. A.A. Askadskogo. Moscow: ASV. 2015. 408 p.
14. Bicerano J. Prediction of Polymer Properties. New York: Marcel Dekker, Inc., 1996. 528 p.
15. Аскадский А.А., Ван С., Курская Е.А., Кондращенко В.И., Жданова Т.В., Мацеевич Т.А. Возможности предсказания коэффициента термического расширения материалов на основе поливинилхлорида // Строительные материалы. 2019. № 11. С. 57–65. DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65
15. Askadskiy A.A., Van S., Kurskaya E.A., Kondra-shchenko V.I., Zhdanova T.V., Matseevich T.A. Possibilities of predicting the coefficient of thermal expansion of polyvinylchloride-based materials lorida. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 57–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65

For citation: Matseevich T.A., Zhdanova T.V., Askadskii A.A. Evaluation of elastic modulus of mixtures of polyvinyl chloride with a number of synthetic polymers. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 52–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-52-57

Drainage Concrete CAPSIMET and New Equipment for the Construction of Roads and Engineering Structures

Number of journal: 5-2022
Autors:

Matkin A.A.,
Bikbau M.Ya.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-45-51
УДК: 624.012.45-183.4

 

AbstractAbout AuthorsReferences
In recent years, the construction of roads from cement concrete has been increasing in Russia. The technology of aggregate encapsulation for the production of coarse-pored concrete for drainage of the roadbed and pavement is described, the technical characteristics of the drainage cement-concrete CAPSIMET are given. The first practice of laying an experimental section of the road with a length of about 200 m and a width of 6 m in the village of Tsilna, Ulyanovsk Region, is presented.
A.A. MATKIN1, Engineer,
M.YA. BIKBAU2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 LLC “IMETSTROY” (4, Zahvataeva Street, Moscow Region, Klin, 141606, Russian Federation)
2 International Institute of Materials Science and Efficient Technologies (15-5, Merzljakovskij lane, 121069, Moscow, Russian Federation)

For citation: Matkin A.A., Bikbau M.Ya. Drainage concrete CAPSIMET and new equipment for the construction of roads and engineering structures. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 45–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-45-51

Structural Synthesis of the Technological Complex of Clay Preparation Under Conditions of Unsteady Humidity of Raw Materials in the Production of Expanded Clay

Number of journal: 5-2022
Autors:

Galitskov K.S.,
Fadeev A.S.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-40-44
УДК: 666.3-1:001.891.592

 

AbstractAbout AuthorsReferences
The article considers the approach of structural modeling of the technological complex for the preparation of clay raw materials in conditions of unsteadiness of its humidity. The main dependencies characterizing each of the stages of redistribution are revealed, input and output coordinates, as well as disturbing effects are determined. Taking into account the accepted assumptions and current technological limitations, a structural diagram of the clay preparation site as a generalized control object has been developed. In the developed model, two main parameters are structurally distinguished – the moisture content of clay raw materials formed at each stage of processing to assess the effectiveness of its preparation, and the productivity of equipment involved in the technological chain to ensure consistency of operating modes. A computational model of the technological section of clay preparation has been created, the use of which will allow experimental studies of the formation of the final moisture content of clay raw materials, and the results of the experiments will be taken into account in the further synthesis of the system of automatic stabilization of the moisture content of clay raw materials in the production of expanded clay with specified quality indicators.
K.S. GALITSKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. FADEEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Samara State Technical University (224, Molodogvardeyskaya, Samara, 443110, Russian Federation)

1. Gorin V.M., Tokareva S.A., Vytchikov Yu.S., Belyakov I.G., Shiyanov L.P. Use of wall stones made of undisturbed expanded clay concrete in housing construction. Stroitel’nye Materialy [Construction Materials]. 2010. No. 2, рр. 15–18. (In Russian).
2. Gorin V.M., Tokareva S.A., Kabanova M.K. High-strength expanded clay and ceramic powder for load-bearing structures and road construction. Stroitel’nye Materialy [Construction Materials]. 2010. No. 1, рр. 9–11. (In Russian).
3. Gorin V.M., Tokareva S.A., Kabanova M.K. Wall expanded clay concrete structures – a promising material for industrial housing construction. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, рр. 55–58. (In Russian).
4. Ledyakin A.S., Liaskin O.V. Prospects for application of expanded clay in Russia. Topical issues of architecture and construction: Collection of works of the seventeenth International Scientific and Technical Conference. Saransk. 2018, рр. 196–199. (In Russian).
5. Galitskov K. Intelligent management of high-technology equipment for the manufacture of concrete and ceramic materials and products. Integration, Partnership and Innovation in Construction Science and Education: Proceedings VI International Scientific Conference. MATEC Web of Conferences. 2018. 03043. DOI: https://doi.org/10.1051/matecconf/201825103043
6. Galitskov K.S., Borisov V.A., Saburov V.V. Generalized structure of the production of expanded clay as a control object. Traditions and innovations in construction and architecture. Construction and construction technologies: Collection of articles of the 78th All-Russian Scientific and Technical Conference. Samara. 2021, рр. 1026–1033. (In Russian).
7. Golovko A.O., Nusratullina D.B., Guryanova V.R. Features of the technology of expanded clay from local raw materials. Modern technologies of composite materials: Materials of the IV All-Russian Scientific and Practical Conference with international participation. Ufa. 2019, рр. 263–266. (In Russian).
8. Onatsky S.P. Proizvodstvo keramzita [Production of expanded clay]. Мoscow: Stroyizdat, 1987. 333 p.
9. Galitskov S., Galitskov K., Samokhvalov O. Computer modeling of the dynamics of energy consumption during expanded clay burning. Complex Systems: Control and Modeling Problems: Proceedings 21st International Conference. Samara. 2019, рр. 401–406. DOI: https://doi.org/10.1109/CSCMP45713.2019.8976656
10. Galitskov S.Ya., Samokhvalov O.V. Control conditions for a rotary kiln that produces expanded clay with a given strength. Traditions and innovations in construction and architecture: Collection of articles of the 71st All-Russian Scientific and Technical Conference. Samara. 2014, рр. 1009–1011. (In Russian).
11. Galitskov K.S., Samokhvalov O.V., Fadeev A.S. Optimization of burning production process of ceramsite with specified density. Environment, Technology, Resources: Proceedings of the 11th International Scientific and Practical Conference. 2017, рр. 57–61. DOI: https://doi.org/10.17770/etr2017vol3.2569
12. Fadeev A.S., Galitskov S.Ya., Danilushkin A.I. Simulation of expanded clay swelling in a rotary furnace as a control object. Vestnik of Samara State Technical University, Series “Technical Sciences”. 2011. No. 2, рр. 160–168. DOI: https://doi.org/10.14498/tech.2011.2.%25u (In Russian).
13. Samohvalov O.V. Algorithm of operation of multivariate automatic control system for calcination of expanded clay. Mechanization and automation of construction: Collection of articles. Samara. 2020, рр. 343–348. (In Russian).
14. Fadeev A.S., Galitskov K.S., Galitskov S.Ya. Structure of intelligent support system for operational control of expanded clay production of specified quality. Interstroymeh-2018: Collection of articles of the XXI International Scientific and Technical Conference. Moscow. 2018, рр. 270–273. (In Russian).
15. Fadeev A.S., Minsafin R.R. Mathematical modeling of the clay preparation process as an object of automation of the production of expanded clay. Traditions and innovations in construction and architecture. Construction and construction technologies: Collection of articles of the 79th All-Russian Scientific and Technical Conference. Samara. 2022, рр. 950–957. (In Russian).

For citation: Galitskov K.S., Fadeev A.S. structural synthesis of the technological complex of clay preparation under conditions of unsteady humidity of raw materials in the production of expanded clay. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 40–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-40-44

https://www.traditionrolex.com/10