Digital Methods for Optimizing Textile Concrete Technology

Number of journal: 6-2022
Autors:

Poudel R.S.,
Bessonov I.V.,
Zhukov A.D.,
Gudkov P.K.,
Gorbunova E.A.,
Mihaylik E.D.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24
УДК: 666.972

 

AbstractAbout AuthorsReferences
The practice of digital technologies in the analysis of technological processes makes it possible to solve such problems effectively and successfully as ensuring the selection of the composition of these materials, the selection and optimization of parameters characterizing the processes of manufacturing materials, modelling technologies. The basis is the methods of mathematical planning and processing of the test results and the subsequent analytical optimization of the dependencies obtained. The purpose of the research presented in the article was the implementation of digital technologies as part of the implementation of optimization solutions for selecting the composition of fine concrete, which is the mineral component of the concrete wall. The investigation of the properties of fine-grained modified dispersion concrete was carried out according to standard methods and using experimental design, mathematical processing of its results and analytical optimization. The Concrete Canvas is a flexible fabric material impregnated with concrete, which, in the process of interaction with water, hardens and creates a strong, thin layer of concrete that is resistant to fire and water. The average density of the material is 1400–1440 kg/m3, compressive strength of less than 40 MPa, puncture strength of at least 3 kN. The thickness of the web is 5–20 mm. Concrete canvas is used in the construction of hydraulic structures, strengthening the slopes of roads laid in mountainous areas, in the construction of prefabricated buildings. The obtained mathematical dependencies, optimization solutions, models and their graphical interpretation can be used when choosing the composition of the fine-grained, dispersed rein-forced concrete, which is the basis of the concrete canvas. The calculated data obtained are necessarily verified by conducting control batches with the determination of the properties of the samples obtained by standard methods.
R.S. POUDEL1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. BESSONOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.K. GUDKOV1, Teacher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.A. GORBUNOVA2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.D. MIHAYLIK2, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Demissi B.A. Application of statistical methods for solving problems of construction materials science. Nanotechnologies in Construction. 2020. Vol. 12. No. 6, pp. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
2. Zhukov A., Shokod’ko E. Mathematical methods for optimizing the technologies of building materials. VIII International Scientific Siberian Transport Forum. Trans Siberia 2019. Advances in Intelligent Systems and Computing. 2020. Vol. 1116, pp. 413–421. DOI: https://doi.org/10.1007/978-3-030-37919-3_40
3. Bessonov I., Zhukov A., Shokod’ko E., Chernov A. Optimization of the technology for the production of foam glass aggregate. TPACEE 2019, E3S Web of Conferences. 2020. Vol. 164. 14016. DOI: https://doi.org/10.1051/e3sconf/202016414016
4. Gudkov P., Kagan P., Pilipenko A., Zhukova E.Yu., Zinovieva E.A., Ushakov N.A. Usage of thermal isolation systems for low-rise buildings as a component of information models. E3S Web of Conferences. 01039. 2019. DOI: https://doi.org/10.1051/e3sconf/20199701039
5. Zhukov A., Bessonov I., Bobrova E., Medvedev A., Zinovieva E. Optimization of technology of special-purpose mineral wool products. E3S Web of Conferences, EMMFT-2020. 2020. Vol. 244. 04003. DOI: https://doi.org/10.1051/e3sconf/202124404003
6. Kodzoev M.-B., Isachenko S., Bobrova E., Efimov B., Bessonov I. Ceramic products and energy-efficient systems. XXIII International Scientific Conference on Advance in Civil Engineering: FORM-2020. 23–26 September 2020. Hanoi, Vietnam. DOI: 10.1088/1757-899X/869/3/032006
7. Pyataev E.R., Medvedev A.A., Poserenin A.I., Burtseva M.A., Mednikova E.A., Mukhametzyanov V.M. Theoretical principles of creation of cellular concrete with the use of secondary raw materials and dispersed reinforcement. IPICSE. Published online: 14 December 2018. DOI: https://doi.org/10.1051/matecconf/201825101012
8. Лесовик В.С. Строительные материалы. Настоящее и будущее // Вестник МГСУ. 2017. Т. 12. № 1 (100). С. 9–16. DOI: 10.22227/1997-0935.2017.1.9-16
8. Lesovik V.S. Construction materials. Present and future. Vestnik MGSU. 2017. Vol. 12. No. 1 (100), pp. 9–16. (In Russian).
9. Лесовик В.С., Попов Д.Ю., Глаголев Е.С. Текстиль-бетон – эффективный армированный композит будущего // Строительные материалы. 2017. № 3. С. 81–84.
9. Lesovik V.S., Popov D.Yu., Glagolev E.S. Textile-concrete-effective reinforced composite of the future. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, рр. 81–84. (In Russian).
10. Efimov B., Isachenko S., Kodzoev M.-B., Dosanova G., Bobrova E. Dispersed reinforcement in concrete technology. E3S Web of Conferences Published online: 09 August 2019 DOI: https://doi.org/10.1051/e3sconf/201911001032
11. Пухаренко Ю.В., Пантелеев Д.А., Морозов В.И., Магдеев У.Х. Прочность и деформативность фибробетона с применением аморфной металлической фибры // Academia. Архитектура и Строительство. 2016. № 1. С. 107–111.
11. Pukharenko Yu.V., Panteleev D.A., Morozov V.I., Magdeev U.Kh. Strength and deformability of fiber-reinforced concrete using amorphous metal fibers. Academia. Arkhitektura i stroitel’stvo. 2016. No. 1, pp. 107–111. (In Russian).
12. Scherer S., Michler H., Curbach M. Brücken aus Textilbeton. Handbuch Brücken: Entwerfen, Konstruieren, Berechnen, Bauen und Erhalten. 2014, рр. 118–129.
13. Hegger J., Goralksi C., Kulas C. Schlanke Fuβgängerbrücke aus Textilbeton – Sechsfeldrige Fuβgängerbrücke mit einer Gesamtlänge von 97 m. Beton-und Stahlbetonbau. 2011. Vol. 106. Heft 2, рр. 64–71. https://doi.org/10.1002/best.201000081
14. Schladitz F., Lorenz E., Jesse F., Curbach M. Verstärkung einer denkmalgeschätzten Tonnenschale mit Textilbeton. Beton-und Stahlbetonbau. 2009. Vol. 104. Heft 7, рр. 432–437. https://doi.org/10.1002/best.200908241
15. Gelbrich S. Organisch geformter Hybridwerkstoff aus textil-bewehrtem Beton und glasfaserverstrktem. Kunststoff. Leichter bauen – Zukunft formen. 2012. No. 7, р. 9.
16. Ehlig D., Schladitz F., Frenzel M., Curbach M. Textilbeton – Ausgeführte Projekte im überblick. Beton-und Stahlbetonbau. 2012. 107. No. 11, рр. 777–785. https://doi.org/10.1002/best.201200034
17. Pyataev E., Zhukov A., Vako K., Burtseva M., Mednikova E., Prusakova M., Izumova E. Effective polymer concrete on waste concrete production. E3S Web of Conferences. 2019. DOI: https://doi.org/10.1051/e3sconf/20199702032
18. Pyataev E.R., Pilipenko E.S., Burtseva M.A., Mednikova E.A., Zhukov A.D. Composite material based on recycled concrete. FORM 2019. E3S Web of Conferences 97. 02032. 2019. IOP Conf. Series: Materials Science and Engineering. 032015. 2018. doi:10.1088/1757-899X/365/3/032041
19. Efimov B., Isachenko S., Kodzoev M.-B., Dosanova G., Bobrova E. Dispersed reinforcement in concrete technology. E3S Web of Conferences. 2019. Vol. 110. DOI: https://doi.org/10.1051/e3sconf/201911001032

For citation: Poudel R.S., Bessonov I.V., Zhukov A.D., Gudkov P.K., Gorbunova E.A., Mihaylik E.D. Digital methods for optimizing textile concrete technology. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 20–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24


Print   Email