Volcanic Tuff as an Active Mineral Additive for Portland Cement

Number of journal: 6-2022
Autors:

Bessonov I.V.,
Zhukov A.D.,
Zhuk P.M.,
Demissi B.A.,
Govryakov I.S.,
Minaeva A.M.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-25-29
УДК: 666.94

 

AbstractAbout AuthorsReferences
The use of some rocks as a component and an active mineral additive in the composition of a hydraulic binder reduces the consumption of energy-intensive and expensive clinker and thereby reduces both the cost of the binder and the size of the “carbon footprint” during its production. An important criterion for the suitability of a rock is its activity: ability to react with cement clinker components, including pozzolan activity. The purpose of the research is to study the possibility of using finely ground tuff-scoria and ash from the burning of coffee husks as an active mineral additive as a component of a hydraulic binder. The criterion of suitability is the pozzolan activity of a complex additive, which is evaluated by various methods. The evaluation of pozzolan activity was carried out by the method of absorption by the addition of lime from lime mortar for 30 days, recommended by national standards. The evaluation of the effect of the coffee husk ash consumption on the pozzolan activity of the composite mineral additive was carried out using statistical methods and analytical optimization. The experiment was carried out in two stages: at the first, the optimal ash content in a complex additive was determined; at the second, the kinetics of CaO absorption was studied for 30 days. It was found that finely ground tuff-scoria absorbs up to 330–332 mg/g in 30 days, and depending on the ash content of the coffee husk, the absorption of a complex mineral additive increases to 341–343 mg/g. The express method showed that the activity coefficient of tuff scoria and the complex mineral supplement is in the range of 40–44%. Tuff-scoria, as well as a mineral composite additive based on it containing coffee husk ash, belong to the group of additives with medium pozzolan activity and can be used as part of mineral binders of hydraulic hardening. Composite binder can be used for the produce of fine-grained concrete for a wide range of functional purposes, including reinforced concrete textiles and concrete canvas.
I.V. BESSONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.M. ZHUK3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. DEMISSI2, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.S. GOVRYAKOV1,2, Engineer, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. MINAEVA2, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 Moscow Architectural Institute – MARKHI (11/4, Rozhdestvenka Street, building 1, sector 4, Moscow, 107031, Russian Federation)

1. Dhir R.K., Limbachiya M.C., McCarthy M.J., Chaipanich A. Evaluation of Portland limestone cements for use in concrete construction. Materials and Structures. 2007. Vol. 40. Iss. 5, pp. 459–473. DOI: 10.1617/s11527-006-9143-7
2. Танг Ван Лам, Нго Суан Хунг, Ву Ким Зиен, Булгаков Б.И., Баженова С.И., Александрова О.В. Геополимерный бетон с использованием многотоннажных техногенных отходов // Строительство: наука и образование. 2021. № 2. С. 17–37. DOI: 10.22227/2305-5502.2021.2.2
2. Tang Van Lam, Ngo Suan Khung, Vu Kim Zien, Bulgakov B.I., Bazhenova S.I., Aleksandrova O.V. Geopolymer concrete using multi-tonnage technogenic waste. Stroitelstvo, nauka, obrazovanie. 2021. Vol. 11. No. 2, pp. 17–37. (In Russian). DOI: 10.22227/2305-5502.2021.2.2
3. Ramachandran V.S. (ed) Concrete Admixtures Handbook – Properties, Science and Technology. 2-nd ed. William Andrew Publishing, New York. 1995. 1066 p.
4. Seiichi Hoshino, Kazuo Yamada, Hiroshi Hirao, XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. Journal of Advanced Concrete Technology. 2006. Vol. 4. No. 3, pp. 357–367. DOI: 10.3151/JACT.4.357
5. Mateusz Radlinski, Jan Olek. Investigation into the synergistic effects in ternary cementitious systems containing Portland cement, fly ash and silica fume. Cement&Concrete Composites. 2012. Vol. 34, рp. 451–459 https://doi.org/10.1016/j.cemconcomp.2011.11.014
6. Ву Ким Зиен, Баженова С.И., Танг Ван Лам. Влияние минеральных добавок, летучей золы, доменного шлака на механические свойства пенобетона // Строительство и реконструкция. 2020. № 2 (88). С. 25–34. DOI: https://doi.org/10.33979/2073-7416-2020-88-2-25-34
6. Vu Kim Zien, Bazhenova S.I., Tang Van Lam. Influence of mineral additives, fly ash, blast furnace slag on the mechanical properties of foam concrete. Stroitel’stvo i rekonstruktsiya. 2020. No. 2 (88), pp. 25–34. DOI: https://doi.org/10.33979/2073-7416-2020-88-2-25-34
7. Vitruvius M. Ten books on architecture. Ingrid Rowland T.N. Howe. 1999, 2014. Cambridge University Press. 324 p. DOI: 10.1017/CBO9780511840951
8. Zhukov A.D., Bessonov I.V., Demissi Bekele A., Zinoveva E.A. Analytical optimization of the dispersion-reinforced fine-grained concrete composition. CATPID 2020. IOP Conf. Series: Materials Science and Engineering. 1083. (2021) 012037. doi:10.1088/1757-899X/1083/1/012037
9. Рахимов Р.З., Рахимова Н.Р. Строительство и минеральные вяжущие прошлого, настоящего и будущего // Строительные материалы. 2013. № 1. С. 124–128.
9. Rakhimov R.Z., Rakhimova N.R. Construction and mineral binders of the past, present and future. Stroitel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 124–128. (In Russian).
10. Sigh N.D., Middendort B. Chemistry of blended cements. Silica fume, metacaolin, reactive ash from agricultural wastes, inert materials and non-Portland blended cements. Cement International. 2009. Vol. 7. No. 6, рр. 78–92.
11. Fernandez R., Martirena F., Scrivener K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research. 2001. Vol. 41 (1), рр. 113–122. https://doi.org/10.1016/j.cemconres.2010.09.013
12. Shannag M., Charif A., Naser S., Faisal F., Karim A. Structural behavior of lightweight concrete made with scoria aggregates and mineral admixtures. International Conference World Academy of Science, Engineering and Technology. London, UK. 2014. Vol. 8, рр. 105–109. DOI: 10.13140/2.1.4582.1124
13. Рахимов Р.З., Рахимова Н.Р., Гайфуллин А.Р., Стоянов О.В. Влияние добавки в портландцемент прокаленной и молотой полиминеральной каолинитсодержащей глины на прочность цементного камня // Вестник Казанского технологического университета. 2015. № 5. С. 80–83.
13. Rakhimov R.Z., Rakhimova N.R., Gayfullin A.R., Stoyanov O.V. The effect of the addition of calcined and young polymineral kaolinite-containing clay to Portland cement on the strength of cement stone. Vestnik of Kazan Technological University. 2015. Vol. 18. No. 5, pp. 80–83.
14. Bessonov I.V., Ushakov A.Yu., Zhukov A.D., Vidiborenko V.G. Assessment of light concrete frost resistance. International Science and Technology Conference (FarEastСon 2020). IOP Conf. Series: Materials Science and Engineering. 1079 (2021) 022078. doi:10.1088/1757-899X/1079/2/022078
15. Tchamdjou W.H.J., Grigoletto S., Michel F., Courard L., Abidi M.L., Cherradi T. An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar. Case Studies in Construction Materials. 2017. No. 7, pp. 191–206. https://doi.org/10.1016/j.cscm.2017.07.005
16. Николаенко Е.А. Исследования пуццолановых портландцементов на основе эффузивных горных пород // Известия вузов. Инвестиции. Строительство. Недвижимость. 2014. № 1 (6). С. 66–73.
16. Nikolaenko E.A. Studies of pozzolan Portland cement based on effusive rocks. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2014. No. 1, pp. 69–73. (In Russian).
17. Бутт Ю.М., Сычев М.М., Тимашев В.В. Химическая технология вяжущих материалов. М.: Высшая школа, 1980. 472 с.
17. Butt Yu.M., Sychev M.M., Timashev V.V. Khimicheskaya tekhnologiya vyazhushchikh materialov [Chemical technology of binders]. Moscow: Vysshaya shkola. 1980. 472 p.
18. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Медведев А.А., Демисси Б.А. Применение статистических методов для решения задач строительного материаловедения // Нанотехнологии в строительстве: Науч-ный интернет-журнал. 2020. Т. 12. №. 6. С. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
18. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Demissi B.A. Application of statistical methods for solving problems of building materials science. Nanotekhnologii v stroitel’stve: nauchnyi internet zhurnal. 2020. Vol. 12. No. 6, pp. 313–319. (In Russian). DOI: 10.15828/2075-8545-2020-12-6-313-319
19. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Горбунова Э.А., Демисси Б.А. Материалы на основе модифицированного гипса для фасадных систем // Нанотехнологии в строительстве: Научный интернет-журнал. 2021. Т. 13. № 3. С. 144–149.
19. Zhukov A.D., Bessonov I.V., Bobrova E.Yu., Gorbunova E.A., Demissie B.A. Materials based on modified gypsum for facade systems. Nanotekhnologii v stroitel’stve: nauchnyi internet zhurnal. 2021. Vol. 13 (3), pp. 144–149. (In Russian). DOI: 10.15828/2075-8545-2021-13-3-144-149
20. Потапова Е.Н., Манушина А.С., Зырянов М.С., Урбанов А.В. Методы определения пуццолановой активности минеральных добавок // Строительные материалы: оборудование, технологии XXI века. 2017. № 7–8. С. 29–33.
20. Potapova E.N., Manushina A.S., Zyryanov M.S., Rubanov A.V. Methods for determining the pozzolan activity of mineral additives. Stroitel’nye materialy: oborudovanie, tekhnologii XXI veka. 2017. No. 7–8, pp. 29–33. (In Russian).

For citation: Bessonov I.V., Zhukov A.D., Zhuk P.M., Demissi B.A., Govryakov I.S., Minaeva A.M. Volcanic tuff as an active mineral additive for portland cement. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 25–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-25-29


Print   Email