Changing the Deformation Modules of the Coupling Joints of Reinforcement During Cyclic Loading

Number of journal: 6-2022
Autors:

Karpenko S.N.,
Chepizubov I.G.,
Moiseenko G.A.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-4-7
УДК: 624.012.45

 

AbstractAbout AuthorsReferences
Currently, the practice of calculating and designing reinforced concrete structures for two groups of limit states is increasingly beginning to include the diagrammatic method, which is considered the most accurate. This method should be based on real diagrams of reinforcement and concrete deformation when calculating reinforced concrete structures. The above applies, among other things, to the calculation of reinforced concrete elements in the places of installation of coupling joints of reinforcement. However, this issue requires additional research both from an experimental and theoretical point of view, in particular, it is necessary to identify the effect of cyclic loading on the deformation diagrams of the reinforcement. In addition, the issue of constructing a universal dependence for deformation diagrams of various classes of reinforcement and its coupling joints in secant modules requires research. This type of dependence seems to be the most acceptable for the diagram calculation method. This article discusses the change in the deformation modules of coupling joints of reinforcement and solid reinforcement rods under medium cycle loading (up to 100,000 cycles) in the linear stage of deformation of class A500 reinforcement in the stress range from 150 MPa to 300 MPa. The experimental studies conducted at the Research Institute of Construction Physics are analyzed. The development of a diagrammatic methodology for calculating coupling joints is proposed, taking into account the changes in their deformation modules.
S.N. KARPENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.G. CHEPIZUBOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.A. MOISEENKO, Lead Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Building Physics Russian Academy Architecture and Construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Liang J., Nie X., Masud M., Li J., Mo Y. L. A study on the simulation method for fatigue damage behavior of reinforced concrete structures. Engineering Structures. 2017. No. 150, pp. 25–38.
2. Luo X., Tan Z., Chen Y. F., Wang Y. Comparative study on fatigue behavior between unbounded prestressed and ordinary reinforced reactive powder concrete beams. Materialpruefung. Materials Testing. 2019. No. 4 (61), pp. 323–328.
3. Mirsayapov Ilshat T. Detection of stress concentration regions in cyclic loading by the heat monitoring method. Mechanics of Solids. 2010. No. 1 (45), pp. 133–139.
4. Song L., Fan Z., Hou J. Experimental and analytical investigation of the fatigue flexural behavior of corroded reinforced concrete beams. International Journal of Concrete Structures and Materials. 2019. No. 1 (13).
5. Zhang G., Zhang Y., Zhou Y. Fatigue tests of concrete slabs reinforced with stainless steel bars. Advances in Materials Science and Engineering. 2018. No. 1.
6. Мирсаяпов И.Т. Усталостное сопротивление изгибаемых элементов действию поперечных сил при средних пролетах среза // Бетон и железобетон. 2006. № 3. С. 23–25.
6. Mirsayapov I.T. Fatigue resistance of bending elements to the action of transverse forces at average cross-section spans. Beton i Zhelezobeton [Concrete and reinforced concrete]. 2006. No. 3, pp. 23–25. (In Russian).
7. Мирсаяпов И.Т., Тамразян А.Г. К разработке научных основ теории выносливости железобетонных конструкций // Промышленное и гражданское строительство. 2017. № 1. С. 50–56.
7. Mirsayapov I.T., Tamrazyan A.G. On develop the scientific basis of the theory of endurance of reinforced concrete structures. Promishlennoye i grajdanskoye stroitelstvo. 2017. No. 1, pp. 50–56. (In Russian).
8. Mirsayapov I.T. A study of stress concentration zones under cyclic loading by thermal imaging method. Strength of Materials. 2009. No. 3 (41), pp. 339–344.
9. Zhang C., Duan P., Zheng B., Li M. Numerical analysis of diaphragm fatigue of reinforced concrete simply supported T-beams. Journal of Engineering Science and Technology Review. 2018. No. 5 (11), pp. 193–201.
10. Ерышев В.А., Тошин Д.С. Диаграмма деформирования бетона при немногократных повторных нагружениях // Известия вузов. Строительство и архитектура. 2005. № 10. С. 109–114.
10. Yeryshev V.A., Toshin D.S. Diagram of concrete deformation under multiple repeated loadings. Izvestiya vuzov. Stroitel’stvo i Arhitektura. 2005. No. 10, pp. 109–114. (In Russian).
11. Карпенко Н.И., Ерышев В.А., Латышева Е.В. К построению диаграмм деформирования бетона повторными нагрузками сжатия при постоянных уровнях напряжений // Строительные материалы. 2013. № 6. С. 48–52.
11. Karpenko N.I., Yeryshev V.A., Latysheva E.V. On the construction of diagrams of concrete deformation by repeated compression loads at constant stress levels. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 48–52. (In Russian).
12. Карпенко С.Н., Чепизубов И.Г., Шифрин К.С. О результатах проверки прочности муфтовых соединений арматуры на резьбе по диаграммной методике // Промышленное и гражданское строительство. 2008. № 11. С. 44–46.
12. Karpenko S.N., Chepizubov I.G., Shifrin K.S. On the results of checking the strength of the coupling joints of reinforcement on the thread according to the diagram method. Promyshlennoe i grazhdanskoe stroitel’stvo. 2008. No. 11, pp. 44–46. (In Russian).
13. Карпенко С.Н., Чепизубов И.Г., Андрианов А.А. Определение деформативности муфтовых соединений арматуры при среднецикловом нагружении (до 100000 циклов). Фундаментальные исследования РААСН по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской Федерации в 2012 году: Сборник научных трудов. Волгоград, 2013. С. 361–363.
13. Karpenko S.N., Chepizubov I.G., Andrianov A.A. Determination of deformability of the coupling joints of reinforcement under medium cycle loading (up to 100,000 cycles). Fundamental research of the RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2012. Collection of scientific papers. Volgograd. 2013, pp. 361–363. (In Russian).
14. Карпенко С.Н., Чепизубов И.Г. Определение деформативности и прочности муфтовых Российской академии архитектуры и строительных наук. 2009. № 3. С. 147–151.
14. Karpenko S.N., Chepizubov I.G. Determination of deformability and strength of the coupling joints of reinforcement under cyclic loading. Bulletin of the Department of Construction Sciences of the Russian Academy of Architecture and Construction Sciences. 2009. No. 3, pp. 147–151. (In Russian).

For citation: Karpenko S.N., Chepizubov I.G., Moiseenko G.A. Changing the deformation modules of the coupling joints of reinforcement during cyclic loading. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 4–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-4-7


Print   Email