Evaluation of Elastic Modulus of Mixtures of Polyvinyl Chloride with a Number of Synthetic Polymers

Number of journal: 5-2022
Autors:

Matseevich T.A.,
Zhdanova T.V.,
Askadskii A.A.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-52-57
УДК: 691.175.5/8

 

AbstractAbout AuthorsReferences
The method for predicting the elastic modulus of materials based on mixtures of compatible and incompatible polymers is described. These materials contain fine dispersions of one of the polymers in a polymer matrix of another polymer. The dispersion of a solid amorphous polymer of a certain chemical structure in a solid amorphous matrix of a polymer of a different chemical structure is analyzed. Moduli of elasticity under uniaxial tension, shear moduli and bulk moduli are analyzed. The dependences of the elas tic moduli on the mole, weight and volume fractions are determined by the van der Waals volume of the components, the molecular weight of the repeating units, and the density of the components. The dependences of the elastic modulus of mixtures of polyvinyl chloride with a number of polymers, including aromatic polyesters, polyether ketones, polysulfone, and polycarbonate, have been plotted. The greatest increase in the modulus of elasticity from 2400 to 3980 MPa under uniaxial tension is given by anilinein polypyromellitimide.
T.A. MATSEEVICH1, Doctor of Sciences (physics and mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.V. ZHDANOVA1 (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. ASKADSKII1,2, Doctor of Sciences (chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federation)

1. Buthaina A. Ibrahim, Karrer M. Kadum. Influence of Polymer Blending on Mechanical and Thermal Properties. Modern Applied Science. 2010. Vol. 4. No. 9, pp. 157–161.
2. Saxe P., Freeman C., Rigby D. Mechanical Properties of Glassy Polymer Blends and Thermosets. Materials Design, Inc., Angel Fire, NM and San Diego, CA. LAMMPS Users’ Workshop and Symposium, Albuquerque. NM, August 8, 2013.
3. Doi M., Ohta T. Dynamics and rheology of complex interfaces. J. Chem. Phys. 1991. Vol. 95, pp. 1242–1248.
4. Anastasiadis S.H., Gancarz I., Koberstein J.T. Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules. 1988. Vol. 21 (10), pp. 2980–2987.
5. Biresaw G., Carriere C., Sammler R. Effect of temperature and molecular weight on the interfacial tension of PS/ PDMS blends. Rheol. Acta. 2003. Vol. 42. No. 1–2, pp. 142–147.
6. Ellingson P.C., Strand D.A., Cohen A., Sammler R.L., Carriere C.J. Molecular Weight Dependence of Polystyrene / Poly(Methyl Methacrylate) Interfacial Tension Probed by Imbedded-Fiber Retraction. Macromolecules. 1994. Vol. 27. No. 6, pp. 1643–1647.
7. Gramespacher H., Meissner J. Interfacial tension between polymer melts measured by shear oscillations of their blends. J. Rheol. 1992. Vol. 36. No. 6, pp. 1127–1141.
8. Lacroix C., Bousmina M., Carreau P.J., Favis B.D., Michel A. Properties of PETG/EVA Blends: 1. Viscoelastic, Morphological and Interfacial Properties. Polymer. 1996. Vol. 37. No. 14, pp. 2939–2947.
9. Li R., Yu W., Zhou C. Rheological characterization of droplet-matrix versus co-continous morphology. J. Macromol. Sci. Series B. Physics. 2006. Vol. 45, No. 5, pp. 889–898.
10. Chopra D., Kontopoulou M., Vlassopoulos D., Hatzikiriakos S. Effect of Maleic Anhydride Content on the Rheology and Phase behavior of Poly(styrene-co-maleic anhydride)/Poly(methyl methacrylate) blends. G. Rheol. Acta. 2001. Vol. 41, pp. 10–24.
11. Guenther G.K., Baird D.G. An evaluation of the Doi-Ohta theory for an immiscible polymer blend. J. Rheol. 1996. Vol. 40. No. 1, pp. 1–20.
12. Hashimoto T., Takenaka M., Jinnai H. Scattering Studies of Self-assembling Processes of Polymer Blends in Spinodal Decomposition. J. Appl. Crystallogr. 1991. Vol. 24, pp. 457–466.
13. Аскадский А.А., Попова М.Н., Кондращенко В.И. Физико-химия полимерных материалов и методы их исследования: Учебное издание / Под общ. ред. А.А. Аскадского. М.: АСВ, 2015. 408 с.
13. Askadskiy A.A., Popova M.N., Kondrashchenko V.I. Fiziko-khimiya polimernykh materialov i metody ikh issledovaniya [Physics and chemistry of polymer materials and methods of their research] : Uchebnoe izdanie / Pod obshch. red. A.A. Askadskogo. Moscow: ASV. 2015. 408 p.
14. Bicerano J. Prediction of Polymer Properties. New York: Marcel Dekker, Inc., 1996. 528 p.
15. Аскадский А.А., Ван С., Курская Е.А., Кондращенко В.И., Жданова Т.В., Мацеевич Т.А. Возможности предсказания коэффициента термического расширения материалов на основе поливинилхлорида // Строительные материалы. 2019. № 11. С. 57–65. DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65
15. Askadskiy A.A., Van S., Kurskaya E.A., Kondra-shchenko V.I., Zhdanova T.V., Matseevich T.A. Possibilities of predicting the coefficient of thermal expansion of polyvinylchloride-based materials lorida. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 57–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65

For citation: Matseevich T.A., Zhdanova T.V., Askadskii A.A. Evaluation of elastic modulus of mixtures of polyvinyl chloride with a number of synthetic polymers. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 52–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-52-57


Print   Email