Structure and Properties of Nanodispersed Silica Synthesized by the Sol-Gel Method

Number of journal: 12-2022
Autors:

Nelubova V.V.,
Kuzmin E.O.,
Strokova V.V.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-38-44
УДК: 666.965:541.182

 

AbstractAbout AuthorsReferences
It is substantiated that among the whole variety of pozzolanic additives of various origin and composition, one of the most effective is nanodispersed silica. This is due to its high activity and the possibility of using it in small dosages. At the same time, the simplest method of its teaching in terms of instrumentation is sol-gel synthesis. The effectiveness of the author’s modernized production of aqueous solutions of silica nanoparticles has been proven. Structural and topological parameters (shape and size of individual particles and their agglomerates) of nanodispersed silica synthesized by the modernized sol-gel method are shown. Comparison of industrially produced silica with synthesized was made. Differences in the structure of powders obtained by various methods are substantiated, taking into account the type of surfactant. The physicochemical features of nanodispersed silica synthesized using various surfactants are shown. The principal possibility of obtaining structurally stable nanodispersed silica with high dispersity, ultra-small sizes of individual particles and their regular shape during the formation of a powdery substance with high activity is shown. It is substantiated that the selection of stabilizers and additional components of the raw mixture makes it possible to control the synthesis of a substance with the formation of the required structural parameters (morphology and particle size) and physicochemical properties.
V.V. NELUBOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.O. KUZMIN, Engineer, postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. STROKOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
2. Fedosov S.V., Ibragimov A.M., Red’kina A.S., Nesterov S.A. Determination of technological parameters of mechanomagnetic activation of water systems with a plasticizing additive. Stroitel’nye Materialy [Construction Materials]. 2010. No. 3, pp. 49–51. (In Russian).
3. Politaeva A.I., Eliseeva N.I., Jakovlev G.I., Pervushin G.N., Gavranek I., Mihajlova O.Ju. The role of microsilica in the structure formation of the cement matrix and the formation of efflorescence in vibropressed products. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 49–55. (In Russian).
4. Panina A.A., Kornilov A.V., Lygina T.Z., Permjakov E.N. Activated dispersed mineral fillers for Portland cement. Stroitel’nye Materialy [Construction Materials]. 2013. No. 12, pp. 74–75. (In Russian).
5. Stepanova V.F., Rozental’ N.K., Chekhnii G.V., Baev S.M. Determination of the corrosion resistance of shotcrete as a protective coating for concrete and reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 69–72. (In Russian).
6. Rusina V.V., Korda E.V., Lvova S.A. Corrosion resistance of fine-grained concretes based on technogenic raw materials. Stroitel’nye Materialy [Construction Materials]. 2011. No. 8, pp. 29–31. (In Russian).
7. Chaika T.V. Effect of tungsten carbide nanopowder agglomerates on the properties of cement. Vestnik of the Belgorod State Technological University named after V.G. Shukhova. 2021. No. 7, pp. 8–16. (In Russian).
8. Netsvet D.D., Nelyubova V.V., Strokova V.V. Coposite binder with mineral additives for non-autoclaved foam concrete. Vestnik of the Belgorod State Technological University named after V.G. Shukhova. 2019. No. 4, pp. 122–131. (In Russian).
9. Bondarenko D.O. Selection and analysis of raw materials for the protective and decorative layer of a composite material. Vestnik of the Belgorod State Technological University named after V.G. Shukhova. 2021. No. 12, pp. 27–33. (In Russian).
10. Urkhanova L.A., Dorzhieva E.V., Gonchikova E.V., Yakovlev A.P. Synthesis of a colloid additive based on aluminosilicate rocks for cement stone modification. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 50–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-50-56
11. Urkhanova L.A., Rozina V.E. High-strength concrete using fly ash and microsilica. Vestnik of the Irkutsk State Technical University. 2011. No. 10 (57), pp. 97–100. (In Russian).
12. Potapov V.V., Gorev D.S. Comparative results of increasing the strength of concrete by introducing nanosilica and microsilica. Sovremennye naukoemkie tekhnologii. 2018. No. 9, pp. 98–102. (In Russian).
13. Singh M.R., Lipson R.H. Transport and optical properties of nanomaterials. Proc. of the Intern. Conf. Ser: AIP Conf. Proc./Mater. Phys. and Appl. Ser. 2009. P. 1147.
14. Potapov V.V. Application of membrane methods for purification of hydrothermal solutions from silica. Prirodoobustroistvo. 2008. No. 3, pp. 49–58. (In Russian).
15. Bardakhanov S.P., Korchagin A.I., Kuksanov N.K. Obtaining nanopowders by evaporation of initial substances on an electron accelerator at atmospheric pressure. Doklady Akademii nauk. 2006. Vol. 409. No. 3, pp. 320–323. (In Russian).
16. Ivanchik N.N. Evaluation of the use of silicon waste processing products as ultrafine activating fluxes for arc welding. Vestnik of the Irkutsk State Technical University. 2016. No. 12 (119), pp. 165–172. (In Russian).
17. Boguslavsky L.Z. Electric explosion of conductors for obtaining nanosized carbides and deposition of functional nanocoatings. Elektronnaya obrabotka materialov. 2019. Vol. 55. No. 5, pp. 10–23. (In Russian).
18. Potapov V.V. and others. Nanosilica: increasing the strength of concrete. Nanoindustriya. 2013. No. 3, pp. 40–49. (In Russian).
19. Patent RF 2701911. Sposob polucheniya gidrozolya monodispersnogo nanokremnezema dlya izgotovleniya betona [Method for producing monodisperse nanosilica hydrosol for concrete production]. Baskakov P.S., Strokova V.V., Kuzmin E.O. Declared 20.03.2019. Published 02.10.2019. Bulletin No. 28. (In Russian).
20. Shangina N.N. On the effect of surface properties of components on the rheological properties of structured disperse systems. Resursosberegayushchie tekhnologii i upravlenie kachestvom v proizvodstve stroitel’nykh materialov, izdelii i konstruktsii. 2004, pp. 24–29. (In Russian).

For citation: Nelubova V.V., Kuzmin E.O., Strokova V.V. Structure and properties of nanodispersed silica synthesized by the sol-gel method. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 38–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-38-44


Print   Email