Integrated Approach in Concrete Science

Number of journal: 4-2022
Autors:

Kondrashchenko V.I.

DOI: https://doi.org/10.31659/0585-430X-2022-801-4-54-63
УДК: 693

 

AbstractAbout AuthorsReferences
An integrated approach to solving one of the priority problems of building materials science is proposed – appointment of recipe-technological parameters for obtaining materials, taking into account a set of requirements for both the properties of the concrete mix and concrete (traditional differentiated approach), and the properties of the structure for which this material is intended (proposed integrated approach). A specific example shows the difference in the results of differentiated and integrated approaches when assigning the optimal composition of only slag-pumice concrete and taking into account its work in a reinforced concrete structure. The most effectively integrated approach can be implemented on the basis of one of the methods of computer materials science – the method of structural simulation.
V.I. KONDRASHCHENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Russian University of Transport (Вuil. 9, 9, Obraztsova Street, Moscow, 127994, Russian Federation)

1. Skramtaev B.G., Shubenkin P.F., Bazhenov Ju.M. Sposoby opredelenija sostava betona razlichnyh vidov [Methods for determination of concrete composition of different types]. Moscow. Stroyizdat. 1966. 159 p.
2. Bazhenov Ju.M. Sposoby opredelenija sostava betona razlichnyh vidov [Methods for determination of concrete composition of different types]. Moscow. Stroyizdat. 1975. 272 p.
3. Kirienko I.A. Raschet sostava vysokoprochnyh i obychnyh betonov i rastvorov [Calculation of the composition of high-strength and conventional concretes and mortars]. Kiev. Gosstroyizdat. 1961. 145 p.
4. Soroker V.I. Proizvodstvennye raschety sostava betona [Production calculations of concrete composition]. Moscow. Stroyizdat. 1933. 235 p.
5. Sizov V.P. Racional’nyj podbor sostavov tjazhelogo betona [Rational selection of heavy concrete compositions]. Moscow. Stroyizdat. 1995. 174 p.
6. Shmigal’skij V.N. Optimizacija sostavov cementobetonov [Optimization of cement concrete compositions]. Kishinev: Shtiinca. 1981. 123 p.
7. Frenkel’ I.M. Osnovy tehnologii tjazhelogo betona [Basics of heavy concrete technology]. Moscow. Stroyizdat. 1966. 223 p.
8. Rukovodstvo po podboru sostavov tyazhelogo beton [Heavy concrete composition selection guide]. Moscow. Stroyizdat. 1979. 102 p.
9. Rukovodstvo po podboru sostavov konstruktivnykh legkikh betonov na poristykh zapolnitelyakh [Guidelines for selection of structural light concrete compositions on porous aggregates]. Moscow. Stroyizdat. 1974. 54 p.
10. Ryb’ev I.A., Sulejmanov F.G. Optimizacija sostava betona na osnove teorii ISK s primeneniem JeVM [Optimization of concrete composition based on ISS theory using computers]. Moscow. VZISI. 1989. 110 p.
11. Shein V.I. Fiziko-himicheskie osnovy optimizacii tehnologii betona. Pod red Mchedlova-Petrosyana. [Physical and chemical bases of concrete technology optimization. Edited by O.P. Mchedlov-Petrosyan]. Moscow. Stroyizdat. 1977. 272 p.
12. Punagin V.M., Savin L.S., Hasanov B.V., Shishkin O.O. Fiziko-analiticheskiy metod proektuvannja sostava betonа [Physical and analytical method of concrete composition design]. Dnepropetrovsk. NVO “Zakhist”. 1994. 154 p.
13. Babushkin V.I. Fiziko-himicheskie processy korrozii betona i zhelezobetona [Physical and chemical processes of concrete and reinforced concrete corrosion]. Moscow. Stroyizdat. 1968. 187 p.
14. Zazimko V.G. Optimizacija svojstv stroitel’nyh materialov [Optimization of building materials properties]. Moscow. Transport. 1981. 103 p.
15. Gusev B.V. Stress-strain state of a polydisperse composite material, such as cement concrete. Proceedings of the International Scientific and Practical Conference: Science and technology of silicate materials – the present and the future. Vol. 1. Moscow. Mendeleev University. 2003, pp. 71–91. (In Russian).
16. Chernyshov E.M., D’jachenko E.I., Makeev A.I. Heterogeneity of structure and regularity of formation of internal stress field during force loading of construction composites. Vestnik RAACS. 2000. No. 3, pp. 184–193. (In Russian).
17. Bazhenov Ju.M., Voznesenskiy V.A. Perspektivy primenenija matematicheskih metodov v tehnologii sbornogo zhelezobetona [Prospects for application of mathematical methods in precast concrete technology]. Moscow. Stroyizdat. 1974. 192 p.
18. Dvorkin L.I., Shamban I.B. Mnogofaktornoe prognozirovanie svojstv i proektirovanie sostavov betona [Multivariate property prediction and concrete composition design]. Moscow. Stroyizdat. 1992. 132 p.
19. Lyashenko T.V. Fields of properties of building materials (concept, analysis, optimization). Diss… Doctor of Sciences (Engineering). Odessa. 2003. 185 p. (In Russian).
20. Voznesenskiy V.A. Statisticheskie metody planirovanija jeksperimenta v tehniko-jekonomicheskih issledovanijah [Statistical methods for experimental planning in feasibility studies]. Moscow. Finansy i statistika. 1981. 263 p.
21. Dvorkin L.I. Optimal’noe proektirovanie sostavov betona [Optimal design of concrete compositions]. L’vov. Vishha shkola. 1981. 159 p.
22. Dvorkin O.L. Proektirovanie sostavov betona (osnovy teorii i metodologii) [Concrete composition design (basis of theory and methodology)]. Rovno: UDUVGP. 2003. 266 p.
23. Fajner M.Sh. Vvedenie v matematicheskoe modelirovanie tehnologii betona [Introduction to mathematical modeling of concrete technology]. L’vov. Svit. 1993. 240 p.
24. Stork Ju. Teorija sostava betonnoj smesi [Concrete mix composition theory]. Leningrad. Stroyizdat. 1971. 238 p.
25. Mironov S.A. Teorija i metody zimnego betonirovanija [Theory and methods of winter concreting]. Moscow. Stroyizdat. 1975. 700 p.
26. Punagin V.M., Pshinko O.M., Rudenko N.M. Assignment of hydraulic concrete warehouses. Dnipropetrovsk. Art-Press. 1998. 213 p. (In Ukrainian).
27. Sovetov B.Ja., Jakovlev S.A. Modelirovanie sistem [Systems Modeling]. Moscow. Vysshaja shkola. 1998. 319 p.
28. Prastacos G., Soderquist K., Spanos Y., Wassenhove L. An integrated framework for managing change in the new competitive landscape. European Management Journal. 2002. Vol. 20. Iss. 1, pp. 55–71. https://doi.org/10.1016/S0263-2373(01)00114-1
29. Gryzlov V.S., Demidov S.V. Information-physical aspects of macrostructure formation of concrete. Izvtstiya vuzov. Stroitel’stvo. 2000. No. 7–8, pp. 39–42. (In Russian).
30. Bondarenko V.M., Ivahnjuk V.A., Kolchunov V.I., Jur’ev A.G. Optimization of the material of construction. Vestnik RAACS. 2000. No. 3, pp. 23–25. (In Russian).
31. Kondrashhenko V.I. Primenenie metodov optimizacii sostavov betona s cel’ju povyshenija jeffektivnosti zhelezobetonnyh izdelij [Application of methods for optimizing concrete compositions in order to increase the efficiency of reinforced concrete products]. Harkov. HIIT. 1990. 189 p.
32. L’vovskij E.N., Bordejanu G.V. Jeksperimental’no-statisticheskie issledovanija deformacij polzuchesti zavodskogo betona s postroeniem matematicheskih modelej vtorogo porjadka dlja ih vychislenija i prognozirovanija. V kn.: Prochnost’, deformativnost’ i ustojchivost’ stroitel’nyh konstrukcij [Experimental-statistical studies of creep deformations of factory concrete with the construction of mathematical models of the second order for their calculation and prediction. In the book: Strength, deformability and stability of building structures]. Kishinev. Shtiinca. 1977, pp. 3–11.
33. Hassan A., Jones S. Non-destructive testing of ultra high performance fibre reinforced concrete (UHPFRC): A feasibility study for using ultrasonic and resonant frequency testing techniques. Construction and Building Materials. 2012. Vol. 35, pp. 361–367. DOI:10.1016/j.conbuildmat.2012.04.047
34. Kim K.Y., Yun T.S., Choo J., Kang D.H., Shin H.S. Determination of air-void parameters of hardened cement-based materials using X-ray computed tomography. Construction and Building Materials. 2012. Vol. 37, pp. 93–101. https://doi.org/10.1016/j.conbuildmat.2012.07.012
35. Łazniewska-Piekarczyk B. The type of air-entraining and viscosity modifying admixtures and porosity and frost durability of high performance self-compacting concrete. Construction and Building Materials. 2013. Vol. 40, pp. 659–671. DOI: 10.1016/j.conbuildmat.2012.11.032
36. Piradov K.A., Mamaev T.L., Kozhabekov T.A., Marchenko S.M. Physical-mechanical, power, energy and structure-forming parameters of concrete. Beton i zhelezobeton. 2002. No. 2, pp. 10–12. (In Russian).
37. Krakovskiy M.B. Methods for optimizing reinforced concrete structures based on the principle of separation of parameters. Abstract diss… Doctor of Sciences (Engineering). Moscow. NIIZhB. 1980. 49 p.
38. Rykov A.S. Poiskovaja optimizacija. Metody deformiruemyh konfiguracij [Search engine optimization. Deformable configuration methods]. Moscow: Fizmatlit. 1993. 216 p. (pp. 146–153).
39. Ljashenko T.V., Voznesenskij V.A. Metodologija recepturno-tehnologicheskih polej v komp’juternom stroitel’nom materialovedenii [Methodology of recipe-technological fields in computer building materials science]. Odessa. Asroprint. 2017. 168 p.
40. Kondrashhenko V.I. Tehnologija i svojstva vysokoprochnogo shlakopemzobetona [Technology and properties of high-strength slag-pumice concrete]. Abstract diss… Candidate of Sciences (Engineering). Moscow. 1982. 25 p.
41. Kondrashhenko V.I. An integrated approach to optimizing the composition of materials for building structures. Proceedings of the International Scientific and Practical Conference: Science and technology of silicate materials – the present and the future. Moscow. Mendeleev University. 2003. Vol. V, pp. 123–128. (In Russian).
42. Bondarenko V.M., Ivahnjuk V.A., Kolchunov V.I., Jur’ev A.G. Optimization of materials of construction. Vestnik of the department of building sciences RAACS. 2000. Iss.  3, pp. 23–25. (In Russian).
43. Kondrashhenko V.I. Optimization of compositions and technological parameters for obtaining bar type products by methods of computer material science]. Diss… Doctor of Sciences (Engineering). Moscow. 2005. 551 p. (In Russian).
44. Zajcev Ju.V. Modelirovanie deformacij i prochnosti betona metodami mehaniki razrushenija [Modeling of deformations and strength of concrete by methods of fracture mechanics]. Moscow: Stroyizdat. 1982. 196 p.
45. Bazhenov Ju.M., Vorob’ev V.A., Iljuhin A.V. Computer materials science of building composite materials. Status and development prospects. Izvestiya vuzov. Stroitel’stvo. 1999. No. 11, pp. 25–28. (In Russian).
46. Askadskij A.A., Kondrashhenko V.I. Komp’juternoe materialovedenie polimerov. Vol. 1. Atomno-molekuljarnyj uroven’ [Computer materials science of polymers. Vol. 1. Atomic-molecular level]. Moscow. Nauchnyj mir. 1999. 544 p.

For citation: Kondrashchenko V.I. Integrated approach in concrete science. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 54–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-54-63


Print   Email