Log in

Geopolymer Binder on the Basis of Expanded Clay Dust for Injection Mixtures in Geotechnical Construction

Number of journal: 5-2021
Autors:

Knyazeva S.A.,
Yakovlev G.I.,
Harchenko I.Ya.,
Saidova Z.S.,
Alexandrov A.M.,
Pudov I.A.,
Stevens A.E.,
Babaev A.I.,
Semyonova S.N.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-63-68
УДК: 691.342

 

AbstractAbout AuthorsReferences
The production of Portland cement is associated with a high consumption of mineral raw materials and significant emissions of carbon dioxide into the atmosphere. Therefore, the search for ways to reduce the cost of its production and reduce the negative impact on the environment is an urgent task. In the course of the study, the composition of a geopolymer binder based on expanded clay dust captured in the systems of dust cleaning of kilns: dust-settling chambers, cyclones, filters was developed. To identify the composition of expanded clay dust, methods of physical and chemical analysis were used: IR spectral, differential thermal, X-ray phase analysis and scanning electron microscopy with X-ray microanalysis. It is established that expanded clay dust is chemically active to liquid glass, as a result of their interaction, products based on calcium silicate and silicic acid gel are formed. The method of manufacturing the mixture is considered and the microstructure studies, the results of X-ray microanalysis of the obtained solidified geopolymer, as well as the results of testing standard images-cubes for compression, with a different ratio of liquid glass to expanded clay dust at different concentrations of liquid glass are presented. The use of the developed geopolymer will significantly reduce the cost of work related to the strengthening of the ground base, as well as improve the environmental situation in the production places of ceramic materials.
S.A. KNYAZEVA1, Engineer (graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.Ya. HARCHENKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Z.S. SAIDOVA1, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. ALEXANDROV1, student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.A. PUDOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.E. STEVENS1, Engineer (Postgraduate Student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.I. BABAEV1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.N. SEMYONOVA1, Engineer (graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State University (426069, Izhevsk, Studencheskaya Street, 7, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Falikman V.R., Ohotnikova K.Yu. Geopolymer binders and concretes in modern construction. Mezhdunarodniy nauchno-issledovatel’skiy zhurnal. 2015. No. 4 (35). P. 1, pp. 93–97. (In Russian).
2. Dudnikov A.G., Dudnikova M.S., Redzhani A. Geopolymer concrete and its application. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka. 2018. No. 1–2, pp. 38–45. (In Russian).
3. Korneev V.I., Brykov A.S. Development prospects of general construction binders. Geopolymers and their distinctive features. Cement i ego primenenie. 2010. No. 2, pp. 51–55. (In Russian).
4. Onatsky S.P. Proizvodstvo keramzita [Production of expanded clay]. Moscow: Stroyizdat. 1971. 312 p.
5. Boldyrev A.S., Zolotov P.P., Lyusov A.N. i dr. Stroitel’nye materialy. Spravochnik. [Construction materials. Reference guide]. Moscow: Stroyizdat. 1989. 568  p.
6. Fernandez R., Martirena F., Scrivener K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research. 2011. No. 41, pp. 113–122. DOI: 10.1016/j.cemconres.2010.09.013
7. Plyusnina I.I. Infrakrasnye spektry mineralov [Infrared spectra of minerals]. Moscow: Izdatelstvo Moskovskogo universiteta. 1976. 175 p.
8. Zinyuk R.YU., Balykov A.G., Gavrilenko I.B., Shevyakov A.M. IK-spektroskopiya v neobrganicheskoj tekhnologii [IR-spectroscopy in non-organic technology]. Leningrad: Himiya. 1983. 160 p.
9. Maslova M.D., Belopuhov S.L., Timohina E.S., Shnee T.V., Nefed’eva E.E., Shajhiev I.G. Thermochemical characteristics of clay minerals. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. Vol. 17. No. 21, pp. 121–127. (In Russian).
10. Rahimov R.Z., Rahimov N.R., Gajfullin A.R. Dehydration of clays of different mineral composition during calcinations. Izvestiya KGASU. 2016. No. 4, pp. 388–394. (In Russian).
11. Shayahmtov A.U., Mustafin A.G., Massalimov I.A. Particularity of thermal decomposition of calcium oxide, peroxide, hydroxide and carbonate. Vestnik Bashkirskogo universiteta. 2011. Vol. 16. No. 1, pp. 29–32. (In Russian).
12. Tarasov R.V., Makarova L.V., Batynova A.A. Analysis of the possibility of increasing the thermal resistance of materials when combining clays and slags in heat-resistant compositions. Sovremennye nauchnye issledovaniya i innovacii. 2015. No. 2–2 (46), pp. 21–32. (In Russian).
13. Rzhanicyn B.A. Himicheskoe zakreplenie gruntov v stroitel’stve [Chemical fixing of soils in construction]. Moscow: Stroyizdat. 1986. 264 p.
14. Sokolovich V.E. Himicheskoe zakreplenie gruntov [Chemical fixing of soils]. Moscow: Strojizdat. 1980. 119 p.
15. Korneev V.I., Danilov V.V. Zhidkoe i rastvorimoe steklo [Liquid and soluble glass]. St. Petersburg: Stroyizdat. 1996. 216 p.

For citation: Knyazeva S.A., Yakovlev G.I., Harchenko I.Ya., Saidova Z.S., Alexandrov A.M., Pudov I.A., Stevens A.E., Babaev A.I., Semyonova S.N. Geopolymer binder on the basis of expanded clay dust for injection mixtures in geotechnical construction. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 63–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-63-68

Prospects for the Use of Cement Industry Waste for the Production of Modern Concrete Composites

Number of journal: 5-2021
Autors:

Murtazaev S.-A.Yu.,
Salamanova M.Sh.,
Alaskhanov A.Kh.,
Murtazaeva T.S.-A.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-55-62
УДК: 691.32

 

AbstractAbout AuthorsReferences
Many years of experience in the technology of producing Portland cement clinker has shown the effectiveness of this resource – and energy-intensive binder. This material is out of competition and it will firmly occupy a leading position in the construction market in the coming years. But there are negative consequences of cement production associated with the release into the atmosphere and the environment of a huge amount of cement dust, carbon dioxide, dioxins, sulfur, etc. To solve these problems, it is necessary to develop new technologies, which include linker-free binders mixing with alkaline with the use of alumino-silicate additives of natural or man-made origin, and this is an urgent task to ensure the environmental safety of the earth’s civilization. In the presented work, the prospects of using cement dust are justified. Granulometric analysis, chemical composition and mineralogy of the studied powders, corresponding to the finished raw material mixture of Portland cement clinker, indicate their suitability for the production of clinker-free cements of alkaline activation and concretes based on them. The obtained regularities of the processes of formation of the structure of the binder of the cement industry waste-Na2SiO3, will make it possible to recommend these developments for the creation of strong and durable artificial building composites that compete with concretes on Portland cement
S.-A.Yu. MURTAZAEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.Sh. SALAMANOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.Kh. ALASKHANOV, Candidate of Sciences (Engineering),
T.S.-A. MURTAZAEVA, Candidate of Sciences (Engineering)

Grozny State Oil Technical University named after academician M.D. Millionshtchikov (100, Isayev Avenue, Grozny, 364051, Chechen Republic, Russian Federation)

1. Щелочные и щелочно-земельные гидравлические вяжущие и бетоны / Под ред. В.Д. Глуховского. Киев: Вища школа, 1979. 232 с.
1. Shchelochnye i shchelochnozemel’nye gidravlicheskie vyazhushchie i betony [Alkaline and alkaline earth hydraulic binders and concrete. Edited by V.D. Glu-khovsky]. Kiev: Vishcha shkola. 1979. 232 р.
2. Глуховский В.Д., Пахомов В.А. Шлакощелочные цементы и бетоны. Киев: Будивельник, 1978. 184 с.
2. Glukhovskiy V.D., Pakhomov V.A. Shlakoshchelochnye tsementy i betony [Slag-alkali cements and concretes]. Kiev: Budivel’nik. 1978. 184 р.
3. Кривенко П.В., Пушкарева К.К. Долговечность шлакощелочного бетона. Киев: Будивельник, 1993. 224 с.
3. Krivenko P.V., Pushkareva K.K. Dolgovechnost’ shlakoshchelochnogo betona. [Durability of slag alkali concrete]. Kiev: Budivel’nik. 1993. 224 р.
4. Davidovits J. Geopolymer Chemistry and applications. Saint-Quentin: Institute Geopolymer. 2008. 592 p.
5. Duxson P., Fernández-Jiménez A., Provis J., Lukey G., Palomo A., Van Deventer J. Geopolymer technology: the current state of the art. Journal of Materials Science. Vol. 42, pp. 2917–2933. DOI: 10.1007/s10853-006-0637
6. Bataev D.K-S., Murtazaev S-A.Yu., Salamanova M.Sh. Fine-grained concretes on non-clinker binders with highly disperse mineral components. Materials Science Forum. 2018. Vol. 931, pp. 552–557. DOI: https://doi.org/10.4028/www.scientific.net/MSF.931.552
7. Саламанова М.Ш., Муртазаев С.-А.Ю. Цементы щелочной активации: возможность снижения энергоемкости получения строительных композитов // Строительные материалы. 2019. № 7. С. 32–40. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
7. Salamanova M.Sh., Murtazaev S.-A.Yu. Cements of alkaline activation the possibility of reducing the energy intensity of building composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
8. Муртазаев С.-А. Ю., Саламанова М.Ш. Перспективы использования термоактивированного сырья алюмосиликатной природы // Приволжский научный журнал. 2018. Т. 46. № 2. С. 65–70.
8. Murtazayev S.-A.Yu., Salamanova M.Sh. Prospects of the use of thermoactivated raw material of alumosilicate nature. Privolzhskii nauchnyi zhurnal. 2018. Vol. 46. No. 2, pp. 65–70. (In Russian).
9. Никифоров Е.А., Логанина В.И., Симонов Е.Е. Влияние щелочной активации на структуру и свойства диатомита // Вестник БГТУ им. В.Г. Шухова. 2011. № 2. С. 30–32.
9. Nikiforov E.A., Loganina V.I., Simonov E.E. The effect of alkaline activation on the structure and properties of diatomite. Vestnik BGTU im. V.G. Shukhova. 2011. No. 2, pp. 65–70. (In Russian).
10. Nesvetaev G., Koryanova Y., Zhilnikova T. Оn effect of superplasticizers and mineral additives on shrinkage of hardened cement paste and concrete. MATEC Web of Conferences. 27th Russian-Polish-Slovak SEMINAR, theoretical foundation of civil engineering (27RSP), TFOCE. Rostov-on-Don, 17–21 September 2018. 04018.
11. Stelmakh S.A., Nazhuev M.P., Shcherban E.M., Yanovskaya A.V., Cherpakov A.V. Selection of the composition for centrifuged concrete, types of centrifuges and compaction modes of concrete mixtures. Physics and Mechanics of New Materials and Their Applications (PHENMA 2018). Abstracts & Schedule. Busan, Republic of Korea, 9–11 August 2018, p. 337.
12. Shuisky A., Stelmakh S., Shcherban E., Torlina E. Recipe-technological aspects of improving the properties of non-autoclaved aerated concrete. MATEC Web Conference. Vol. 129. International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2017). 2017. 05011. https://doi.org/10.1051/matecconf/201712905011
13. Солдатов А.А., Сариев И.В., Жаров М.А., Абдураимова М.А. Строительные материалы на основе жидкого стекла. Актуальные проблемы строительства, транспорта, машиностроения и техносферной безопасности: Материалы IV ежегодной научно-практической конференции Северо-Кавказского федерального университета. Н.И. Стоянов (ответственный редактор). Ставрополь. 2016. С. 192–195.
13. Soldatov A.A., Sariev I.V., Zharov M.A., Abduraimo-va M.A. Building materials based on liquid glass. Actual problems of construction, transport, mechanical engineering and techno sphere safety: Materials of the IV annual scientific and practical conference of the North Caucasus Federal University. N.I. Stoyanov (executive editor). Stavropol’. 2016, рр. 192–195. (In Russian).
14. Martschuk V., Stark T. Untersuchungen zurn frost- tausalz-widerstaud von mochleistungsbetonen. Thesis: Wiss. Z. Bauhaus -Univ. Weimar. 1998. Vol. 44. No. 1–2, рр. 92–103.
15. Larbi J.A., Bijen J.M. Effect of water-cement ratio, quantity and fineness of sand on the evolution of lime in set Portland cement systems. Cement and Concreate Research. 1990. Vol. 20. No. 5, pp. 783–794.
16. Саламанова М.Ш., Алиев С.А., Муртазаева Р.С.-А.Структура и свойства вяжущих щелочной активации с использованием цементной пыли // Вестник Дагестанского государственного технического университета. Технические науки. 2019. Т. 46. № 2. С. 148–158.
16. Salamanova M.Sh., Aliyev S.A., Murtazayev R. S-A. The structure and properties of binders alkaline activation using cement dust. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2019. Vol. 46. No. 2, pp. 148–158. (In Russian).
17. Kozhukhova N.I., Chizhov R.V., Zhernovsky I.V., Strokova V.V. Structure formation of geopolymer perlite binder vs. Type of alkali activating agent. ARPN Journal of Engineering and Applied Sciences. 2016. Vol. 11. Iss. 20, pp. 12275–12281.
18. Удодов С.А., Гиш М.Р. Влияние дозировки редиспергируемого порошка на локализацию полимера и деформационные свойства раствора // Научные труды Кубанского государственного технологического университета. 2015. № 9. С. 164–174.
18. Udodov S.A., Gish M.R. The effect of dosage of redispersible powder on the localization of the polymer and the deformation properties of the solution. Nauchnye trudy Kubanskogo gosudarstvennogo tekhnologicheskogo universiteta. 2015. No. 9, рp. 164–174. (In Russian).
19. Murtazaev S-A.Yu., Salamanova M.Sh., Ismailo-va Z.Kh. The Use of highly active additives for the рroduction of clinkerless binders. Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research”(ISEES 2018). https://doi.org/10.2991/isees-18.2018.68
20. Salamanova M.Sh., Murtazayev S.Yu. Clinker-free binders based on finely dispersed mineral components. 20 Internationale Baustofftagung, Tagungsbericht. 12–14 September 2018, Bauhaus-Universität Weimar. Band 1 und 2. Weimar: 2018. В. 2, рр. 707–714.
21. Lopez F.J., Sugita S., Tagaya M., Kobayashi T. Metakaolin-based geopolymers for targeted adsorbents to heavy metal ion separation. Journal of Materials Science and Chemical Engineering. 2014. No. 2, pp. 16–27. DOI:10.4236/msce.2014.27002
22. Chen L., Wang Z., Wang Y. and Feng J. Preparation and properties of alkali activated metakaolin – based geopolymer. Materials. 2016. Vol. 9, p. 767. DOI: 10.3390/ma9090767
23. Murtazayev S-A. Yu., Salamanova M.Sh., Alashanov A., Ismailova Z. Features of production of fine concretes based on clinkerless binders of alkaline mixing. 14th International Congress for Applied Mineralogy (ICAM 2019) Belgorod State Technological University named after V.G. Shukhov. 23–27 September 2019, рр. 385–388.
24. Zhang Z., Provis J.L., Zou J., Reid A., Wang H. Toward an indexing approach to evaluate fly ashes for geopolymer manufacture. Cement and Concrete Research. 2016. Vol. 85, pp. 163–173. https://doi.org/10.1016/j.cemconres.2016.04.007
25. Alex T.C., Nath S.K., Kumar S., Kalinkin A.M., Gurevich B.I., Kalinkina E.V., Tyukavkina V.V. Utilization of zinc slag through geopolymerization: influence of milling atmosphere. International Journal of Mineral Processing. 2013. Vol. 216, pp. 102–107. https://doi.org/10.1016/j.minpro.2013.06.001
26. Murtazayev S-A.Yu., Salamanova M.Sh., Mintsaev M.Sh.,Bisultanov R.G. Fine-grained concretes with clinker-free binders on an alkali gauging. Proceedings of the International Symposium «Engineering and Earth Sciences: Applied and Fundamental Research» dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019). 2019. Vol. 1, pp. 500–503. https://doi.org/10.2991/isees-19.2019.98

For citation: Murtazaev S.-A.Yu., Salamanova M.Sh., Alaskhanov A.Kh., Murtazaeva T.S.-A. Prospects for the use of cement industry waste for the production of modern concrete composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 55–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-55-62

Nano-Additives Based on Titanium Dioxide and Silicon Dioxide for Self-Cleaning Concretes

Number of journal: 5-2021
Autors:

Tyukavkina V.V.,
Shchelokova Е.А.,
Pozhivina К.А.,
Kasikov A.G.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-47-53
УДК: 666.9.035

 

AbstractAbout AuthorsReferences
The properties of TiO2–SiO2 nanocomposites synthesized with the use of silicon-containing residues of hydrochloric acid leaching of magnesia-ferruginous slag and a solution of titanium sulfate are studied, and the possibility of their use in the composition of cement composites is evaluated. The synthesized TiO2–SiO2 nanocomposites are characterized by a high specific surface area (183–534 m2/g), the presence of a Si–O–Ti bond in their structure, and differ in the phase composition and SiO2 content. It is established that all the studied samples exhibit photocatalytic activity in the decomposition reaction of methylene blue (MS), both in the ultraviolet (UV) and visible spectral regions (VS). The degree of MS decomposition of TiO2–SiO2 nanoparticles was 86–67% and VS – 80–59% in 180 min after UV irradiation. The sample with the highest specific surface area (534 m2/g) showed photocatalytic activity only after ultrasonic dispersion in the presence of surfactants. The sample consisting of anatase and amorphous silica is superior to the commercial P25 catalyst in terms of MS decomposition. It is shown that the use of TiO2–SiO2 in the cement matrix accelerates hydration and contributes to an increase in compressive strength, while with an increase in the specific surface area, the effect of TiO2–SiO2 nanoparticles on the strength of cement stone increases. The optimal content of the additive in the composition of TiO2–SiO2 cement paste with the highest specific surface area (534 m2/g) is 0.05–0.5 wt.%, while the strength increases at the daily age by 60–73%, 28 days by 22–28%. TiO2–SiO2 nanocomposites can be used as additives in concrete matrices to improve strength properties and obtain self-cleaning surfaces
авторы
1. Kaja A.M., Brouwers H.J.H., Yu Q.L. NOx degradation by photocatalytic mortars: The underlying role of the CH and C–S–H carbonation. Cement and Concrete Research. 2019. Vol. 125. 105805. DOI: https://doi.org/10.1016/j.cemconres.2019.105805
2. Jin Q., Saad E.M., Zhang W., Tang Y., Kurtis K. E. Quantification of NOx uptake in plain and TiO2-doped cementitious materials. Cement and Concrete Research. 2019. Vol. 122, pp. 251–256. DOI: https://doi.org/10.1016/j.cemconres.2019.05.010
3. Курбатов В.Л., Дайронас М.В. Экологический эффект от фотокаталитического бетона // Универ-ситетская наука. 2019. № 1. С. 24–27.
3. Kurbatov V.L., Daironas M.V. Ecological effect of photocatalytic concrete. Universitetskaya nauka. 2019. No. 1, pp. 24–27. (In Russian).
4. Лукутцова Н.П., Ефремочкин Н.П., Борсук О.И., Головин С.Н. Фотокаталитически активный самоочищающийся мелкозернистый бетон // Строи-тельные материалы. 2020. № 1–2. С. 8–16. DOI: doi.org/10.31659/0585-430X-2020-778-1-2-8-15
4. Lukuttsova N.P., Efremochkin N.P., Borsuk O.I., Golovin S.N. Photocatalytic self-cleaning fine-grained concrete. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 8–15. DOI: doi.org/10.31659/0585-430X-2020-778-1-2-8-15
5. Li Z., Ding S., Yu X., Han B., Ou J. Multifunctional cementitious composites modified with nano titanium dioxide: A review. Composites Part A: Applied Science and Manufacturing. 2018. Vol. 111, pp. 115–137. DOI: https://doi.org/10.1016/j.compositesa.2018.05.019
6. Yang L., Hakki A., Wang F., Macphee D.E. Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement. Applied Catalysis B: Environmental. 2018. Vol. 222, pp. 200–208. DOI: https://doi.org/10.1016/j.apcatb.2017.10.013
7. Korayema A.H., Tourani N., Zakertabrizi M., Sabziparvar A.M., Duan W.H. A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Construction and Building Materials. 2017. Vol. 153, pp. 346–357. DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.164
8. Zanfir A.-V., Voicu G., Bădănoiu A.-I., Gogan D., Oprea O., Vasile E. Synthesis and characterization of titania-silica fume composites and their influence on the strength of self-cleaning mortar. Composites Part B: Engineering. 2018. Vol. 140, pp. 157–163. DOI: https://doi.org/10.1016/j.compositesb.2017.12.032
9. Zhang X.T., Sato O., Taguchi M., Einaga Y., Murakami T., Fujishima A. Self-cleaning particle coating with antireflection properties. Chemistry of Materials. 2005. Vol. 17. No. 3, pp. 696–700. DOI: https://doi.org/10.1021/cm0484201.
10. Ren J., Lai Y., Gao J. Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete. Construction and Building Materials. 2018. Vol. 175, pp. 277–285. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.035
11. Sun J., Cao X., Xu Z., Yub Z., Hang Y., Hou G., Shen X. Contribution of core/shell TiO2@SiO2 nanoparticles to the hydration of Portland cement. Construction and Building Materials. 2020. Vol. 233, pp. 117–127. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117127
12. Wang D., Hou P., Zhang L., Xie N., Cheng X. Photocatalytic activities and chemically-bonded mechanism of SiO2@TiO2 nanocomposites coated cement-based materials. Materials Research Bulletin. 2018. Vol. 102, pp. 262–268. DOI: https://doi.org/10.1016/j.materresbull.2018.02.013
13. Лабузова М.В., Губарева Е.Н., Огурцова Ю.Н., Строкова В.В. Использование фотокаталитического композиционного материала в цементной системе // Строительные материалы. 2019. № 5. С. 16–21. DOI: https://doi.org/10.31659/0585-430X-2019-770-5-16-21
13. Labuzova M.V., Gubareva E.N., Ogurtsova Yu.N., Strokova V.V. The use of the photocatalytic composite material in the cement system. Stroitel’nye Materialy. 2019. No. 5, pp. 16–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-16-21
14. Zanfir A.-V., Voicu G., Bădănoiu A.-I., Gogan D., Oprea O., Vasile E. Synthesis and characterization of titania-silica fume composites and their influence on the strength of self-cleaning mortar. Composites Part B: Engineering. 2018. Vol. 140, pp. 157–163. DOI: https://doi.org/10.1016/j.compositesb.2017.12.032
15. Tyukavkina V.V., Gerasimova L.G., Tsyryateva A.V. Synthetic titanosilicate additives for special cement composites. Inorganic Materials: Applied Research. 2019. Vol. 10, pp. 1153–1158. DOI: 10.1134/S2075113319050320
16. Тюкавкина В.В., Герасимова Л.Г., Цырятьева А.В. Эффективность использования титаносиликатных порошков в цементных композитах. ALITINFORM: Цемент. Бетон. Сухие Смеси. 2019. № 2 (55). C. 2–14.
16. Tyukavkina V.V., Gerasimova L.G., Tsyryat’eva A.V. Efficiency of use of titanosilicate powders in cement composites. ALITINFORM: Tsement. Beton. Sukhie Smesi. 2019. No. 2 (55), pp. 2–14. (In Russian).
17. Han B., Ding S., Wang J., Ou J. Nano-engineered cementitious composite. Springer Nature Singapore Pte Ltd. 2019. DOI: doi.org/10.1007/978-981-13-7078-6
18. Касиков А.Г. Проблемы и перспективы вовлечения в хозяйственный оборот отвальных продуктов медно-никелевого производства. Север и Рынок: формирование экономического порядка. 2013. № 1 (32). С. 48–52.
18. Kasikov A.G. Recovery of dump waste products of the copper-nickel process. Prospects and challenges. Sever i Rynok: formirovanie ekonomicheskogo poryadka. 2013. No. 1 (32), pp. 48–52. (In Russian).
19. Davis R.J., Liu Z., Davis R.J. Titania-silica: a model binary oxide catalyst system. Chemistry of Materials. 1997. Vol. 9, pp. 2311–2324. DOI: https://doi.org/10.1021/cm970314u
20. Kibombo H.S., Zhao D., Gonshorowski A., Budhi S., Koppang M.D., Koodali R.T. Cosolvent-induced gelation and the hydrothermal enhancement of the crystallinity of titania–silica mixed oxides for the photocatalytic remediation of organic pollutants. Journal of Physical Chemistry C. 2011. Vol. 115, pp. 6126–6135. DOI: https://doi.org/10.1021/jp110988j
21. Korayem A.H., Tourani N., Zakertabrizi M., Sabziparvar A.M., Duan W.H. A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Construction and Building Materials. 2017. Vol. 153, pp. 346–357. DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.164

For citation: Tyukavkina V.V., Shchelokova Е.А., Pozhivina К.А., Kasikov A.G. Nano-additives based on titanium dioxide and silicon dioxide for self-cleaning concretes. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 47–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-47-53

Features of the Use of Easily Dumped Window Structures in Gasified Residential Buildings

Number of journal: 5-2021
Autors:

Konstantinov A.P.,
Korolchenko A.D.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-37-43
УДК: 692.827

 

AbstractAbout AuthorsReferences
The existing negative statistics of household gas explosions in residential buildings on the territory of the Russian Federation has led to the appearance of regulatory documents prescribing the use of easily dumped window structures in similar types of buildings. The paper analyzes the current state of the issue of the use of easily dumped window structures in gasified residential buildings. For this purpose, the existing design solutions of easily dumped windows were considered, as well as the requirements of the current regulatory and technical documentation for such structures in the case of their use in gasified residential buildings. The analysis has shown that at present a sufficiently large number of easily dumped window structures with insulated glass units have been developed and patented. However, so far their design solution does not allow to ensure the fulfillment of the entire complex of requirements that are imposed on conventional window structures of residential buildings. It is established that there are a number of contradictions in the current domestic regulatory and technical documentation regulating the device of easily dumped structures with insulated glass units and their use in residential buildings, as well as requirements that cannot be implemented in practice. In the existing construction practice, it is not yet possible to massively apply approaches to the design of residential buildings, taking into account their explosion resistance, which is due to the insufficient number of studies on the subject under consideration.
A.P. KONSTANTINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.D. KOROLCHENKO, Engineer (Postgraduate Student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Mishuev A.V., Kazennov V.V., Komarov A.A., Gromov N.V., Lukyanov I.V., Prozorovskij D.V. Features of emergency explosions inside residential gasified buildings and industrial facilities. Pozharovzryvobezopasnost’. 2012. Vol. 21. No. 3, pp. 49–56. (In Russian).
2. Polandov Yu.Kh., Korolchenko D.A., Evich A.A. Conditions of occurrence of fire in the room with a gas explosion. Experimental data. Pozharovzryvo-bezopasnost’. 2020. Vol. 29. No. 1, pp. 9–21. (In Russian). DOI: 10.18322/PVB.2020.29.01.9-21
3. Vedyakov I.I., Eremeev P.G., Odesskiy P.D., Popov N.A., Solovyev D.V. Regulatory requirements for the design of building structures for progressive collapse. Promyshlennoe i grazhdanskoe stroitel’stvo. 2019. No. 4, pp. 16–24. (In Russian). DOI: 10.33622/0869-7019.2019.04.16-24
4. Sushko E.A., Zajcev A.M., Kashnikova A.A., Chernyx D.S. About the explosions of natural gas and their consequences in high-rise residential sector. Vestnik of the Voronezh institute GPS MCHS Rossii. 2013. No. 3 (8), pp. 20–23. (In Russian).
5. Telichenko V.I., Roitman V.M. A cause-and-consequence analysis of serious emergencies with the aim of providing integrated safety of buildings and installations. Vestnik MGSU. 2020. No. 15 (1), pp. 72–84. (In Russian). DOI: 10.22227/1997-0935.2020.1.72-84
6. Nikolaev S.V. Renovation of housing stock of the country on the basis of large-panel housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 3–7. (In Russian).
7. Savin V.K., Savina N.V. The shaping of buildings. beauty or benefit? Academia. Architecture and construction. 2016. No. 2, pp. 119–123. (In Russian).
8. Sheina S.G., Umnyakova N.P., Panasenko M.V. Method of selection of complex development territory for construction of multistory residential building with introduction of eco-friendly standard. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 7, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-7-41-46
9. Orlov G.G., Korolchenko D.A., Lyapin A.V. Optimization of requirements to constructive and space-planning decisions when designing buildings and constructions for explosive productions. Pozharovzryvobezopasnost’. 2014. Vol. 23. No. 11, pp. 67–74. (In Russian).
10. Orlov G.G., Korolchenko A.D. Loadings which destroy building structures in consiquence of emergency explosions. Pozharovzryvobezopasnost’. 2016. Vol. 25. No. 3, pp. 45–56. (In Russian). DOI: 10.18322/PVB.2016.25.03.45-56
11. Komarov A.A., Kazennov V.V., Gusev A.A., Gromov N.V. Criterion for quasi-static conditions for confined blast pressure of a gas-air mixture in premises. Pozharovzryvobezopasnost’. 2015. Vol. 24. No. 8, pp. 56–61. (In Russian). DOI: 10.18322/PVB.2015.24.08.56-61
12. Polandov Yu.Kh., Dobrikov S.A., Kukin D.A. Results of tests pressure-relief panels. Pozharovzryvobezopasnost’. 2017. Vol. 26. No. 8, pp. 5–14 (In Russian). DOI: 10.18322/PVB.2017.26.08.5-14
13. Komarov A.A., Korolchenko D.A., Phan T.A. Features of determination of the dynamic amplification factor under impulse loads. Pozharovzryvobezopasnost’. 2018. Vol. 27. No. 2–3, pp. 37–43 (In Russian). DOI: 10.18322/PVB.2018.27.02-03.37-43
14. Pidhoretsky Yu. Research of the actuation reliability of blast relieve systems with honeycomb polycarbonate sheets. The Scientific Heritage. 2020. Vol. 1. No. 57, pp. 45–50. DOI: 10.24412/9215-0365-2020-57-1-45-50
15. Komarov A., Gromov N. Experimental observation of visible flame propagation rate in accidental deflagration explosions and explosive load reduction. MATEC Web of Conferences. 2018. Vol. 251. 02024. doi:10.1051/matecconf/201825102024
16. Tikhomirov A., Konstantinov A., Kurushkina K., Lambias M. Conception of a complex window design method. E3S Web of Conferences. 2019. Vol. 91. 05018. DOI: 10.1051/e3sconf/20199105018
17. Phuong N.T.Kh., Solovyev A.K., Tamrazyan A.G. Integrated approach to determining sizes of light openings in buildings taking into account safety requirements. Promyshlennoye i grazhdanskoye stroitel’stvo. 2019. No. 5, pp. 20–25. (In Russian). DOI: 10.33622/0869-7019.2019.05.20-25
18. Mishuev A., Kazennov V., Gromov N., Lukyanov I., Prozorovsky D., Bazhina E.. Design of glassing for buildings to meet the requires for resistance to explosion and explosion safety. Vestnik MGSU. 2010. No. 4–2, pp. 51–55. (In Russian).
19. Gorev V.A., Molkov V.V. On the dependence of internal explosion parameters on the installation of safety structures in the apertures of the protecting walls of industrial and residential buildings. Pozharovzryvobezopasnost’. 2018. Vol. 27. No. 10, pp. 6–25 (In Russian). DOI: 10.18322/PVB.2018.27.10.6-25
20. Pepelyaev A.A., Kashevarova G.G. Given the characteristics of structures easily discharged when modeling domestic gas explosion in a residential building. Bulletin of the Perm National Research Polytechnic University. Construction and architecture. 2012. No. 1, pp. 147–153. (In Russian).
21. Doronin F.L., Trukhanova L.N., Fomina M.V. The reaction of the building structure with window unit to the explosive impact on the basis of dynamic equation solution. Vestnik MGSU. 2014. No. 1, pp. 33–40. (In Russian).
22. Polandov Yu.K., Dobrikov S.A. Effect of distance between ignition location and window on indoor gas explosion development. Pozharovzryvobezopasnost’. 2019. No. 28 (3), pp. 14–35. (In Russian). https://doi.org/10.18322/PVB.2019.28.03.14-35
23. Konstantinov A.P., Verkhovsky A.A. Influence of negative temperatures on the thermal characteristics of PVC windows. Stroitel’stvo i rekonstruktsiya. 2018. Vol. 83. No. 3, pp. 72–82. (In Russian). DOI: https://doi.org/10.33979/2073-7416-2019-83-3-72-82
24. Konstantinov A., Verkhovsky A. Assessment of the negative temperatures influence on the PVC windows air permeability. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 753. 022092. doi:10.1088/1757-899X/753/2/022092
25. Konstantinov A.P., Krutov A.A., Tikhomirov A.M. Assessment of the PVC windows thermal characteristics in winter. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
26. Konstantinov A.P., Ibragimov A.M. Complex approach to the calculation and design of translucent structures. Zhilishchnoe Stroitel’stvo. 2019. No. 1–2, pp. 14–17. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-1-2-14-17
27. Savin V.K., Rybkin V.K. Energy efficient design of the window unit with the ventilator. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 1–2, pp. 15–18.
28. Orlov G.G., Korolchenko A.D. Structural design of attachment fittings of protecting (light removable) structures for the exposure of special load combination. Nauchnoye obozreniye. 2016. No. 20, pp. 25–29. (In Russian).

For citation: Konstantinov A.P., Korolchenko A.D. Features of the use of easily dumped window structures in gasified residential buildings. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 37–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-37-43

3D-Build Printing Today: Potential, Challenges and Prospects for Implementation

Number of journal: 5-2021
Autors:

Slavcheva G.S.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
УДК: 004.9:624

 

AbstractAbout AuthorsReferences
The potential of additive 3D printing technologies in construction is associated with the possibility of creating construction objects of bionic design, which involves a combination of freedom of external form and organized internal space of object structures, in which the mass of material is located only along the lines of active stresses. This can provide a radical reduction in the mass of the material in the volume of the structure, change the principles of design and construction. It is shown that the probability of realizing this potential is associated with the need for new methods of calculation and design, the development of effective technological complexes, and the creation of a new class of building composites for printing. Technological complexes for 3D printing should be characterized by mobility and versatility, and provide robotic printing of all building structures. Materials must be adapted to the technological conditions of printing and operation in thin layered 3D-printed structures, since the parameters of technological complexes and the characteristics of 3D-printed objects depend on their characteristics in the technological and operational cycles. It is shown that at present the lack of design methods, regulatory framework, effective universal technological complexes, sufficient nomenclature of mixtures for printing are among the problems that need to be solved for the practical implementation of the technology. The article presents approaches to solving these problems and a brief summary of the scientific and applied results of the Voronezh State Technical University team in the field of designing mixtures and controlling the properties of building composites for 3D printing.
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh Technical University University (84, 20-letiya Oktyabrya Street, 394006, Voronezh, Russian Federation)

1. Tay Y., Panda B., Paul S, Noor M., Tan M. Leong K. 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping. 2017. No. 12 (3), pp. 261–276. https://doi.org/ 10.1080/17452759.2017.1326724
2. Mechtcherine V. at all. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research. 2020. Vol. 132, pp. 106037. https://doi.org/ 10.1016/j.cemconres.2020.106037
3. Boss F., Wolfs R., Ahmed Z., Salet T. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping. 2016. No. 11 (3), pp. 209–225. https://dx.doi.org 10.1080/17452759.2016.1209867
4. Labonette N., Rønnquist A., Manum B., Rüther P., Additive construction: state-ofthe-art, challenges and opportunities. Autom. Constr. 2016. No. 72 (3), pp. 347–366. https://doi.org/10.1016/j.autcon.2016.08.026
5. Asprone D., Auricchio F., Menna C., Mercuri V. 3D printing of reinforced concrete element: Technology and design approach. Construction and Building materials. 2018. No. 165, pp. 218–231. https://dx.doi.org/ 10.1016/j.conbuildmat.2018.01.018
6. Hack N. and Lauer W.V. Mesh-mould: robotically fabricated spatial meshes as reinforced concrete formwork. Architectural Design. 2014. No. 84 (3), pp. 44–53.
7. Toutou Z., Roussel N., Lanos, C. The squeezing test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research. 2005. No. 35 (10), pp. 1891–1899. https://dx.doi.org/10.1016/j.cemconres.2004.09.007
8. Russel N., Lanos C. Plastic Fluid Flow Parameters Identification Using a Simple Squeezing Test. Applied Rheology. 2003. No. 13 (3), pp. 3–5. https://dx.doi.org/ 10.1515/arh-2003-0009
9. Perrot A., Rangeard D., Mélinge Y., Estellé P., Lanos C. Extrusion Criterion for Firm Cement – Based Materials. Applied Rheology. 2009. No. 19, pp. 111–127. https://dx.doi.org/ 10.3933/ApplRheol-19-53042
10. Perrot A., Mélinge Y., Estellé P., Lanos, C. Vibro-extrusion: a new forming process for cement-based materials. Advances in Cement Research. 2009. No. 21 (3), pp. 125–133. https://dx.doi.org/10.1680/adcr.2008.00030
11. Perrot A., Mélinge Y., Rangeard D., Micaelli F., Estellé P., Lanos C., Estellé P. Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheologica Acta. Springer Verlag. 2012. No. 51 (8), pp. 743–754. https://dx.doi.org/10.1007/s00397-012-0638-6
12. Engmann J., Servais C., Burbidge A. S. Squeeze flow theory and applications to rheometry: A review. Journal of Non-Newtonian Fluid Mechanics. 2005. No. 132 (1–3), pp. 1–27. https://dx.doi.org/ 10.1016/j.jnnfm.2005.08.007
13. Wolfs R., Boss F., Salet T. Early age mechanical behaviour of 3D printed concrete: Numerical modeling and experimental testing. Cement and Concrete Research. 2018. No. 106, pp. 103–116. https://doi.org/ 10.1016/j.cemconres.2018.02.001
14. Shakor P., Sanjayan J., Nazari A., Nejadi S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction and Building Materials. 2017. No. 138, pp. 398–409. https://dx.doi.org/ 10.1016/j.conbuildmat.2017.02.037
15. Wolfs R.J.M., Boss F.P., Salet T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research. 2019. Vol. 119, pp. 132–140. (In English) https://doi.org/10.1016/j.cemconres.2019.02.017
16. Panda B., Lim J.H., Tan M.J. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Composites Part B: Engineering. 2019. Vol. 165, pp. 563–571. (In English) https://doi.org/10.1016/j.compositesb.2019.02.040
17. Buswella R.A. at all. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research. 2018. Vol. 112, pp. 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006
18. Ma S., Qian Y., Kawashima S. Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cement and Concrete Research. 2018. No. 108, pp. 1–9. https://dx.doi.org/10.1016/j.cemconres.2018.02.022
19. Feng P., Menga X., Chenb J., Yea L. Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials. 2015. No. 93, pp. 486–497. dx.doi.org/ 10.1016/j.conbuildmat.2015.05.132
20. Paul S.C., Tay Y.W.D., Panda B., Tan M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering. 2018. No. 18 (1), pp. 311–319. https://dx.doi.org/ 10.1016/j.acme.2017.02.008
21. Ngo T.D. Kashani A., Imbalzano G., Nguyen K., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. Vol. 143. 103 p. https://dx.doi.org/ 10.1016/j.compositesb.2018.02.012
22. Malaeb Z., Hachem H., Tourbah A., et al. 3D Concrete Printing: Machine and Mix Design. International Journal of Civil Engineering and Technology. 2015. Vol. 6 (4), pp. 14–22.
23. Kazemian A. Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials. 2017. Vol. 145, pp. 639–647. https://dx.doi.org/ 10.1016/j.conbuildmat.2017.04.015
24. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials and Structures. 2012. No. 45 (8), pp. 1221–1232. https://dx.doi.org/10.1617/s11527-012-9828-z
25. Славчева Г.С., Артамонова О.В. Реологическое поведение дисперсных систем для строительной 3D-печати: проблема управления на основе возможностей арсенала «нано» // Нанотехнологии в строительстве: научный интернет-журнал. 2018. Т. 10. № 3. С. 107–122. https:// dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
25. Slavcheva G.S., Artamonova O.V. The rheological behavior of disperse systems for 3D printing in constrcution: the problem of control and possibility of «nano» tools application. Nanotehnologii v stroitel’stve. 2018. Vol. 10. No. 3, pp. 107–122. (In Russian). https:// dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
26. Славчева Г.С., Артамонова О.В. Управление реологическим поведением смесей для строительной 3D-печати: экспериментальная оценка возможностей арсенала «нано» // Нанотехнологии в строительстве: научный интернет-журнал. 2019. Т. 11. № 3. С. 325–334. (In Russian). https:// 10.15828/2075-8545-2019-11-3-325-334
26. Slavcheva G.S., Artamonova O.V. The control of rheological behaviour for 3D-printable building mixtures: experimental evaluation of «nano» tools prospects. Nanotehnologii v stroitel’stve. 2019, Vol. 11. No. 3, pp. 325–334. (In Russian). https://10.15828/2075-8545-2019-11-3-325-334
27. Славчева Г.С., Шведова М.А., Бабенко Д.С. Анализ и критериальная оценка реологического поведения смесей для строительной 3D-печати // Строительные материалы. 2018. № 12. С. 34–40. https://doi.org/10.31659/0585-430X-2018-766-12-34-40
27. Slavcheva G.S., Shvedova M.A., Babenko D.S. Analysis and criteria assessment of rheological behavior of mixes for construction 3-D printing. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 34–40. (In Russian). https://doi.org/10.31659/0585-430X-2018-766-12-34-40
28. Slavcheva G.S., Artamonova O.V. Rheological behavior of 3D printable cement paste: criterial evaluation. Magazine of Civil Engineering. 2018, No. 08 (84). https://doi: 10.18720/MCE.84.10.
29. Славчева Г.С., Бритвина Е.А., Ибряева А.И. Строительная 3D-печать: оперативный метод контроля реологических характеристик смесей // Вестник инженерной школы ДВФУ. Строительст-во. 2019. № 4 (41). С. 134–143. http://www.dx.doi.org/10.24866/2227-6858/2019-4-14
29. Slavcheva G., Britvina E., Ibryaeva A. 3D-build printing: the operational method for verifying the cement mixture properties / FEFU: School of Engineering Bulletin. 2019. No. 4 (41), pp. 134–143. (In Russian). http://www.dx.doi.org/10.24866/2227-6858/2019-4-14
30. Slavcheva G.S., Artamonova O.V. Rheological Behavior and Mix Design for 3d Printable Cement Paste. Key Engineering Materials. Modern Materials and Manufacturing. 2019. Vol. 799, pp. 282–287. 10.4028/www.scientific.net/KEM.799.282
31. Slavcheva G.S., Artamonova O.V., Shvedova M.A. Effect of viscosity modifiers on structure formation in cement systems for construction 3D printing. Inorganic Materials. 2021. Vol. 57, pp. 94–100. http://www.10.1134/S0020168521010143
32. Slavcheva G. S., Artamonova O.V., Babenko D.S., Ibryaeva A.I. Effect of limestone filler dosage and granulometry on the 3D printable mixture rheology IOP Conf. Series: Materials Science and Engineering. V International Conference Safety Problems of Civil Engineering Critical Infrastructures. 2020. Vol. 972. 012042. http://www.10.1088/1757-899X/972/1/012042
33. Славчева Г.С., Акулова И.И., Вернигора И.В. Концепция и эффективность применения 3D-печати для дизайна городской среды // Жилищ-ное строительство. 2020. № 3. С. 49–55. DOI: https://doi.org/10.31659/0044-4472-2020-3-49-55
33. Slavcheva G.S., Akulova I.I., Vernigora I.V. Concept and effectiveness of 3D printing for urban environment design. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 3, pp. 49–55. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-3-49-55

For citation: Slavcheva G.S. 3D-build printing today: potential, challenges and prospects for implementation. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 28–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36

Reliability and Durability of Frame Houses with the Use of Reinforced Cement-Perlite Panels

Number of journal: 5-2021
Autors:

Goncharov Yu.A.,
Dubrovina G.G.,
Kozunova O.V.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-16-21
УДК: 693.95

 

AbstractAbout AuthorsReferences
The market economy constantly points to ways to use limited resources efficiently. Innovative technologies when creating architectural objects are aimed at preserving the environment and saving energy. The concept of forming a “smart building”, using the technical innovations of the future, a complex integrated environmental system, serves to increase the comfort of the living environment and save energy resources, improve environmental conditions. In a modern frame building, the load-bearing frame consists of columns and cross-bars made in the form of beams with quarters to support the floor structures. Columns and cross-bars form load-bearing frames that take the vertical and horizontal loads of the building. The exterior walls of frame buildings can be self-bearing. In this case, they are supported directly on the foundations or on the foundation beams installed on the columnar foundations. Load-bearing walls in the form of curtain panels are attached to the outer columns of the frame. On the territory of the Republic of Belarus, frame buildings use frame-clad walls with the use of cement-perlite or cement-expanded clay panels and steel bent galvanized profiles. The innovative technology of construction using cement slabs has the following advantages:: absolute moisture resistance-without swelling or crumbling; resistance to climatic influences; frost resistance, confirmed by tests; durability; the ability to create curved surfaces; impact resistance and wear resistance.
Yu.A. GONCHAROV1, Engineer, Chairman of the Board of Directors,
G.G. DUBROVINA1, Engineer, Technical Adviser (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.V. KOZUNOVA2, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.), Head of the Design Department

1 VOLMA Corporation (24, Kozlova Street, Minsk, 220037, Republic of Belarus)
2 Belorussian State University of Transport (34, Kirova Street, Gomel, 246653, Republic of Belarus)

1. Goncharov Y.A., Dubrovina G.G. Achievement of ergonomics in architecture due to the use of façade décor on the basis of mineral wool. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 14–18. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-14-18
2. Grishneva E.A. Increase of power efficiency in real estate objects construction with implementation of “Smart Home” concept. ACADEMIA. Arkhitektura i stroitel’stvo. 2010. No. 3, pp. 429–444. (In Russian).
3. Zhukov A.D., Bobrova E.Yu., Karpova A.O. Faсade Systems: durability, utility and beauty. Vestnik MGSU. 2015. No. 10, pp. 201–207. (In Russian).
4. Budarin E.L., Saprykina N.A. Features of the principle of ergonomics in architecture and design of the modern housing. Ontologia proektirovaniya. 2016. Vol. 6. No. 2 (20), pp. 205–215. http://agora.guru.ru/scientific_journal/files/Ontology_Of_Designing_2_2016_st.pdf (In Russian).
5. Shubin I.L., Aistov V.A., Porozchenko M.A. Sound Insulation of enclosing Structures in high-rise Buildings. Requirements and Methods of Support. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 33–43. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-33-43 (In Russian).
6. Derkach V.N., Gorshkov A.S., Orlovich R.B. Problems of crack resistance of wall filling of frame buildings of cellular concrete blocks. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 52–56. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-52-56 (In Russian).
7. Stefanenko I.V. Effective development of high the technologies in bulding industry. Stroitel’stvo i rekonstruktsiya. 2011. No. 5 (37), pp. 95–98. http://oreluniver.ru/public/file/archive/5-37.pdf (Date of access 08.09.18). (In Russian).
8. Bezdenezhnykh M.A., Muniyeva E.Yu., Zhukov A.D. Building materials and environment. Perspektivy nauki. 2017. No. 11 (98), pp. 39–42. http://moofrnk.com/assets/files/journals/science-prospects/98/science-prospect-11(98)--main.pdf (Date of access 05.11.18). (In Russian).
9. Bur’yanov A.F., Morozov I.V., Gal’tseva N.A., Loktionova A.A., Shalimov V.N., Il’in D.A. The study of effective ways of use of waste of production of heat-insulating plates PIR. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 68–72. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-68-72 (In Russian).
10. Kalabin A.V., Kukovyakin A.B. Mass housing estate: problems and prospects. Akademicheskii vestnik UralNIIproekt RAASN. 2017. No. 3 (34), pp. 55–60. (In Russian).

For citation: Goncharov Yu.A., Dubrovina G.G., Kozunova O.V. Reliability and durability of frame houses with the use of reinforced cement-perlite panels. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 16–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-16-21

Technological Parameters of the Quality of Self-Compacting Fine-Grained Fresh Concrete for Winter Concreting

Number of journal: 5-2021
Autors:

Rumyantsev E.V.,
Bayburin A.Kh.,
Solov’ev V.G.,
Ahmed’yanov R.M.,
Bessonov S.V.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
УДК: 666.972.53

 

AbstractAbout AuthorsReferences
The use of self-compacting fine-grained fresh concrete (SCFGFC) based on dry construction mixes (DCM) allows to ensure the quality of advance joint connection of the precast reinforcement concrete structures, including in the winter conditions. The carried out comprehensive experimental study of the technological parameters of the quality of (SCFGFC) makes it possible to make up the insufficient volume of research in this area. For the study, we used SCFGFC based on DCM from three manufacturers on cement binders, hardening at low temperatures. The substantiated test methods are proposed and a comparative assessment of the technological characteristics of SCFGFC is carried out: workability, viability, segregation resistance and the compaction coefficient. The influence of the temperature factor and the water-solid ratio on the studied characteristics of the fresh concrete has been evaluated. The obtained research results can be used for the development of technological documentation for the use of «cold» SCFGFC based on cement dry mixes, as well as for the preparation of codes on the technology of joint connection of the precast reinforcement concrete structures, including at negative temperatures.
E.V. RUMYANTSEV1, Chief Designer of Product Department (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Kh. BAYBURIN2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. SOLOV’EV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.М. AHMED’YANOV4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. BESSONOV4, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 PIK-Proekt LLC (19, bldg. 1, Barrikadnaya Street, Moscow, 123242, Russian Federation)
2 National Research South Ural State University (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)
3 National Research Moscow State University Of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
4 «Ural Research Institute of Construction Materials» LLC (5/2, Stalevarov Street, Chelyabinsk, 454047, Russian Federation)

1. Мухамедиев Т.А., Кудинов О.В. Увеличение этажности сборных крупнопанельных зданий // Бетон и железобетон. 2006. № 3. С. 7–9.
1. Mukhamediev T.A., Kudinov O.V. Increase in the number of floors of prefabricated large-panel buildings. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2006. No. 3, pp. 7–9. (In Russian).
2. Alfred A. Yee, Hon. D. Structural and economic benefits of precast/prestressed concrete construc-tion. PCI Journal. 2001. Vol. 46. No. 4, pp. 34–42. DOI: https://doi.org/10.15554/pcij.07012001.34.42
3. Smith R.E. Prefab architecture: a guide to modular design and construction. Hoboken, New Jersey, USA: Published by John Wiley & Sons, Inc. 2010. 366 p.
4. Фаликман В.Р. Бетоны заданной функциональности – «Умные бетоны»: Материалы конференции ICCX Россия. СПб. 3–6 декабря 2019. С. 52–63.
4. Falikman V.R. High performance concrete – «Smart concretes». Materials of the conference ICCX Russia. St. Petersburg. December 3–6, 2019, pp. 52–63. (In Russian).
5. Singhal S., Chourasia A., Chellappa S., Parashar J. Precast reinforced concrete shear walls: State of the art review. Structural Concrete. 2019. Vol. 20. Iss. 3, pp. 886–898. DOI: https://doi.org/10.1002/suco.201800129
6. Xiao J., Liu L., Ding T., Xie Q. Experimental study on mechanical behavior of thermally damaged grouted sleeve splice under cyclic loading. Structural Concrete. 2020. Vol. 21. Iss. 6, pp. 2494–2514. DOI: https://doi.org/10.1002/suco.202000092
7. Sorensen J.H., Hoang L.C., Olesen J.F., Fischer G. Tensile capacity of loop connections grouted with concrete or mortar. Magazine of Concrete Research. 2017. Vol. 69. Iss. 17, pp. 892–904. DOI: https://doi.org/10.1680/jmacr.16.00466
8. FIB, bulletin No. 43. Structural connections for precast concrete buildings. Guide to good practice. The International Federation for Structural Concrete (fib). Lausanne, Switzerland. 2014. 370 p.
9. FIB, bulletin No. 74. Planning and design handbook on precast building structures. Manual/Textbook. The International Federation for Structural Concrete (fib). Lausanne, Switzerland. 2014. 313 p.
10. Румянцев Е.В. Особенности технологии применения мелкозернистых бетонов на основе сухих строительных смесей в монолитных стыках крупнопанельных зданий. Материалы конференции ICCX Россия. СПб. 1–4 декабря 2020. С. 55–57.
10. Rumyantsev E.V. Features of the technology for the use of fine-grained concrete based on dry construction mixtures in-situ joints of large-panel buildings. Materials of the ICCX Russia conference. St. Petersburg. December 1–4, 2020, pp. 55–57. (In Russian).
11. Nehdy M., Elsayed M., Provost-Smith D.J. Investigation of grouted precast concrete wall connections at subfreezing conditions. Material of Conference “Resilient infrastructure”. London, GB. 2016. pp. 1–10. https://www.researchgate.net/publication/304115263_INVESTIGATION_OF_GROUTED_PRECAST_CONCRETE_WALL_CONNECTIONS_AT_SUBFREEZING_CONDITIONS#fullTextFileContent (Date of access 03.02.2021).
12. Румянцев Е.В., Видякин А.А., Байбурин А.Х. Тем-пературный мониторинг монолитных стыков крупнопанельных зданий при зимнем бетонировании // Бетон и железобетон. 2020. № 1 (601). С. 42–48.
12. Rumyantsev E.V., Vidyakin A.A., Bayburin A.Kh. Temperature monitoring of monolithic joints of large-panel buildings during winter concreting. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2020. No. 1 (601), pp. 42–48. (In Russian).
13. Кокки П., Мякеля Х. Строительство в зимних условиях: Теплозащита и экономия энергии / Пер. с фин. В.П. Калинина; Под ред. С.А. Миронова. М.: Стройиздат, 1986. 84 с.
13. Kokki P., Myakel H. Stroitel’stvo v zimnih usloviyah: Teplozashchita i ekonomiya energii [Construction in winter conditions: Heat protection and energy saving. Trans. from Fin. V.P. Kalinina, Edited by S.A. Mironov]. Moscow: Stroyizdat. 1986. 84 p.
14. Okamura M., Ouchi H. Self-compacting high performance concrete. Progress in Structural Engineering and Materials. 1998. Vol. 1. Iss. 4, pp. 378–383. DOI: https://doi.org/10.1002/pse.2260010406
15. Self-compacting concrete. Procedings of the First International RILEM Symposium. Editied by A. Skarendahl and O. Petersson. RELEM Publication S.A.R.L., Stockholm, Sweden. 1999. 578 p.
16. Khayat K.H. Workability, testing, and performance of self-consolidating concrete. ACI Materials Journal. 1999. Vol. 96. No. 3, pp. 346–353.
17. Батудаева А.В., Кардумян Г.С., Каприелов С.С. Высокопрочные модифицированные бетоны из самовыравнивающихся смесей // Бетон и железобетон. 2005. № 4. С. 14–18.
17. Batudaeva A.V., Kardumyan G.S., Kaprielov S.S. High-strength modified concrete from self-compacting mixtures. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2005. No. 4, pp. 14–18. (In Russian).
18. Мозгалев К.М., Головнев С.Г., Мозгалева Д.А. Эффективность применения самоуплотняющихся бетонов при возведении монолитных зданий в зимних условиях // Вестник Южно-Уральского государственного университета. Сер. Строительство и архитектура. 2014. Т. 14. № 1. С. 33–37.
18. Mozgalev K.M., Golovnev S.G., Mozgaleva D.A. Efficiency of use of self-compacting concretes in the construction of monolithic buildings in winter conditions. Vestnik YUzhno-Ural’skogo gosudarstvennogo universiteta, Seriya «Stroitel’stvo i arhitektura». 2014. Vol. 14. No. 1, pp. 33–37. (In Russian).
19. Минаков Ю.А., Кононова О.В., Анисимов С.Н., Грязина М.В. Управление кинетикой твердения бетона при отрицательных температурах // Фундаментальные исследования. 2013. № 4. С. 307–311.
19. Minakov Yu.A., Kononova O.V., Anisimov S.N., Gryazina M.V. Management of concrete hardening kinetics at negative temperatures. Fundamental’nye issledovaniya. 2013. No. 4, pp. 307–311. (In Russian).
20. Баженов Ю.М., Демьянова В.С., Калашников В.И. Модифицированные высококачественные бетоны. М.: АСВ, 2006. 368 с.
20. Bazhenov Yu.M., Demyanova V.S., Kalashnikov V.I. Modificirovannye vysokokachestvennye betony [Modified high-quality concrete]. Moscow: ASV. 2006. 368 p.
21. Юань Ю., Лин В., Пе Т. Высококачественный цементный бетон с улучшенными свойствами. М.: АСВ, 2014. 448 с.
21. Yuan Yu., Lin V., Pe T. Vysokokachestvennyj cementnyj beton s uluchshennymi svojstvami [High-performance cement concrete with improved properties] Moscow: ASV. 2014. 448 p.
22. Banfill P.F.G. Rheology of fresh cement and concrete. Rheology Reviews 2006. London, British Society of Rheology. 2006, pp. 61–130.
23. Hanehara S., Yamada K. Rheology and early age properties of cement systems. Cement and Concrete Research. 2008. Vol. 38. Iss. 2, pp. 175–195. DOI: https://doi.org/10.1016/j.cemconres.2007.09.006
24. Мозгалев К.М., Головнев С.Г. Самоуплотняющиеся бетоны: возможности применения и свойства // Академический вестник УралНИИПроект РААСН. 2011. № 4. С. 70–74.
24. Mozgalev K.M., Golovnev S.G. The self-compacting concrete: possibilities of application and properties. Akademicheskij vestnik UralNIIProekt RAASN. 2011. No. 4, pp. 70–74. (In Russian).
25. Баженов Ю.М., Алимов В.В., Воронин В.В. Наномодифицированные высококачественные бетоны. М.: АСВ, 2017. 198 с.
25. Bazhenov, Yu.M., Alimov V.V., Voronin V.V. Nanomodificirovannye vysokokachestvennye betony [Nanomodified high-performance concrete]. Moscow: ASV. 2017. 198 p.
26. Hocevar A., Kavcic F., Bokan-Bosiljkov V. Rheological parameters of fresh concrete – comparison of rheometers. GRADEVINAR 65. 2013. No. 2, pp. 99–109.
27. Ken W.D., Aldred J., Hudson B. Concrete mix design, quality control and specification. N.Y.: CRC Press. 2017. 349 p.
28. Roussel N. Rheology of fresh concrete: from measurements to predictions of casting processes. Materials and Structures. 2007. Vol. 40. Iss. 10, pp. 1001–1012. DOI: https://doi.org/10.1617/s11527-007-9313-2
29. Ghafoori N., Diawara H. Influence of temperature on fresh performance of self-consolidating concrete. Construction and Building Materials. 2010. Vol. 24. Iss. 6, pp. 946–955. DOI: https://doi.org/10.1016/j.cemconres.2011.01.009
30. Petit J.-Y., Wirquin E., Khayat K.H. Effect of temperature on the rheology of flowable mortars concrete. Cement & Concrete Composites. Vol. 32. Iss. 1. Jenuary 2010, pp. 43–53. DOI: https://doi.org/10.1016/j.cemconcomp.2009.10.003
31. Schmidt W., Brouwers H.J.H., Kuhne H.C., Meng B. Influences of superplasticizer modification and mixture composition on the performance of self-compacting concrete at varied ambient temperatures. Cement & Concrete Composites. Vol. 49. May 2014, pp. 111–126. DOI: https://doi.org/10.1016/j.cemconcomp.2013.12.004
32. Fernandez-Altable V., Casanova I. Influence of mixing sequence and superplasticiser dosage on the rheological response of cement pastes at different temperatures. Cement and Concrete Research. Vol. 36. Iss. 7. July 2006, pp. 1222–1230. DOI: https://doi.org/10.1016/j.cemconres.2006.02.016
33. Mohd Z., Lai F.C. Sustainable high performance Self-compacting concrete by using new Antifreeze superplasticiser for the cold & Hot weather concreting. Proceedings of ICACS 2003, 17–19 September 2003, Xuzhou, China, pp. 985–989.
34. Benaicha M., Roguiez X., Jalbaud O., Burtschell Y., Alaoui A.H. Influence of silica fume and viscosity modifying agent on the mechanical and rheological behavior of self compacting concrete. Construction and Building Materials. Vol. 84. Iss. 1. June 2015, pp. 103–110. DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.061
35. Benaicha M., Roguiez X., Jalbaud O., Burtschell Y., Alaoui A.H. New approach to determine the plastic viscosity of self-compacting concrete. Frontiers of Structural and Civil Engineering. Vol. 10. Iss. 2. June 2016, pp. 198–208. DOI: https://doi.org/10.1007/s11709-015-0327-5
36. Иванов Д.А., Молодин В.В. Влияние миграции влаги на прочность бетона при его укладке на мерзлое бетонное основание. Актуальные проблемы и перспективы развития строительства, теплогазоснабжения и энергообеспечения: Материалы VII очной Международной научно-практической конференции / Под ред. Ф.К. Абдразакова. Саратов: ФГБОУ ВО Саратовский ГАУ, 2018. С. 129–140.
36. Ivanov D.A., Molodin V.V. The effect of moisture migration on the strength of concrete when it is laid on a frozen concrete base. Current problems and prospects for the development of construction, heat and gas supply and energy supply. Materials of the VII full-time International Scientific and Practical Conference. Edited by F.K. Abdrazakov. Saratov: Saratov GAU. 2018, pp. 129–140. (In Russian).
37. Плотников В.В. Химия вяжущих материалов и бетонов: Справочник: Учебное пособие. М.: АСВ, 2015. 400 с.
37. Plotnikov V.V. Himiya vyazhushchih materialov i betonov. [Chemistry of binding materials and concretes]. Reference: Tutorial. Moscow: Publishing House of the Association of Construction Universities. 2015. 400 p.

For citation: Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14

Analysis of the Causes of PVC Membrane Defects that Caused Soft Roof Leaks

Number of journal: 4-2021
Autors:

Domanskaya I.K.,
Fomin N.I.

DOI: https://doi.org/10.31659/0585-430X-2021-789-3-67-71
УДК: 692.415

 

AbstractAbout AuthorsReferences
Polymer flexible roll waterproofing materials (membranes) are widely used in the construction of flat and low-slope roofs of buildings and structures. Their projected service life is at least 20 years, but sometimes it comes much earlier. The results of the analysis of the most probable causes that caused the violation of the continuity of the PVC membrane and the formation of leaks of the soft roof of an industrial building after 1.5 years since its installation are presented. As the most likely factors that caused coating defects (cracks of different types and sizes) and, ultimately, roof leaks, are considered: non-compliance with the requirements for the conditions of transportation, storage and installation of PVC membranes at negative temperatures, as well as a biological external influencing factor (the corrosive effect of synanthropic bird droppings).
I.K. DOMANSKAYA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.I. FOMIN, Engineer, Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Ural Federal University named after the first President of Russia B.N. Yeltsin (19, Mira Street, Yekaterinburg, 620002, Russian Federation)

1. Azimbaeva A.A., Sazonova S.A. Selection of optimal roofing material in the climatic conditions of Perm region. Vestnik Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvo i arhitektura. 2016. Vol. 7. No. 3, pp. 11–24. (In Russian). DOI: https://doi.org/10.15593/2224-9826/2016.3.02
2. Bondarenko I.N., Sozinov S.V., Neiman S.M. Modern roofing materials and roof constructions that are used for residential and industrial buildings. Vestnik MGSU. 2010. No. 4–5, pp. 31–37. (In Russian).
3. Voronin A.M., Shitov A.A., Peshkova A.V. Service life of bituminous and polymer materials in roofing carpet. Part II. Stroitel’nye Materialy [Construction Materials]. 2007. No. 3, pp. 8–11. (In Russian).
4. Sevost’yanova I.M., Subbotina E.K., Ivanova E.R., Amzarakova P.A., Lukina L.A. Analysis of the use of polyvinyl chloride membranes in construction. Moskovskij ekonomicheskij zhurnal. 2019. No. 7. URL: https://cyberleninka.ru/article/n/analiz-ispolzovaniya-membrany-iz-polivinilhlorida-v-stroitelstve (Date of access 22.07.2020). (In Russian).
5. Novotný M. Degradation of PVC waterproofing membrane containing plasticizers. In IOP Conference Series: Materials Science and Engineering. 2020. Vol. 728. Institute of Physics Publishing. URL: https://doi.org/10.1088/1757-899X/728/1/012008.
6. Woolley T., Kimmins S. Green Building Handbook. Taylor&Francis. 2010. doi:10.4324/9780203301715_chapter_6
7. Cash C.G., Bailey D.M. Predictive service life tests for roofing membranes: Phase 2. Durability of Building Materials & Components 7. Vol. 2. 2014, pp. 1023–1034. Taylor and Francis. https://doi.org/10.4324/9781315025018
8. Lounis Z., Lacasse M.A., Vanier D.J., Kyle B.R. Towards standardization of service life prediction of roofing membranes. ASTM Special Technical Publication. 1999, pp. 3–18. https://doi.org/10.1520/stp13295s
9. Igoshin Yu.G. Predicting the durability of roofing materials. Krovli. 2007. No. 4, pp. 2–4. (In Russian).
10. Ricks C. Roof leaks: pinpointing and repairing. Waterproof! Magazine. 2010. No. 1, pp. 18–25.
11. Babaian A.D., Aksenova S.M. Roofing with the use of rolled elastomeric materials. Techniques and technologies construction. 2020. No. 1 (21), pp. 26–32. (In Russian). URL: https://sibadi.org/upload/PIO/ttc/TTC_5_21.pdf (Date of access 16.12.2020)
12. Mishin A.G., Pichugin A.P., Khritankov V.F., Denisov A.S., Kudryashov A.Yu. Features of construction and technical operation of membrane roofs in Siberia. Stroitel’nye Materialy [Construction Materials]. 2018. No. 10, pp. 53–58. DOI: https://doi.org/10.31659/0585-430X-2018-764-10-53-58 (In Russian).
13. Voloshin E.I. Sazonova S.A. The efficiency of the organic fertilizers application in agrarian and industrial complex of Krasnoyarsk region. Vestnik KrasGAU. 2016. No. 4 (115), pp. 138–146. (In Russian).
14. Ekologicheskie osnovy ispol’zovaniya ptich’ego pometa. Rekomendacii [Ecological basis for the use of poultry litter. Recommendations]. Under the general editorship of V.M. Krasnitsky. Omsk: LITERA. 2014. 44 p.
15. Spennemann D.H.R., Pike M., Watson M.J. Effects of acid pigeon excreta on building conservation. International Journal of Building Pathology and Adaptation. 2017. Vol. 35, No. 2–15, pp. 11–24.

For citation: Domanskaya I.K., Fomin N.I. Analysis of the causes of PVC membrane defects that caused soft roof leaks. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-67-71

Estimation of Stability of Operational Indicators Thermal Insulating Composites on the Results of Local Stand Tests

Number of journal: 4-2021
Autors:

Susoeva I.V.,
Vakhnina T.N.,
Grunin Yu.B.,
Titunin A.A.

DOI: https://doi.org/10.31659/0585-430X-2021-790-4-58-66
УДК: 536.212.3

 

AbstractAbout AuthorsReferences
The changes in the parameters of thermal insulation plate materials based on a matrix of thermosetting phenol-formaldehyde binder and filler from cellulose-containing waste from the processing of wood, flax and cotton under the conditions of full-scale bench tests for 12 months were studied. The results of determining the strength of materials under static bending, thickness swelling after 24 hours in water, and the coefficient of thermal conductivity are presented. Samples of the material were tested after 3, 6, 9 and 12 months of stay in atmospheric conditions. The composite has a high stability of physical and mechanical parameters under prolonged impact of variable values of temperature and humidity. The thermal insulation composite obtained by the authors from cellulose-containing waste on a phenol-formaldehyde binder after a year of testing in atmospheric conditions has a residual strength of 0.87–0.9. The thermal conductivity coefficient of the material varies in the range of 0.001–0.003 W/m.K. The spread of the obtained values of the thermal conductivity coefficient of the material is comparable to the random scattering of this parameter in the experiment, due to the influence of the error of the device and the influence of random factors. The paper solves the problem of creating a thermal insulation material from unused lignocellulose waste that has a long-term resistance to variable temperature and humidity influences.
I.V. SUSOEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.N. VAKHNINA1, Candidate of Sciences (Engineering);
Yu.B. GRUNIN2, Doctor of Sciences (Chemistry);
A.A. TITUNIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kostroma State University (17, Dzerzhinskogo Street, Kostroma,156005, Russian Federation)
2 Volga State Technological University (3, Lenina Square, Yoshkar-Ola, Republic of Mari El, 424000, Russian Federation)

1. Order of the Government of the Russian Federation of 05/10/2016 No. 868-r. On the approval of the Strategy for the development of the construction materials industry for the period up to 2020 and further perspective until 2030 (Electronic resource) URL: http:// http://www.consultant.ru (date of access: 23.11.2020).
2. Zaprudnov V.I. Trekhsloynyye konstruktsii s drevesnotsementnymi teploizolyatsionnymi sloyami [Three-layer constructions with wood-cement heat-insulating layers]. Moscow: MGUL. 2006. 322 p.
3. Batalin B.S., Krasnovskikh M.P. Durability and heat resistance of foam polystyrene. Stroitel’nye Materialy [Construction Materials]. 2014. No. 8, pp. 64–67. (In Russian).
4. Susoeva I.V., Vakhnina T.N., Titunin A.A., Asatkina J.A. Theperformance of composites from vegetable raw materials with changes in temperature and humidity. Magazine of Civil Engineering. 2017. No. 3 (71), pp. 39–50.
5. Mureev P.N., Kotlov V.G., Makarov A.N., Ivanov A.V., Fedosov S.V. A method for determining changes in thermal resistance and thermal conductivity coefficient along the thickness of the outer wall during thermophysical tests in natural conditions. Actual problems of construction and road complexes. Materials of the international scientific and technical conference dedicated to the 50th anniversary of the Institute of Civil Engineering and Architecture of PSTU. 2019, pp. 225–234. (In Russian).
6. Turkovskiy S.B., Varfolomeyev Yu.A. Results of fullscale inspections of wooden structures. Promyshlennoye stroitelstvo. 1984. No. 6, pp. 19–20. (In Russian).
7. Khrulev V.M. Durability of glued wood compounds impregnated with synthetic oligomers. Izvestiya vysshikh uchebnykh zavedeniy. Stroitelstvo i arkhitektura. 1969. No. 2, pp. 61–68. (In Russian).
8. Kasatkin V.B., Bondin V.F. Long-term tests of armored wooden beams in the conditions of the Far North. Izvestiya vysshikh uchebnykh zavedeniy. Stroitelstvo i arkhitektura. 1972. No. 11, pp. 12–14. (In Russian).
9. Turkovskiy S.B. Opyt primeneniya kleyenykh derevyannykh konstruktsiy v Moskovskoy oblasti [Experience in the application of glued wooden structures in the Moscow region]. Is. 2. Moscow: Stroyizdat. 1987. 54 p.
10. Kiseleva O.A., Plotnikova Ye.Ye. Yartsev V.P. Influence of climatic influences on strength of building products from modified wood. Proceedings of the V International Scientific and Technical Conference “Effective Building Constructions: Theory and Practice”. Penza. 2006, pp. 147–150. (In Russian).
11. Turkovskiy S.B., Lomakin A.D., Pogoreltsev A.A. Dependence of the state of glued wooden structures on the humidity of the ambient air. Industrial and civil engineering. Institute of Institution. Moscow: TsNIISK im. V.A. Kucherenko. 2012. No. 3, pp. 30–32. (rus).
12. Raknes E. Langtidsb best andighet av lim for baerende trekonstruksjoner // Norsk Skog industri. 1975. Vol. 30. No. 6, pp. 455–469.
13. Freydin A.S., Vuba K.T. Prognozirovaniye svoystv kleyevykh soyedineniy drevesiny [Forecasting properties of glued wood compounds]. Moscow: Lesnaya promyshlennost. 1980. 223 p.
14. Ananyev A.I., Lobov O.I., Mozhayev V.P., Vyazovchenko P.A. Actual and predicted durability of expanded polystyrene boards in external enclosing structures of buildings. Promyshlennoye i grazhdanskoye stroitelstvo. 2003. No. 4, pp. 54–56. (In Russian).
15. Yasin Yu.D., Yasin V.Yu., Li A.V. Styrofoam. Resource and aging of the material. Durability of structures. Stroitel’nye Materialy [Construction Materials]. 2002. No. 5, pp. 33– 35. (In Russian).
16. Freydin A.S. Prochnost i dolgovechnost kleyevykh soyedineniy [Strength and durability of adhesive joints]. Moscow: Khimiya. 1981. 272 p.
17. Utkina V.N., Selyayev V.P. Forecasting the durability of building materials and structures using the degradation function. Proceedings of the scientific-practical conference “Durability of building materials and structures”. Saransk. 1995, pp. 74–75.
18. Selyayev V.P., Merkulov I.I., Merkulov A.I. Numerical simulation of mechanical fracture of a threecomponent wood-filled composite. Izvestiya vysshikh uchebnykh zavedeniy. Stroitelstvo. 1997. No. 9, pp. 62–67. (In Russian).
19. Pokrovskaya Ye.N. Effect of aging on the structure and properties of the polymer composite wood. Proceedings of the international scientific and technical conference “Actual problems and prospects for the development of the timber industry complex”. Kostroma: KGTU. 2012, pp. 29–31. (In Russian).
20. Azarov V.I., Burov A.V., Obolenskaia A.V. Khimiia drevesiny i sinteticheskikh polimerov [Chemistry of wood and of synthetic polymers]. St. Petersburg: Lan’. 2010. 624 p.
21. Grunin Yu.B., Grunin L.Yu., Sheveleva N.N., Masas D.S., Fedosov S.V., Kotlov V.G. The character of changes in the cellulose supramolecular structure during hydration. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti. 2017. No. 2 (368), pp. 233–237. (In Russian).
22. GruninYu.B., GruninaT.Yu, Ivanova M.S., Fedosov S.V., Kotlov V.G. A 1Н-NMR-relaxation study of cotton cellulose supramolecular restructuring as the result of its biochemical degradation. Izvestiya vysshikh educational institutions. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti. 2019. No. 5 (383), pp. 124–130.(In Russian).
23. Fedosov S.V., Kotlov V.G., Aloyan R.M., Bochkov M.V., Ivanova M.A. Technique of experimental investigation of massconductivity characteristics of fibrous and wood-fiber materials. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti. 2016. No. 5 (365), pp. 90–93. (In Russian).
24. Jinchun Zhu. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials. 2013. No. 6, pp. 5171–5198. DOI: 10.3390/ma6115171
25. Kilyusheva N.V., Danilov V.E., Aizenshtadt A.M. Thermal insulation material from pine bark and its extract. Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 48–50. (In Russian).
26. Baiardo M., Zini E., Scandola M. Flax fibre–polyester composites. Composites: Part A. 2004. Vol. 35, pp. 703–710. https://doi.org/10.1016/j.compositesa.2004.02.004
27. Mohini Saxena, Asokan Pappu. Composite materials from natural resources: recent trends and future potentials. Advances in Composite Materials – Analysis of Natural and Man-Made Materials. 2011. Vol. 09, pp. 121–157. DOI: 10.5772/18264
28. Vistasp M. Karbhari. Durability of composites for civil structural applications. Elsevier Science. 2007. 400 p.

For citation: Susoeva I.V., Vakhnina T.N., Grunin Yu.B., Titunin A.A. Estimation of stability of operational indicators thermal insulating composites on the results of local stand tests. Stroitel’nye Materialy [Construction Materials]. 2021. No. 4, pp. 58–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-790-4-58-66

Microstructural Changes in Lime Mortars of Ancient Brick Masonries

Number of journal: 4-2021
Autors:

Kotlyar V.D.,
Pishchulina V.V.,
Popov Yu.V.,
Talpa B.V.

DOI: https://doi.org/10.31659/0585-430X-2021-790-4-47-53
УДК: 692.2:549.74

 

AbstractAbout AuthorsReferences
The results of studying the recrystallization of calcite in lime mortars of ancient brickwork, associated with the mechanism of transformation of portlandite, which originally constituted the basis of lime mortar, into calcite, are presented. It has been established that under natural conditions this process takes from 100 to 200 years. Examples are given showing that portlandite is completely transformed into calcite in masonry solutions of the 18th century. The study of the fine fraction of newly formed calcite, with a grain size of up to 5 microns, by X-ray diffraction methods, makes it possible to determine the degree of relative recrystallization of calcite. This is done based on the estimate of the peak width at half height (FWHM) for its main reflection from the plane – 3.03 Å, which allows using these data to estimate the relative age of brick and masonry of various monuments of architectural heritage. Factual data are presented, confirming that the degree of recrystallization of calcite in older lime solutions is significantly higher than in younger ones. The use of the proposed considered method for the relative assessment of the age of brick and masonry is especially important for the South of Russia, where many objects characteristic of the northern provinces of the Byzantine oikumene and other cultures erected using lime mortars have survived.
V.D. KOTLYAR1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. PISHCHULINA1, Doctor of Architecture (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.V. POPOV2, Candidate of Sciences (Geology and Mineralogy) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.V. TALPA2, Candidate of Sciences (Geology and Mineralogy) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Don State Technical University (1, Gagarin Square, 344000, Rostov-on-Don, Russian Federation)
2 Southern Federal University (105/42, B. Sadovaya Street, Rostov-on-Don, 344006, Russian Federation)

1. Kochetov V.A. Rimskii beton [Roman concrete]. Moscow: Stroyizdat. 1991. 114 p.
2. Mikulsky V.G., Gorchakov G.I., Kozlov V.V. and other. Stroitel’nye materialy [Building materials]. Moscow: ASV. 2004. 536 p.
3. Pishchulina V., Kotlyar V., Argun A. Integrated cross-disciplinary approach to dating the architectural heritage objects based on Abkhazia and Chechnya architectural monuments dating back from 2nd to 11th centuries. Proceedings of the 2nd International Conference on Art Studies: Science, Experience, Education (ICASSEE 2018). Vol. 284, pp. 613-617. https://doi.org/10.2991/icassee-18.2018.121
4. Komarova Ya.M., Aluker N.L., Bobrov V.V., Sorokina N.V. Dating archaeological ceramics by thermoluminescent method. Neorganicheskie materialy. 2011. Vol. 47. No. 5, рр. 614–618. (In Russian).
5. Martynov A.I. Arkheologiya [Archeology]. Moscow: Vysshaya shkola. 2002. 439 р. (In Russian).
6. Lyubomirsky N.V., Fedorkin S.I., Bakhtin A.S., Bakhtina T.A., Lyubomirskaya T.V. Research in influence of regimes of forced carbonate hardening on properties of materials on the basis of lime­limestone compositions of semidry pressing. Stroitel’nye Materialy [Construction Materials]. 2017. No. 8, pp. 7–12. DOI: https://doi.org/10.31659/0585-430X-2017-751-8-7-12. (In Russian).
7. Lyubomirsky N.V., Bakhtina T.A., Bakhtin A.S. Changes in the physical and mechanical properties of calcareous-carbonate-calcium materials of forced carbonate hardening in time. Stroitel’stvo i tekhnogennaya bezopasnost’. 2017. No. 8 (60), pp. 67–73. (In Russian).
8. Kotlyar V.D., Kozlov A.V., Zhivotkov O.I., Kozlov G.A. Calcium-silicate brick on the basis of microspheres and lime. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 17–21. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-17-21 (In Russian).
9. Gorshkov V.S., Savel’ev V.G., Fedorov N.F. Fizicheskaya khimiya silikatov i drugikh tugoplavkikh soedinenii [Physical chemistry of silicates and other refractory compounds]. Moscow: Vysshaya shkola. 1988. 400 р.
10. Popov Yu.V., Tsitsuashvili R.A., Popova N.M. Micromineral associations of an alkaline carbonate geochemical barrier in mine workings of the Belorechensk barite-polymetallic deposit. Fundamental’nye issledovaniya. 2014. No. 5–6, рр. 1248–1252. (In Russian).
11. Kotlyar V.D. The calcite crystallinity and the age of limestone brick mortars of medieval objects of the north of the Vyzantine oecumene. Materials and Technologies in Construction and Architecture II. Materials Science Forum – CATPID. 2019. Vol. 974, pp. 83–89. DOI: https://doi.org/10.4028/www.scientific.net/MSF.974.67
12. Pishchulina V.V., Kotlyar V.D. New data on the chronology of medieval architectural objects of the northern provinces of the Vizantin Oikumena. Collection of scientific works of the RAASN: Fundamental, exploratory and applied research of the Russian Academy of Architecture and Construction Sciences on the scientific support of the development of architecture, urban planning and construction industry of the Russian Federation in 2019. Russian Academy of Architecture and Construction Sciences. Moscow. 2020, pp. 72–81. (In Russian).
13. Pishchulina V.V., Kotlyar V.D. Complex interdisciplinary approaches to dating objects of architectural heritage of the IX–XIth centuries on the example of Abkhazia and Chechnya. Collection of materials of the International Scientific Conference: Art History: Science, Experience, Education. Moscow. 2019, pp. 244–252. (In Russian).
14. Pishchulina V., Kotlyar V., Argun A. The medieval lime mortars for carrying out dating of monuments (on the example of objects of Аbkhazia of the 2–11th c.). E3S Web Conf. Topical Problems of Architecture, Civil Engineering and Environmental Economics (TPACEE 2018). 2019. Vol. 91. Article Number 02006. https://doi.org/10.1051/e3sconf/20199102006

For citation: Kotlyar V.D., Pishchulina V.V., Popov Yu.V., Talpa B.V. Microstructural changes in lime mortars of ancient brick masonries. Stroitel’nye Materialy [Construction Materials]. 2021. No. 4, pp. 47–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-790-4-47-53

Ceramic Tiles Made of Mudstones as an Element of Roof-Design in the Appearance of Modern Megacities

Number of journal: 4-2021
Autors:

Lazareva Ya.V.,
Lapunova K.A.,
Orlova M.E.

DOI: https://doi.org/10.31659/0585-430X-2021-790-4-42-46
УДК: 691.424

 

AbstractAbout AuthorsReferences
A brief historical reference on the use of ceramic tiles in the architectural traditions of various countries, cultures and eras is given. The advantages and benefits of natural ceramic tiles in relation to other roofing materials used by builders and architects in the formation of the appearance of modern megacities are noted. The problem associated with the chaotic choice of building materials, in particular roofing materials, which don’t make it possible to perceive urban development as a single architectural ensemble, is identified. Examples of the use of various combinatorial solutions using the color and shape of tiles in roof design are given. It is proposed to use an alternative raw material base for obtaining ceramic tiles with increased physical and mechanical characteristics, which makes it possible to produce aesthetically attractive products of non-standard shapes and sizes. It is noted that when using mudstones as the main raw material, it is possible to reduce the cost of production, which will make it possible for domestic manufacturers of ceramic products to be competitive at the modern market of roofing materials, and also solve the problem of using previously explored deposits that have not yet found application in the production of ceramic materials.
Ya.V. LAZAREVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.A. LAPUNOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.E. ORLOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Don State Technical University (1, Gagarin Square, 344000, Rostov-on-Don, Russian Federation)

1. Zabalueva T.R. Istoriya arkhitektury i stroitel’noi tekhniki [History of architecture and construction technology]. Moscow: Eksmo. 2007. 736 p.
2. Lazareva Ya.V., Kotlyar A.V., Terekhina Yu.V. Structural and mechanical features of ceramic tiles based on mudstones and siliceous clays. Materials of the national scientific and practical conference. “Actual problems of science and technology”. Rostov-on-Don. 2020, pp. 1649–1651. (In Russian).
3. Okhotnaya A.S., Kotlyar V.D., Orlova M.E. Ceramic tiles: features of modern design and production technology. Technology of artistic processing of materials. Collection of materials of the XXI All-Russian scientific-practical conference. Izhevsk. 2018, pp. 319–324. (In Russian).
4. Koval’chuk A.V., Tolstikov V.P. Tiled hallmarks from the excavations of Panticapaeum 1990–1991. Drevnosti Bospora. 2005. No. 8, pp. 377–393. (In Russian).
5. Kotlyar V.D., Orlova M.E., Lapunova K.A., Lazare-va Ya.V. The history of appearance and the main stages of development of the production of ceramic tiles. CONSTRUCTION. ARCHITECTURE. ECONOMY. Materials of the International Forum “Victory May 1945”: a collection of articles. Ministry of Education and Science of the Russian Federation, Don State Technical University, Trade Union of Public Education and Science Workers of the Russian Federation. Rostov-on-Don. 2018, pp. 47–50. (In Russian).
6. Lazareva Y.V., Kotlyar A.V., Orlova M.E., Lapuno-va K.A Water permeability of argillite-based ceramic tiles. MATEC Web Conf. 2018. 04072. DOI: https://doi.org/10.1051/matecconf/201819604072
7. Kotlyar V.D., Lapunova K.A., Lazareva Ya.V., Usepyan I.M. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 28–31. (In Russian).
8. Lazareva Y.V., Lapunova K.A., Orlova M.E., Kotlyar A.V. Relationship of water absorption and water resistance of a ceramic tile from argillithlike clays. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 36–39. DOI: https://doi.org/10.31659/0585-430X-2018-758-4-36-39 (In Russian).
9. Lazareva Ya.V., Kotlyar A.V. Calculation of compositions of ceramic masses for production of tiles based on argillites. Stroitel’nye Materialy [Construction Materials]. 2020. No. 8, pp. 54–58. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-783-8-54-58
10. Lazareva Ya.V., Kotlyar A.V., Orlova M.E. Technological scheme for the production of clinker tiles on the basis of mudstones by the method of soft compression molding. Theory and practice of increasing the efficiency of building materials. Materials of the XIII International Scientific and Technical Conference of Young Scientists dedicated to the memory of Professor V.I. Kalashnikov. Penza. 2018, pp. 83–89. (In Russian).
11. Kotlyar A.V., Talpa B.V. Stone-like clayey rocks of the Eastern Donbass are promising raw materials for the production of wall ceramics. Proceedings of the scientific conference of students and young scientists with international participation “Actual problems of earth sciences”. Rostov-on-Don. 2015, pp. 49–51. (In Russian).
12. Kotlyar V.D., Lazareva Ya.V., Usepyan I.M., Zamanskii A.M. The main trends in the production of ceramic tiles. Construction and architecture-2015. Materials of the international scientific-practical conference. Rostov-on-Don. 2015, pp. 278–281. (In Russian).
13. Lazareva Ya.V., Lapunova K.A., Orlova M.E. The concept of roof-design in modern architecture and construction. Second Russian scientific and practical conference with international participation. Universal design – equal opportunity – comfortable environment. Moscow. 2018. pp. 231–237. (In Russian).
14. Lazareva Ya.V., Kotlyar V.D., Lapunova K.A., Eremenko G.N. The main directions of development of design and technology for the production of ceramic tiles // Dizajn. Materialy. Tehnologija. 2016. No. 3 (43), pp. 78–82. (In Russian).
15. Kotlyar V.D., Orlova M.E., Lapunova K.A. Technology and roof-design of ceramic tiles based on argillite-like clay. Technology of artistic processing of materials. Collection of materials of the XXI All-Russian scientific-practical conference. Izhevsk. 2018, pp. 311–314. (In Russian).

For citation: Lazareva Ya.V., Lapunova K.A., Orlova M.E. Ceramic tiles made of mudstones as an element of roof-design in the appearance of modern megacities. Stroitel’nye Materialy [Construction Materials]. 2021. No. 4, pp. 42–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-790-4-42-46

Methodology for Determining the Brick Design and the Possibility of its Application in Construction and Architecture

Number of journal: 4-2021
Autors:

Bozhko Y. A.,
Lapunova K.A.

DOI: https://doi.org/10.31659/0585-430X-2021-790-4-37-41
УДК: 691.421

 

AbstractAbout AuthorsReferences
The article reflects the issue of an integrated approach to the design and technical aesthetics of the architectural and spatial environment of modern cities. In the ceramic industry, the issue of a single approved terminology is acute, especially with regard to the aesthetic parameters of the face brick. The names of the colors of the brick, its surfaces and types of molding do not have uniform and legally fixed terms. Manufacturers have the right to give names to the collections of produced face bricks, based on their own preferences and a combination of certain factors. In this regard, there are problems with the unification of the nomenclature on the websites and software of distributors and dealers. The proposed brick-design system contains five main aesthetic characteristics of brickwork: color, texture, format, seam and type of masonry, each of which has several levels of complexity. The most objectively significant characteristics and their levels of complexity that most affect the visual perception of brickwork are determined. The influence of the color of the brick and the color of the seam on the overall appearance of the brickwork is considered. The structuring and combinatorics of aesthetic characteristics that influence the artistic expressiveness of brickwork are expressed in the levels of brick design. The article describes the sequence and formulates a methodology for evaluating the characteristics of brick-design, the use of which can be useful in the market assessment of already built buildings, in their design and at the stage of choosing the facing material, and can also help to consolidate a common terminology of aesthetic characteristics of bricks and masonry.
Yu.A. BOZHKO, Еngineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.A. LAPUNOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Don State Technical University (1, Gagarin Square, 344000, Rostov-on-Don, Russian Federation)

1. Zaharov A.I., Kuhta M.S. The form of ceramic products: philosophy, design, technology. Dizayn i obshhestvo. 2015. No. 1, pp. 1–224. (In Russian).
2. Karimova I.S. Ob’ektivnoe i sub’ektivnoe v dizajne sredy [Objective and subjective in the design of the environment]. Мonograph. Blagoveshchensk: ASV. 2012. 116 p.
3. Meskhi B.Ch., Bozhko Yu.A., Terekhina Yu.V., Lapunova K.A. Brick-design and its main elements. Stroitel’nye Materialy [Construction Materials]. 2020. No. 8, pp. 47–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-783-8-47-51
4. Bozhko Yu.A., Lapunova K.A. Types of the front surface of soft-formed ceramic bricks. Actual problems of science and technology. Materials of the national scientific and practical conference. 2020, pp. 1644–1647. (In Russian).
5. Bozkko Yu.A., Lapunova K.A. The use of soft molded facing bricks in modern architecture. Dizajn. Materialy. Tehnologija. 2018. No. 1, pp. 61–65. (In Russian).
6. Volkodaeva I.B., Solov’eva N.V. Architectural ceramics in design. Concepts in modern design. Collection of materials of the II All-Russian scientific online conference with international participation. 2020, pp. 198–200. (In Russian)
7. Shlegel I.F. Izdeliya arhitekturnye keramicheskie. Obshhie tehnicheskie uslovija [Ceramic architectural products. General specifications]. Omsk. 2012. 74 p.
8. Zhmakin A.A. Al’bom kladok [Masonry album]. Rostov-on-Don: Phoenix. 2012. 118 p.
9. 9. Stolboushkin A.Yu., Akst D.V. Investigation of the decorative ceramics of matrix structure from iron-ore waste with vanadium component addition. Materials Science Forum. 2018. Vol. 931, pp. 520–525. https://doi.org/10.4028/www.scientific.net/MSF.931.520
10. Timofeev A.N., Popov A.N., Polishhuk M.N. Innovative brick wall technology. Sovremennoe mashinostroenie. Nauka i obrazovanie. 2016. No. 5, pp. 744–755. (In Russian).
11. Trifonova E.A., Vechkasova E.N. The use of brickwork in modern design and construction. Prospects for the use of decorative masonry. Universum: tehnicheskie nauki. 2018. No. 4 (49). (In Russian).
12. Crossbar-brick: unconventional solutions for centuries. Stroitel’nye materialy, oborudovanie, tehnologii XXI veka. 2016. No. 1–2 (204–205), pp. 18–19. (In Russian).
13. Bozhko Y.A., Lapunova K.A. About the development of brick-design in Russia. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 21–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-21-24

For citation: Bozhko Y. A., Lapunova K.A. Methodology for determining the brick design and the possibility of its application in construction and architecture. Stroitel’nye Materialy [Construction Materials]. 2021. No. 4, pp. 37–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-790-4-37-41

https://www.traditionrolex.com/10