Estimation of Stability of Operational Indicators Thermal Insulating Composites on the Results of Local Stand Tests

Number of journal: 4-2021
Autors:

Susoeva I.V.,
Vakhnina T.N.,
Grunin Yu.B.,
Titunin A.A.

DOI: https://doi.org/10.31659/0585-430X-2021-790-4-58-66
УДК: 536.212.3

 

AbstractAbout AuthorsReferences
The changes in the parameters of thermal insulation plate materials based on a matrix of thermosetting phenol-formaldehyde binder and filler from cellulose-containing waste from the processing of wood, flax and cotton under the conditions of full-scale bench tests for 12 months were studied. The results of determining the strength of materials under static bending, thickness swelling after 24 hours in water, and the coefficient of thermal conductivity are presented. Samples of the material were tested after 3, 6, 9 and 12 months of stay in atmospheric conditions. The composite has a high stability of physical and mechanical parameters under prolonged impact of variable values of temperature and humidity. The thermal insulation composite obtained by the authors from cellulose-containing waste on a phenol-formaldehyde binder after a year of testing in atmospheric conditions has a residual strength of 0.87–0.9. The thermal conductivity coefficient of the material varies in the range of 0.001–0.003 W/m.K. The spread of the obtained values of the thermal conductivity coefficient of the material is comparable to the random scattering of this parameter in the experiment, due to the influence of the error of the device and the influence of random factors. The paper solves the problem of creating a thermal insulation material from unused lignocellulose waste that has a long-term resistance to variable temperature and humidity influences.
I.V. SUSOEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.N. VAKHNINA1, Candidate of Sciences (Engineering);
Yu.B. GRUNIN2, Doctor of Sciences (Chemistry);
A.A. TITUNIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kostroma State University (17, Dzerzhinskogo Street, Kostroma,156005, Russian Federation)
2 Volga State Technological University (3, Lenina Square, Yoshkar-Ola, Republic of Mari El, 424000, Russian Federation)

1. Order of the Government of the Russian Federation of 05/10/2016 No. 868-r. On the approval of the Strategy for the development of the construction materials industry for the period up to 2020 and further perspective until 2030 (Electronic resource) URL: http:// http://www.consultant.ru (date of access: 23.11.2020).
2. Zaprudnov V.I. Trekhsloynyye konstruktsii s drevesnotsementnymi teploizolyatsionnymi sloyami [Three-layer constructions with wood-cement heat-insulating layers]. Moscow: MGUL. 2006. 322 p.
3. Batalin B.S., Krasnovskikh M.P. Durability and heat resistance of foam polystyrene. Stroitel’nye Materialy [Construction Materials]. 2014. No. 8, pp. 64–67. (In Russian).
4. Susoeva I.V., Vakhnina T.N., Titunin A.A., Asatkina J.A. Theperformance of composites from vegetable raw materials with changes in temperature and humidity. Magazine of Civil Engineering. 2017. No. 3 (71), pp. 39–50.
5. Mureev P.N., Kotlov V.G., Makarov A.N., Ivanov A.V., Fedosov S.V. A method for determining changes in thermal resistance and thermal conductivity coefficient along the thickness of the outer wall during thermophysical tests in natural conditions. Actual problems of construction and road complexes. Materials of the international scientific and technical conference dedicated to the 50th anniversary of the Institute of Civil Engineering and Architecture of PSTU. 2019, pp. 225–234. (In Russian).
6. Turkovskiy S.B., Varfolomeyev Yu.A. Results of fullscale inspections of wooden structures. Promyshlennoye stroitelstvo. 1984. No. 6, pp. 19–20. (In Russian).
7. Khrulev V.M. Durability of glued wood compounds impregnated with synthetic oligomers. Izvestiya vysshikh uchebnykh zavedeniy. Stroitelstvo i arkhitektura. 1969. No. 2, pp. 61–68. (In Russian).
8. Kasatkin V.B., Bondin V.F. Long-term tests of armored wooden beams in the conditions of the Far North. Izvestiya vysshikh uchebnykh zavedeniy. Stroitelstvo i arkhitektura. 1972. No. 11, pp. 12–14. (In Russian).
9. Turkovskiy S.B. Opyt primeneniya kleyenykh derevyannykh konstruktsiy v Moskovskoy oblasti [Experience in the application of glued wooden structures in the Moscow region]. Is. 2. Moscow: Stroyizdat. 1987. 54 p.
10. Kiseleva O.A., Plotnikova Ye.Ye. Yartsev V.P. Influence of climatic influences on strength of building products from modified wood. Proceedings of the V International Scientific and Technical Conference “Effective Building Constructions: Theory and Practice”. Penza. 2006, pp. 147–150. (In Russian).
11. Turkovskiy S.B., Lomakin A.D., Pogoreltsev A.A. Dependence of the state of glued wooden structures on the humidity of the ambient air. Industrial and civil engineering. Institute of Institution. Moscow: TsNIISK im. V.A. Kucherenko. 2012. No. 3, pp. 30–32. (rus).
12. Raknes E. Langtidsb best andighet av lim for baerende trekonstruksjoner // Norsk Skog industri. 1975. Vol. 30. No. 6, pp. 455–469.
13. Freydin A.S., Vuba K.T. Prognozirovaniye svoystv kleyevykh soyedineniy drevesiny [Forecasting properties of glued wood compounds]. Moscow: Lesnaya promyshlennost. 1980. 223 p.
14. Ananyev A.I., Lobov O.I., Mozhayev V.P., Vyazovchenko P.A. Actual and predicted durability of expanded polystyrene boards in external enclosing structures of buildings. Promyshlennoye i grazhdanskoye stroitelstvo. 2003. No. 4, pp. 54–56. (In Russian).
15. Yasin Yu.D., Yasin V.Yu., Li A.V. Styrofoam. Resource and aging of the material. Durability of structures. Stroitel’nye Materialy [Construction Materials]. 2002. No. 5, pp. 33– 35. (In Russian).
16. Freydin A.S. Prochnost i dolgovechnost kleyevykh soyedineniy [Strength and durability of adhesive joints]. Moscow: Khimiya. 1981. 272 p.
17. Utkina V.N., Selyayev V.P. Forecasting the durability of building materials and structures using the degradation function. Proceedings of the scientific-practical conference “Durability of building materials and structures”. Saransk. 1995, pp. 74–75.
18. Selyayev V.P., Merkulov I.I., Merkulov A.I. Numerical simulation of mechanical fracture of a threecomponent wood-filled composite. Izvestiya vysshikh uchebnykh zavedeniy. Stroitelstvo. 1997. No. 9, pp. 62–67. (In Russian).
19. Pokrovskaya Ye.N. Effect of aging on the structure and properties of the polymer composite wood. Proceedings of the international scientific and technical conference “Actual problems and prospects for the development of the timber industry complex”. Kostroma: KGTU. 2012, pp. 29–31. (In Russian).
20. Azarov V.I., Burov A.V., Obolenskaia A.V. Khimiia drevesiny i sinteticheskikh polimerov [Chemistry of wood and of synthetic polymers]. St. Petersburg: Lan’. 2010. 624 p.
21. Grunin Yu.B., Grunin L.Yu., Sheveleva N.N., Masas D.S., Fedosov S.V., Kotlov V.G. The character of changes in the cellulose supramolecular structure during hydration. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti. 2017. No. 2 (368), pp. 233–237. (In Russian).
22. GruninYu.B., GruninaT.Yu, Ivanova M.S., Fedosov S.V., Kotlov V.G. A 1Н-NMR-relaxation study of cotton cellulose supramolecular restructuring as the result of its biochemical degradation. Izvestiya vysshikh educational institutions. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti. 2019. No. 5 (383), pp. 124–130.(In Russian).
23. Fedosov S.V., Kotlov V.G., Aloyan R.M., Bochkov M.V., Ivanova M.A. Technique of experimental investigation of massconductivity characteristics of fibrous and wood-fiber materials. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti. 2016. No. 5 (365), pp. 90–93. (In Russian).
24. Jinchun Zhu. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials. 2013. No. 6, pp. 5171–5198. DOI: 10.3390/ma6115171
25. Kilyusheva N.V., Danilov V.E., Aizenshtadt A.M. Thermal insulation material from pine bark and its extract. Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 48–50. (In Russian).
26. Baiardo M., Zini E., Scandola M. Flax fibre–polyester composites. Composites: Part A. 2004. Vol. 35, pp. 703–710. https://doi.org/10.1016/j.compositesa.2004.02.004
27. Mohini Saxena, Asokan Pappu. Composite materials from natural resources: recent trends and future potentials. Advances in Composite Materials – Analysis of Natural and Man-Made Materials. 2011. Vol. 09, pp. 121–157. DOI: 10.5772/18264
28. Vistasp M. Karbhari. Durability of composites for civil structural applications. Elsevier Science. 2007. 400 p.

For citation: Susoeva I.V., Vakhnina T.N., Grunin Yu.B., Titunin A.A. Estimation of stability of operational indicators thermal insulating composites on the results of local stand tests. Stroitel’nye Materialy [Construction Materials]. 2021. No. 4, pp. 58–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-790-4-58-66


Print   Email