Log in

Geopolymer Composition on the Basis of Expanded Clay Dust For Geotechnical Construction

Number of journal: 12-2021
Autors:

Knyazeva S.A.,
Yakovlev G.I.,
Harchenko I.Ya.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-69-72
УДК: 691.5

 

AbstractAbout AuthorsReferences
Portland cement production is associated with high consumption of minerals, significant energy demand and huge emissions of carbon dioxide into the atmosphere. Therefore, it is important to search for the ways to reduce the cement cost, as well as the negative impact of its production on the environment. An effective way to solve this problem may be the partial replacement of traditional mineral binders in geotechnical construction with composite binders based on geopolymer systems. The term “geopolymers” unites all mineral hydraulic binders obtained by alkaline activation of aluminosilicate raw materials of natural and technogenic origin. In this paper, the possibility of producing a geopolymer based on expanded clay dust is assessed. Expanded clay dust is a waste of the expanded clay production industry, captured in the dust cleaning systems of kilns (dust collection chambers, cyclones, filters). In the course of this research, it was found out that expanded clay dust has sufficient hydraulic activity both when mixed with water and with various alkaline activators. Due to the fact that geopolymer systems and products of their hydration are similar in chemical and mineral composition to natural soils, injectable mixtures based on geopolymers can be effectively used for hardening and compacting soils and solving other geotechnical problems.
S.A. KNYAZEVA1, Engineer (graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.Ya. HARCHENKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Science Research Centre for Underground Construction (SRC UC) (build. 6, 6, Stroiteley Street, Moscow, 119311, Russian Federation)

1. Kuznetsov V.V. Fizicheskaya i kolloidnaya khimiya [Physical and colloidal chemistry]. Moscow: Vysshaya shkola. 1968. 390 p.
2. Anan’ev V.P., Potapov A.D. Inzhenernaya geologiya [Engineering Geology]. Moscow: Vysshaya shkola. 2002. 511 p.
3. Malinin A.G. Struinaya tsementatsiya gruntov [Jet-grouting of soils]. Moscow: Stroyizdat. 2010. 226 p.
4. Haihua Y., Liang L., Wu Y., Hanlong L., Waqas A., Ayaz A., Fahid A., Panuwat J. A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review. Case Studies in Construction Materials. 2021. Vol. 16. DOI: https://doi.org/10.1016/j.cscm.2021.e00830
5. Falikman V.R., Ohotnikova K.YU. Geopolymer binders and concretes in modern construction. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. 2015. No. 4 (35). Part 1, pp. 93–97. (In Russian).
6. Struck K.V., Butenko Yu.V., Batarshin V.O. Geopolymer concretes. Fundamentals of building materials science. Collection of reports of the International Online Congress. 2017, pp. 395–402. (In Russian).
7. Korneev V.I., Brykov A.S. Development prospects of general construction binders. Geopolymers and their distinctive features. Cement i ego primenenie. 2010. No. 2, pp. 51–55. (In Russian).
8. Onatsky S.P. Proizvodstvo keramzita [Production of expanded clay]. Moscow: Stroyizdat. 1971. 312 p.
9. Boldyrev A.S., Zolotov P.P., Lyusov A.N. i dr. Stroitel’nye materialy. Spravochnik. [Construction materials. Reference guide]. Moscow: Stroyizdat. 1989. 568 p.
10. Knyazeva S.A., Yakovlev G.I., Harchenko I.Ya., Saidova Z.S., Alexandrov A.M., Pudov I.A., Stevens A.E., Babaev A.I., Semyonova S.N. Geopolymer binder on the basis of expanded clay dust for injection mixtures in geotechnical construction. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 63–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-63-68
11. Gorshkov V.S., Timashev V.V., Savel’ev V.G. Metody fiziko-khimicheskogo analiza vyazhushchikh veshchestv [Methods of physico-chemical analysis of binders]. Moscow: Vysshaya shkola. 1981. 335 p.
12. Zyryanov M.S., Akhmetzhanov A.M., Urbanov A.V. Determination of pozzolanic activity of natural mineral supplements. Patterns and trends of innovative development of society. Collection of articles of the International Scientific and Practical Conference. 2016, pp. 28–31. (In Russian).
13. Zhernovoi F.E., Miroshnikov E.V. Comprehensive assessment of factors for increasing the strength of cement stone with additives of ultrafine perlite Vestnik BSTU named after V.G. Shukhov. 2009. No. 2, pp. 55–60. (In Russian).
14. Osin B.V. Negashenaya izvest’ kak novoe vyazhushchee veshchestvo [Quicklime as a new binder]. Moscow: Promstroyizdat. 1954. 384 p.
15. Bykova A.A., Mishanov A.A. Ways to solve environmental problems in the production of calcium chloride. Izvestiya TulGU. Tekhnicheskie nauki. 2014. Iss. 2, pp. 311–318. (In Russian).

For citation: Knyazeva S.A., Yakovlev G.I., Harchenko I.Ya. Geopolymer composition on the basis of expanded clay dust for geotechnical construction. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 69–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-69-72

Study of the Superabsorbent Polymer Additive Effectiveness to Reduce the Autogenous Shrinkage of Concrete without Reducing its Strength

Number of journal: 12-2021
Autors:

Sharafutdinov K.B.,
Saraykina K.A.,
Kashevarova G.G.
Erofeev V.T.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-61-68
УДК: 666.972

 

AbstractAbout AuthorsReferences
The results of experimental studies of the effect of different types of additives of superabsorbent polymers (SAP) on the strength of various types of concrete carried out by both domestic and foreign authors are analyzed. The purpose of research was to study the effectiveness of using a new type of additive to activate the processes of self-healing of cracks in concrete structures without losing hardened concrete. As a result of field experiments, the optimal dosage of the used additive was revealed. It is shown that the strength of concrete remains unchanged if the dosage of the superabsorbent additive (SAP) is equal to 0.5% of the cement weight or less. The results of a study of the properties of fine-grained and heavy concrete modified with a superabsorbent polymer additive are presented. The possibility of using modern intelligent technologies (artificial neural networks) to predict the properties of concrete mixture and finished concrete (cone spreading, bending and compressive strength) at given values of input parameters (dosages of SAP and I/C), on the characteristics of concrete is shown. This opens up the prospects of using a neural network to create materials with predefined properties.
K.B. SHARAFUTDINOV1, Engineer,
K.A. SARAYKINA1, Candidate of Sciences (Engineering);
G.G. KASHEVAROVA1,2, Doctor of Sciences (Engineering), Professor, Сorresponding member of RAACS;
V.T. EROFEEV2,3, Doctor of Sciences (Engineering), Academician of RAACS

1 Perm National Research Polytechnic University (29, Komsomolsky Prospect, Perm, 614990, Russian Federation)
2 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
3 National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 30005, Russian Federation)

1. Achal V. Microbial remediation of defects in building materials and structures: PhD thesis. India:Thapar University, Patiala. 2010. 263 p.
2. Castanier S., Métayer-Levrel G.L., Perthuisot J.P. Bacterial roles in the precipitation of carbonate minerals. In: Riding R.E., Awramik S.M. (eds) Microbial Sediments. 2000, pp. 32–39. https://doi.org/10.1007/978-3-662-04036-2_5
3. Chun Xiang Qian, Qingfeng Pan, Ruixing Wang. Cementation of sand grains based on carbonate precipitation induced by microorganism. Science China Technological Sciences. 2010. Vol. 53 (8), pp. 2198–2206. DOI: 10.1007/s11431-009-3189-z
4. De Muynckab W., Coxa K., De Beliea N., Verstraeteb W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials. 2008. Vol. 22. Iss. 5, pp. 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011
5. Jonkers H.M., Schlangen E. Development of a bacteria-based self-healing concrete. Tailor Made Concrete Structures – New Solution for Society. 2008, pp. 425–430. DOI: 10.1201/9781439828410.ch72
6. De Muynck W., De Belie N., Verstraeteb W. Microbial carbonate precipitation in construction materials: A review. Ecological Engineering. 2010. Vol. 36. Iss. 2, pp. 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
7. Sanchez-Silva M. Microbial mediated deterioration of reinforced concrete structures. International Biodeterioration & Biodegradation. 2010. Vol. 64 (8), pp. 748–754. DOI:  10.1016/j.ibiod.2010.09.001
8. Park J., Park M., Chun W.-Y., Ghim S.-Y. Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology. 2010. Vol. 20 (4), pp. 782–788.
9. Wang J.Y., Van Tittelboom K., De Belie N., Verstratete W. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction Building Materials. 2012. Vol. 26. No. 1, pp. 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054
10. Akimov L., Ilenko N., Mizharev R., Cherkashin A., Vatin N., Chumadova L. Composite concrete modifier CM 02-10 and its impact on the strength characteristics of concrete. MATEC Web of Conferences 53, 01022 (2016). https://doi.org/10.1051/matecconf/20165301022
11. Frolov A., Cherkashin A., Akimov L.,Vatin N., Koltsova T., Nasibulin A., Tolochko O., Chumadova L. An impact of carbon nanostructured additives on the kinetics of cement hydration. Applied Mechanics and Materials. 2014. Vol. 725–726, pp. 425–430. DOI: 10.4028/www.scientific.net/AMM.725-726.425
12. Akimov L., Ilenko N., Mizharev R., Cherkashin A. Influence of plasticizing siliceous additives on the strength characteristics of concrete. Applied Mechanics and Materials. 2015. Vol. 725–726, pp. 461–468. DOI: 10.4028/www.scientific.net/AMM.725-726.461
13. Lee H.X.D., Wong H.S., Buenfeld N.R. Self-sealing of cracks in concrete using superabsorbent polymers. Cement and Concrete Research. 2016. Vol. 79, pp. 194–208. https://doi.org/10.1016/j.cemconres.2015.09.008
14. Бруяко М.Г., Григорьева А.И., Голотенко Д.С., Подсевалова А.А. Биомодифицирование строительных материалов бактериями с уреазной активностью // Строительство и реконструкция. 2020. № 2 (88). C. 5–15.
14. Bruyako M.G., Grigorieva A.I., Golotenko D.S., Podsevalova A.A. Biomodification of building materials by bacteria with urease activity. Stroitel’stvo i rekonstruktsiya. 2020. No. 2 (88), pp. 5–15. (In Russian).
15. Ерофеев В.Т., Фомичев В.Т. Химические аспекты процесса устранения трещин бетона с помощью бактерий // Транспортные сооружения: Интернет-журнал. 2018. Т. 5. № 3. С. 12. https://t-s.today/PDF/13SATS318.pdf
15. Erofeev V.T., Fomichev V.T. Chemical aspects of the process of eliminating concrete cracks with the help of bacteria. Transportnyye sooruzheniya: Online Journal. 2018. Vol. 5. No. 3, p. 12. https: //t-s.today/PDF/13SATS318.pdf (In Russian).
16. Ерофеев В.Т., Смирнов В.Ф. Бактерии для получения самовосстанавливающихся бетонов. Транс-портные сооружения: Интернет-журнал. 2018. T. 5. № 4. С. 6. https://t-s.today/PDF/07SATS418.pdf
16. Erofeev V.T., Smirnov V.F. Bacteria for obtaining self-healing concretes. Transportnyye sooruzheniya: Online Journal. 2018. Vol. 5. No. 4, p. 6. https://t-s.today/PDF/07SATS418.pdf (In Russian).
17. Bobrishev A.A., Shafigullin L.N., Erofeev V.T., Treshchev A.A., Study of effects of redispersable latex powders on hardening kinetics of cement-sand composites. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. Vol. 7 (4), pp. 795–802.
18. Erofeev V., Bobryshev A., Lakhno A., Shafigullin L., Khalilov I., Sibgatullin K., Igtisamov R. Theoretical evaluation of rheological state of sand cement composite systems with polyoxyethylene additive using topological dynamics concept. Solid State Phenomena. 2016. Vol. 871, pp. 96–103. DOI: 10.4028/www.scientific.net/MSF.871.96.
19. Pattharaphon C., Hiroshi Y. Paponpat P. Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Construction and Building Materials. 2020. Vol. 233. 116975. https://doi.org/10.1016/j.conbuildmat.2019.116975
20. Byoungsun P., Young C.C. Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Construction and Building Materials. 2018. Vol. 189, pp. 1054–1066. https://doi.org/10.1016/j.conbuildmat.2018.09.061
21. Silva E., Alejandro M.R.M., Lopes A.N.M., Dias R.T.F. Effect of sap on the autogenous shrinkage and compressive strength of high-strength fine-grained concrete. 2020. Conference: International Conference Application of Superabsorbent Polymers and other New Admixtures in Concrete Construction.
22. Meyst L., Kheir J., Roberto J.T.F., Tittelboom K.V. The use of superabsorbent polymers in high performance concrete to mitigate autogenous shrinkage in a large-scale demonstrator. Sustainability. 2020. 12 (Special Issue Crack Prediction and Preventive Repair Methods for the Increasing Sustainability and Safety Requirements of Structures). DOI: 10.3390/su12114741
23. Kang S.H., Hong S.G., Moon J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete. Construction and Building Materials. 2018. Vol. 172, pp. 29–40. https://doi.org/10.1016/j.conbuildmat.2018.03.193
24. Olawuyi B.J., Babafemi A.J., Boshoff W.P. Early-age and long-term strength development of high-performance concrete with SAP. Construction and Building Materials. 2021. Vol. 267. 121798 https://doi.org/10.1016/j.conbuildmat.2020.121798
25. Li L., Dabarera A.G.P., Dao V. Time-zero and deformational characteristics of high performance concrete with and without superabsorbent polymers at early ages. Construction and Building Materials. 2020. Vol. 264. 120262 https://doi.org/10.1016/j.conbuildmat.2020.120262
26. Tan Y., Lu X., He R., Chen H. Influence of superabsorbent polymers (SAPs) type and particle size on the performance of surrounding cement-based materials. Construction and Building Materials. 2020. Vol. 270. 121442. DOI: 10.1016/j.conbuildmat.2020.121442
27. Попов Д.Ю., Лесовик В.С., Мещерин В.С. Влияние суперабсорбирующих полимеров на пластическую усадку цементного камня // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 11. С. 6–12.
27. Popov D.Y., Lesovik V.S., Mechtcherine V.S. Influence of superabsorbent polymers on plastic shrinkage of cement stone. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2016. No. 11, pp. 6–12. (In Russian).

For citation: Sharafutdinov K.B., Saraykina K.A., Kashevarova G.G. Erofeev V.T. Study of the superabsorbent polymer additive effectiveness to reduce the autogenous shrinkage of concrete without reducing its strength. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 61–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-61-68

About the Mechanism of Destruction of the Protective Layer of Concrete Due to Reinforcement Corrosion

Number of journal: 12-2021
Autors:

Kurshpel A.V.,
Kurshpel V.Kh.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-55-60
УДК: 621.78.019.8

 

AbstractAbout AuthorsReferences
The purpose of the presented study was to draw attention to a serious defect in reinforced concrete structures operating under aggressive environment conditions – to the destruction of the protective layer of concrete due to corrosion of reinforcing rods. The protective layer of concrete with a thickness of 10-30 mm is designed to ensure the safety of steel reinforcement from aggressive environmental factors, however, over time, under the impact of various aggressive factors, its ability to protect the reinforcement from corrosion is noticeably reduced. Steel reinforcement, being covered with a layer of corrosion, exerts significant pressure on the protective layer of concrete, as a result, cracks of various orientations form between the reinforcement and concrete, this contributes to the rapid penetration of aggressive factors to the reinforcement, to an increase in the intensity of corrosion and further to the separation of the protective layer of concrete. Corrosion of the reinforcement in the open air occurs even more intensively, which leads to a rapid decrease in the area of the working section of the reinforcement and premature collapse of structures from the operating load. To eliminate this drawback, it is proposed to install fiberglass nets in the protective layer of concrete that can increase the crack resistance of concrete under aggressive external impacts and prevent the separation of the protective layer of concrete from the reinforced concrete structure (RF patent No. 2744905 of December 26, 2018). This measure will make it possible to create reinforced concrete structures of increased reliability and durability.
A.V. KURSHPEL, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V. Kh. KURSHPEL, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Ural Federal University named after the first President of Russia B.N. Yeltsin, Institute of Civil Engineering and Architecture (17, Mira Street, Ekaterinburg, 620002, Russian Federation)

1. Alekseev S.N. Korroziya i zashchita armatury v betone [Corrosion and owprotection of reinforcement in concrete]. Moscow: Stroyizdat. 1968. 231 p.
2. Vasiliev A.I. Evaluation of corrosion wear of working reinforcement in beams of spans of road bridges. Beton i zhelezobeton [Concrete and reinforced concrete]. 2000. No. 2, pp. 20–23. (In Russian).
3. Alekseev S.N., Ivanov F.M., Modra S., Shissl P. Dolgovechnost’ zhelezobetona v agressivnykh sredakh [Durability of reinforced concrete in aggressive environments]. Moscow: Gosstroyizdat. 1990. 320 p.
4. Ivanov N.I. Sbornik zadach po soprotivleniyu materialov [Material resistance task book]. Moscow: Gostekhizdat. 1956. 352 p.
5. Zaitsev Y.V. Mekhanika razrusheniya dlya stroitelei [Mechanics of destruction for builders]. Moscow: Vysshaja shkola. 1991. 287 p.
6. Patent RF 2744905 Sposob povysheniya nadezhnosti i dolgovechnosti zhelezobetonnykh konstruktsii [Method for improving reliability and durability of reinforced concrete structures]. Kurshpel V.H., Kurchpel A.V. Published 17.03.2021 (In Russian).
7. Davidyuk A.N., Spivak N.A. Application of high-strength composites for reinforcement of reinforced concrete structures. Beton i zhelezobeton [Concrete and reinforced concrete]. 2016. No. 2, pp. 13–16.
8. Wildavsky Y.M., Aslanova L.G. Primenenie stekloplastikovoi armatury v betonakh spetsial’nogo naznacheniya. Korrozionnaya stoikost’ betona, armatury i zhelezobetona v agressivnykh sredakh [Application of fiberglass reinforcement in special-purpose concrete. Corrosion resistance of concrete, reinforcement and reinforced concrete in aggressive environments]. Moscow: NIIZB, Gosstroy of the USSR. 1988.
9. Yudovich G.E., Zvezdov A.I., Dzhantimirov Kh.A., Zubekhin S.A. Mineral reinforcement in nanomodified Portland cement matrix. Beton i zhelezobeton. 2016. No. 3, pp. 9–12. [Concrete and reinforced concrete] (In Russian).
10. Shilin A.A., Pshenichniy V.A., Kartuzov D.V. Usilenie zhelezobetonnykh konstruktsii kompozitnymi materialami [Reinforcement of reinforced concrete structures with composite materials]. Moscow: Stroyizdat. 2004. 144 p.
11. Kustikova Y.O., Rimshin V.I., Shubin L.I. Practical recommendations and feasibility studies for the use of composite reinforcement in reinforced concrete structures of buildings and structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 7, pp. 14–19. (In Russian).

For citation: Kurshpel A.V., Kurshpel V.Kh. About the mechanism of destruction of the protective layer of concrete due to reinforcement corrosion. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 55–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-55-60

Composition and Properties of Self-Compacting Concrete Using a Complex of Modifiers

Number of journal: 12-2021
Autors:

Nelubova V.V.,
Usikov S.A.,
Strokova V.V.,
Netsvet D.D.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-48-54
УДК: 666.972.7

 

AbstractAbout AuthorsReferences
Modern construction is practically impossible to implement without the use of high-quality modified concrete, characterized by multicomponence and wide functionality. Among the variety of new types of concretes, self-compacting concretes are notably stand out, characterizing by high mobility of the mixture and resistance to delamination with a low water content in the system and, as a result, the ability to fill various matrix forms, including densely reinforced elements. To obtain a self-compacting concrete mixture with the required rheological parameters it is necessary to use a low water-cement ratio, a high proportion of dispersed and plasticising additives, etc. The paper proposes the use of an organo-mineral modifier of carbonate-silica composition and a hyperplasticiser. The powder modifier is characterized by sufficient activity (according to the sorption capacity and adsorption centers on the surface). The combined use of additives ensures the production of a high-density mobile mixture, resistant to delamination and characterized by sufficient retention of properties over time. Compositions of self-compacting concrete mixtures of heavy concrete with high mobility and resistance to delamination have been obtained, providing concrete with a compressive strength of 85–97 MPa corresponding to classes B60–B75 with a significant margin of strength, water resistance up to W14. The obtained nomograms can be used in the tasks of selecting the composition of durable and high-strength concrete of high quality.
NELUBOVA V.V., Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
USIKOV S.A., Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
STROKOVA V.V., Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
NETSVET D.D., Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Alos Dushimimana A., Niyonsenga A.A., Nzamurambaho F. A review on strength development of high performance concrete. Construction and Building Materials. 2021. Vol. 307. 124865. https://doi.org/10.1016/j.conbuildmat.2021.124865
2. Du J., Meng W., Khayat K. H., Bao Y., Guo P., Lyu Z., Abu-obeidah A., Nassif H., Wang H. New development of ultra-high-performance concrete (UHPC). Composites Part B: Engineering. 2021. Vol. 224. 109220. https://doi.org/10.1016/j.compositesb.2021.109220
3. Phares B., Freeseman K. Investigation of Macro-Defect-Free Concrete for ABC including Robotic Construction. February 2018. 31 p. https://abc-utc.fiu.edu/wp-content/uploads/sites/52/2018/03/ISU-Brent-macro-defect-free_Final.pdf
4. Zhan P., He Z. Application of shrinkage reducing admixture in concrete: A review. Construction and Building Materials. 2019. Vol. 201, pp. 676–690. https://doi.org/10.1016/j.conbuildmat.2018.12.209
5. Ahmed S., Al-Dawood Z., Abed F., Mannan M. A., Al-Samarai M. Impact of using different materials, curing regimes, and mixing procedures on compressive strength of reactive powder concrete: A review. Journal of Building Engineering. 2021. Vol. 44. https://doi.org/10.1016/j.jobe.2021.103238
6. Kaprielov S.S., Batrakov V.G., Shejnfel’d A.V. Modified concretes of the new generation: reality and perspective. Beton i zhelezobeton [Concrete and reinforced concrete]. 1999. No. 6, pp. 6–10. (In Russian).
7. Guvalov A.A., Abbasova S.I., Kuznecova T.V. Efficiency of modifiers when regulating properties of concrete mixes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 49–51. (In Russian).
8. Kosuhin M.M., Kosuhin A.M. Surface phenomena in modified cement dispersions and their role in the mechanism of action of polyfunctional modifiers. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2017. No. 7, pp. 81–87. (In Russian) DOI: 10.12737/article_5940f0196c3d00.35349003
9. Tyukavkina V.V., Kasikov A.G., Gurevich B.I. Structure formation of cement stone modified with additive of nano-disperse silicon dioxide. Stroitel’nye Materialy [Construction Materials]. 2018. No. 11, pp. 31–35. DOI: https://doi.org/10.31659/0585-430X-2018-765-11-31-35 (In Russian).
10. Tolstoj A.D. Fine-grained high-strength concrete. Stroitel’nye materialy i izdelija. 2020. Vol. 3, No. 1, pp. 39–43. (In Russian).
11. Uspanova A.S., Hadzhiev M.R., Ismailova Z.H., Basnukaev I.Sh. Analysis of the effect of methods of introduction of organomineral additives into mortars on fine sands. Stroitel’nye materialy i izdelija. 2021. Vol. 4. No. 4, pp. 32–40. (In Russian). DOI: 10.34031/2618-7183-2021-4-4-32-40
12. Lesovik V.S., Fediuk R.S., Gridchin A.M., Murali G. Improving the operational characteristics of protective composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-32-40
13. Strokova V.V., Laketich S.K., Nelubova V.V., Zhengmao Ye. Graphene oxide as a modifier for cement systems: analysis of the state and development prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 37–89. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-37-89
14. Batudaeva A.V., Kardumjan G.S., Kaprielov S.S. High-strength modified concretes from self-leveling mixtures. Beton i zhelezobeton [Concrete and reinforced concrete]. 2005. No. 4, pp. 14–18. (In Russian).
15. Kaprielov S.S., Shejnfel’d A.V., Kiseleva Ju.A., Prigozhenko O.V., Kardumjan G.S., Urgapov V.I. Erection of unique structures made of modified concrete and used for construction of the complex “Federation” MMDTS “Moscow-City”. Promyshlennoe i grazhdanskoe stroitel’stvo. 2006. No. 8, pp. 20–22. (In Russian).
16. Kaprielov S.S., Chilin I.A. Ultra-high-strength self-compacting fiber concrete for monolithic structures. Stroitel’nye Materialy [Construction Materials]. 2013. No. 7, pp. 28–30. (In Russian).
17. Kaprielov S.S., Shejnfel’d A.V., Arzumanov I.A., Chilin I.A. New national standard for self-compacting concrete mixes. Vestnik NIC Stroitel’stvo. 2021. No. 3 (30), pp. 30–40. (In Russian) DOI: 10.37538/2224-9494-2021-3(30)-30-40
18. Ramkumar K.B., Kannan Rajkumar P.R., Ahmmad Sh.N., Jegan M. A Review on performance of self-compacting concrete – use of mineral admixtures and steel fibres with artificial neural network application. Construction and Building Materials. 2020. Vol. 261. 120215. https://doi.org/10.1016/j.conbuildmat.2020.120215
19. Shi C., Wu Z., Lv K., Wu L. A review on mixture design methods for self-compacting concrete. Construction and Building Materials. 2015. Vol. 84, pp. 387–398. https://doi.org/10.1016/j.conbuildmat.2015.03.079
20. Sverguzova S.V., Goncharova E.N., Burakova Ju.V. Study of the process of biocorrosion of building materials by the method of mathematical planning of the experiment. Stroitel’nye Materialy [Construction Materials]. 2001. No. 1. pp. 34–35. (In Russian).
21. Dolotova R.G., Vereshhagin V.I., Smirenskaja V.N. Determination of cellular concrete compositions of various densities using feldspar-quartz sands by mathematical planning. Stroitel’nye Materialy [Construction Materials]. 2012. No. 12, pp. 16–19. (In Russian).
22. Duong Thanh Qui, Korolev E.V., Inozemcev A.S. Complex modification of light concretes on hollow microspheres for 3D printing technology. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2021. No. 3 (605), pp. 25–29. (In Russian).
23. Lukutcova N.P., Pykin A.A., Chivikova E.V. Use of opalcrystobalite-tridimite micro-filler in dense aggregate concrete. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2020. No. 2, pp. 8–17. (In Russian). DOI: 10.34031/2071-7318-2020-5-2-8-17
24. Specification & Guidelines for Self-Compacting Concrete. EFNARC. February 2002. 32 p.

For citation: Nelubova V.V., Usikov S.A., Strokova V.V., Netsvet D.D. Composition and properties of self-compacting concrete using a complex of modifiers. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 48–54. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-48-54

Efficiency of Production and Application of Rebar Rolled Products with New Types of Periodic Profile

Number of journal: 12-2021
Autors:

Tikhonov I.N.,
Kopylov I.V.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-35-47
УДК: 693.554.2

 

AbstractAbout AuthorsReferences
New types of rebar rolled products with a multi-row arrangement of transverse ribs on the surface were produced at EVRAZ ZSMK JSC, and introduced into the practice of design and construction at the A.A. Gvozdev NIIZHB JSC “SIC “Construction”. Replacement of the production of reinforcement with a “European” crescent-shaped profile having a two-row arrangement of transverse ribs according to GOST R 52544–2006 “Rolled reinforcement welded periodic profile of classes A500C And B500C for reinforcement of reinforced concrete structures. Technical conditions” for fittings with a multi-row arrangement according to TU 14-1-5526–2006 “A500SP class rebar rental with an effective periodic profile. Technical conditions” made it possible to increase the durability of rolling roll calibers by 15–25%, and consequently, to increase the productivity of rolling mills, reduce energy and fuel costs, and reduce greenhouse gas emissions; to get the possibility of rolling with exposure to minus tolerances (OM2 according to GOST 34028–2016 “Reinforcement rental for reinforced concrete structures. Technical conditions”) due to the absence of longitudinal ribs (Au500SP and Av500SP); ensure high rejection values of the Rem criterion (fR≥0.075); ensure rolling of the reinforcement with the possibility of its multipurpose use when forming a two-way screw thread (Av500P); to provide competitive advantages of reinforcement of JSC “EVRAZ ZSMK” at the construction market; to get an economic effect of several hundred million rubles from the introduction and production of 4 million tons of new fittings at the plant. As a result of studies carried out in 2003–2021 of consumer properties of rebar with a multi-row periodic profile of classes A500SP, Au500SP and A600SP in the A.A. Gvozdev NIIZHB, JSC “SIC “Construction” developed and implemented for the design of housing and communal services STO 36554501-005–2006 “The use of A500SP class rebar in reinforced concrete structures” and STO 36554501-065–2020 “Application of reinforcement of classes A500SP, Au500SP and A600SP in reinforced concrete structures”, using the positions of which in the calculation of reinforced concrete structures makes it possible to reduce the base length of anchoring reinforcement in concrete by 12%; reduce the crack opening width in reinforced concrete by 20–30%; reduce the consumption of reinforcement in the production of reinforced concrete structures on average by 2–3% due to stable production of rolled products with negative tolerances; to get an economic effect for the consumer in the amount of more than 3 thousand rubles / ton. With an annual production of rod fittings in Russia of about 4 million tons, the economic effect will be more than 12 billion rubles.
I.N. TIKHONOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. KOPYLOV2, Chief Calibrator (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 JSC “SIC “Construction” (6, 2nd Institutskaya Street, Moscow,109428, Russian Federation)
2 JSC “EVRAZ ZSMK” (16, Kosmicheskoe Shosse, Novokuznetsk, 654043, Russian Federation)

1. Mulin N.M., Konevskii V.P., Sudakov G.N. New types of profiles for reinforcement bars. Effective types of reinforcement for reinforced concrete structures: Collection of scientific papers. Moscow: NIIZhB. 1970, pp. 16–45. (In Russian).
2. Mulin N.M. Sterzhnevaya armatura zhelezobetonnyh konstrukcij [Core reinforcement of reinforced concrete structures]. Moscow: Stroyizdat. 1974. 233 p.
3. Madatyan S.A. Armatura zhelezobetonnyh konstrukcij [Reinforcement of reinforced concrete structures]. Moscow: Voentechlit. 2000. 256 p.
4. Klimov Yu.A. Investigations and rationing of mechanical characteristics and service properties of rolled steel products DSTU 3760–98. Experience in applications in structures made of ordinary and prestressed reinforced concrete. II All-Russia (International) conference on concrete and reinforced сoncrete. Vol. 5. Moscow. 2005, pp. 406–415. (In Russian).
5. Savrasov I.P. Strength, crack resistance and deformability of bent reinforced concrete elements reinforced with A500 steel with different periodic profiles. Cand. Diss. (Engineering). Moscow: NIIZhB. 2010. 207 p. (In Russian).
6. Tsyba O.O. Fracture resistance and deformability of stretched reinforced concrete with unstressed rod reinforcement, which has different relative area of crumpling of transverse edges. Cand. Diss. (Engineering). Moscow: NIIZhB. 2012. 203 p. (In Russian).
7. Tikhonov I.N., Meshkov V.Z., Rastorguev B.S. Proektirovanie armirovaniya zhelezobetona [Designing reinforced concrete reinforcement]. Moscow: Bumazhnik. 2015. 273 p.
8. Mayer U. Zum Einfluss der Oberflachengestalt von Ripptnstahlen fuf das Trag – und Verformungsverhalten von Stahlbetonbauteilen, Dissertation, Universitat Stuttgart, Institut fur Werkstoffe im Bauwesen, IWB – Mitteilungen 2002/1.
9. Tikhonov I.N., Meshkov V.Z., Zvezdov A.I, Savrasov I.P. Effective reinforcement for reinforced concrete structures of buildings, designed taking into account the impact of special loads. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 39–45. (In Russian).
10. Tikhonov I.N., Smirnova L.N., Bubis A.A., Tikhonov G.I., Safonov A.A. About New Types of Reinforcing Rolled Metal for Earthquake Engineering. Seismostoikoe stroitel’stvo. Bezopasnost’ sooruzhenii. 2019. No. 6, pp. 20–27. (In Russian).

For citation: Tikhonov I.N., Kopylov I.V. Efficiency of production and application of rebar rolled products with new types of periodic profile. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 35–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-35-47

Modified Ash and Slag Waste in the Production of Semi-Dry Pressed Ceramic Bricks

Number of journal: 12-2021
Autors:

Gur'eva V.A.,
Doroshin A.V.,
Il'ina A.A.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-28-33
УДК: 691.42:662.613.1

 

AbstractAbout AuthorsReferences
The results of experimental studies of the secondary use of ash and slag waste from the CHP in a composition with clay alumosilicate raw materials of the Novosergievskoye deposit in the production of wall ceramics by biaxial semi-dry pressing are presented. The data on the annual coal mining and the formation of ash and slag dumps are presented, which, according to the specific effective activity of natural radionuclides, belong to the first class and can be used without restrictions. The physico-mechanical dependences of the composition of the charge: loam/ASW such as: compressive strength, average density, water absorption are determined. The expediency of introducing silica gel in an amount of 11% was revealed. Using X-ray phase analysis, neoplasms of anorthite- and volostanite-like crystalline phases were determined. These studies make it possible to obtain a 1NF ceramic brick with a strength grade of M150–175, with an average density of 1620–1790 kg/m3.
V.A. GUR’EVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. DOROSHIN, Engineer (Graduate Student),
A.A. IL’INA, Engineer (Graduate Student)

Orenburg State University (13, Pobedy Avenue, Orenburg, 460018, Russian Federation)

1. Ibragimov E. Ash and slag of thermal power plants – promising secondary raw materials. Energy and industry of Russia. 2021. No. 13–14 (417–418). (In Russian).
2. Shubov L.Ya., Skobelev D.O., Zagorskaya D.A. Secondary resources formed in the field of thermal power engineering. Encyclopedia of Technologies. Evolution and comparative analysis of resource efficiency of industrial technologies. Moscow, St. Petersburg: Center for Environmental Industrial Policy. 2019, pp. 649–670. (In Russian).
3. Volokitin O.G. Physico-chemical studies of materials in the production of mineral fibers from technogenic waste in plasma technology. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2009. No. 4 (25), pp. 100–107. (In Russian).
4. Makarenko S.V., Vasiliev K.O., Khokhryakov O.V., Khozin V.G. Production of ash construction ceramics based on ash and slag waste from the Irkutsk region thermal power plant - an example of the best available ih recycling technology. Izvestia of the Kazan State University of Architecture and Civil Engineering. 2020. No. 4 (54), pp. 54–61. (In Russian).
5. Kuznetsova G.V. Granulometric composition of fine ash waste and ego influence on the properties of pressed products. Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 51–56. (In Russian).
6. Kotlyar V.D., Kozlov A.V., Zhivotkov O.I., Kozlov G.A. Calcium-silicate brick on the basis of microspheres and lime. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 17–21. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-17-21 (In Russian).
7. Gur’eva V.A., Doroshin A.V., Il’ina A.A. Mathematical optimization of charge compositions in the production of ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 64–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-64-68
8. Avgustinik A.I. Keramika [Ceramics]. Leningrad: Stroyizdat. 1975. 592 p.
9. Prokofiev V.Yu., Gordina N.N. Processes of grinding and mechanochemical activation in the technology of oxide ceramics (review). Steklo i keramika. 2012. No. 2, pp. 29–34. (In Russian).
10. Guryeva V.A., Doroshin A.V. The press powder technological parameters optimization in wall ceramics production by the semi-dry pressing method. Materials Science Forum. 2020. Vol. 974 MSF, pp. 419–423. DOI: 10.4028/www.scientific.net/MSF.974.419
11. Bakunov V.S., Lukin E.S. Features of the technology of high-density technical ceramics. Sintering of oxide ceramics. Steklo i keramika. 2008. No. 12, pp. 19–23. (In Russian).

For citation: Gur'eva V.A., Doroshin A.V., Il'ina A.A. Modified ash and slag waste in the production of semi-dry pressed ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 28–33. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-28-33

General Characteristics of the Refuse Heaps of Eastern Donbass and Products of their Processing as Raw Materials for the Production of Wall Ceramics

Number of journal: 12-2021
Autors:

Yavruyan Kh.S.,
Kotlyar V.D.,
Gaishun E.S.,
Gaishun A.S.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-23-27
УДК: 666.3

 

AbstractAbout AuthorsReferences
The relevance for the south of Russia of the search and creation of a new non-traditional raw material base of wall ceramics in connection with the decreasing availability of traditional raw materials – loams is shown. The classification according to the volumes of composing rocks is presented: mine waste heaps and dumps of processing plants of Eastern Donbass. Their characteristics of mineral and chemical composition are given. It is noted that coal-industrial waste is very diverse in its mineral composition, which was a serious deterrent to their industrial development. The classification of waste materials processing products by lithological composition, coal content and fractional composition of composing rocks is presented. According to the fractional composition, 5 groups were allocated, four groups were allocated according to the mineralogical and petrographic composition, 4 groups were also allocated according to the coal content. It is noted that small and thin materials contain coal in an increased amount and due to this cannot be considered as the main raw material for the production of ceramic stones. Materials of the middle group by grain composition (2–5 mm, screenings) can contain up to 2–3% coal in their composition and are most often represented by a mixture of mudstones, siltstones and sandstones with a predominance of one or another variety of rocks. Due to these features, the materials of the middle group are of the greatest interest as the main raw materials for the production of large-format high-void ceramic stones and bricks.
Kh.S. YAVRUYAN, Candidate of Sciences (Engineering),
A.V. KOTLYAR, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.S. GAISHUN, Assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. GAISHUN, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Don State Technical University (1, Gagarina Square, Rostov-on-Don, 344010, Russian Federation)

1. Oficial’nyj sajt Ministerstva prirodnyh resursov i ekologii Rostovskoj oblasti. [Elektronnyjresurs]. – Rezhimdostupa: http://www.doncomeco.ru.
2. Yavruyan H.S., Gajshun E.S. Analysis of the state of waste from the coal mining industry and their use in the production of ceramic products. Nauchnoe obozrenie. 2016. No. 24, pp. 40–46. (In Russian).
3. Kotlyar V., Yavruyan K. Thin issues products of processing waste heaps as raw materials for ceramic wall products. MATEC Web of Conferences. “International Conference on Modern Trends in Manufacturing Technologies and Equipment, ICMTMTE 2017”. 2017. 0501. https://doi.org/10.1051/matecconf/201712905013
4. Kolomensky G.Yu., Gipich L.V. Metodika izucheniya i otsenki porod, slagayushchikh otvaly ugledobyvayushchikh predpriyatiy, kak syr’ya dlya proizvodstva mineral’nykh volokon [Methods for studying and evaluating rocks that make up the dumps of coal mining enterprises as raw materials for the production of mineral fibers]. Rostov-on-Don: VNIGRIUgol. 1997. 30 p.
5. State report “On the state and protection of the environment of the Russian Federation in 2018”. Moscow: Ministry of Natural Resources of Russia: NPP “Cadastre”, 2019. 844 p. 2019. (In Russian).
6. Beskopylny A.N., Yavruyan Kh.S., Gaishun E.S., Kotlyar A.V. Gaishun A.S. High–performance ceramic stones from waste disposal sites in Eastern Donbass. Stroitel’nye Materialy [Construction Materials]. 2020. No. 8, pp. 16–21. (In Russian). DOI: https://doi.org/10.31659/0585–430X–2020–783–8–16–21
7. Kotlyar V.D., YavruyanK.S., Gaishun Е.S., Teryo-khinaY.V. Сomprehensive approach to the processing of East Donbass Spopl Tip. Proceedings of the 2018 IEEE International Conference «Management of Municipal Waste as an Important Factor of Sustainable Urban Development» (WASTE’2018). October, 2018. St. Petersburg, pр. 22–24.
8. Kotlyar V.D., Kozlov A.V., Kotlyar A.V., Teryohina Yu.V. Features of stone-like clayey rocks of the Eastern Donbass as raw materials for the production of wall ceramics. Vestnik MGSU. 2014. No. 10, pp. 95–105. (In Russian).
9. Kotlyar A.V., Talpa B.V., Lazareva Ya.V. Features of chemical compositions of argillite-like clays and argillites. Stroitel’nye Materialy [Construction Materials]. 2016. No. 4, pp. 10–13. (In Russian).
10. Yavruyan Kh.S., Kotlyar V.D., Gaishun E.S. Medium-fraction materials for processing of coal–thread waste drains for the production of wall ceramics. Materials and Technologies in Construction and Architecture. Materials Science Forum Submitted. 2018. Vol. 931, pp. 532–536.
11. Yavruyan Kh.S., Gaishun E.S., Kotlyar V.D., Okhotnaya A.S. Features of phase and mineralogical of conversions when burning wall ceramics on the basis of secondary materials for processing coal deposits of Eastern Donbass. Materials and Technologies in Construction and Architecture II. Materials Science Forum. CATPID. 2019. Vol. 974, pp. 67–74. DOI: https://doi.org/10.4028/www.scientific.net/MSF.974.67

For citation: Yavruyan Kh.S., Kotlyar V.D., Gaishun E.S., Gaishun A.S. General characteristics of the refuse heaps of Eastern Donbass and products of their processing as raw materials for the production of wall ceramics. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 23–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-23-27

Clays of The Kasminsky Manifestation in The Kemerovo Region — Promising Raw Materials for Production Clinker Bricks

Number of journal: 12-2021
Autors:

Kotlyar V.D.,
Terekhina Yu.V.,
Kotlyar A.V.,
Yashenko R.A.,
Dyachenko N.E.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-17-22
УДК: 691.421

 

AbstractAbout AuthorsReferences
Provide data on the use of clinker bricks in modern construction are given. Based on the analysis of the decree, it is believed that only clay raw materials of low-temperature sintering can become a reliable raw material base for increasing the production of clinker bricks, capable of producing shingles with a water absorption of less than 2% without signs of burning in the temperature range of at least 50о. It is emphasized that the most acute problem is the increase in the production of clinker bricks in the east of the country, one of the reasons for which is the lack of reliable base raw materials. The results of the studies of the revealed Kasminsky manifestation of clays with predicted reserves of at least 5 million m3, which belong to the strongly sintering clay raw materials of low-temperature speckle with a beige and brown-reddish skull, are presented. Provide is a hacteristic chemical and mineral composition, which is characterized mainly as hydro-trace with an admixture of quartz. It is shown that durability of the burned samples already at a temperature of roasting of 1000оС wasps is sufficient for a brick – strength at compression of 70–75 MPa and at a bend about 20 MPa. At a temperature of roasting of 1100оС wasps – strength at compression is 90–125 MPa and at a bend of 28–35 MPa. The water absorption less than 2.5% necessary for a road brick is reached at temperatures of roasting of 1030–1040оС wasps. Based on the results of the work carried out, taking into account the pre-burning and burning properties of clays, the location of the manifestation, mining conditions and reserves, the clay of the Kasminsky manifestation is very promising for the production of wall and road clinker bricks in Siberia.
V.D. KOTLYAR, Doctor of Science (Engineering), Head of the Department of Construction Materials (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.V. TEREKHINA, Engineer, Lecturer, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. KOTLYAR, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.A. YASHENKO, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.E. DYACHENKO, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Don State Technical University, (1, Gagarina Square, Rostov-on-Don 344003, Russian Federation)

1. Lapunova K.A., Kotlyar V.D. Design of architectural and building ceramics in a historical aspect. Naukovedenie. 2013. No. 3 (16). p. 121. (In Russian)
2. Brick history. Internet-resurs «Kirpichnaya biblioteka». https://brick-library.ru/istoriya-vozniknoveniya-kirpicha/ (Date of access: 01.10.2021)
3. Lapunova K.A., Kotlyar V.D. The design of the form of architectural wall ceramics in the historical aspect. Vestnik MGSU. 2009. No. 4, pp. 148–153. (In Russian).
4. Gavrilov A.V., Grinfel’d G.I. A brief overview of the history, state and prospects of the clinker brick market in Russia. Stroitel’nye Materialy [Construction Materials]. 2013. No. 4, рр. 20–22. (In Russian).
5. Bozhko Yu.A., Lapunova K.A., Volkodaeva I.B. The historical aspect of the development of facing brick design from ancient times to the present day. Dizain i tekhnologii. 2020. No. 77 (119), pp. 6–13. (In Russian).
6. Meskhi B.Ch., Bozhko Yu.A., Terekhina Yu.V., Lapunova K.A. Brick-design and its main elements. Stroitel’nye Materialy [Construction Materials]. 2020. No. 8, pp. 47–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-783-8-47-51
7. Shlegel’ I.F. On the rational use of clinker bricks (as a matter for discussion). Stroitel’nye Materialy [Construction Materials]. 2017. No. 8, pp. 42–44. (In Russian).
8. Bozhko Yu.A. Technological and aesthetic features of clinker bricks in modern architecture. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2017. Vol. 3. No. 1, pp. 148–153. (In Russian).
9. Naumov A.A. Front and clinker bricks from siliceous raw materials of the Shevchenkovsky deposit. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 14–18. (In Russian).
10. Korepanova V.F., Grinfel’d G.I. Production of clinker bricks at the Nikolsky brick factory of the LSR Group. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 10–13. (In Russian).
11. Semenov A.A. Russian ceramic brick market. Trends and prospects for development. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-4-5
12. Stolboushkin A.Yu., Fomina O.A., Akst D.V., Zakharchenko L.E. Peculiarities of clay raw materials of Western Siberia as a raw material base of construction ceramics. Vestnik Tuvinskogo gosudarstvennogo universiteta: Tekhnicheskie i fiziko-matematicheskie nauki. 2019. No. 3 (42), pp. 27–36. (In Russian).
13. Stolboushkin A.Yu. Prospects of construction ceramic matrix composites technology in Kuzbass. Science and vocational education: national priorities and regional drivers of development. Materials of the I All-Russian scientific-practical conference. Kemerovo. February 12, 2019, pp. 113–115. (In Russian).
14. Vakalova T.V., Pogrebenkov V.M., Revva I.B. Prospects of expansion of domestic raw material base of construction ceramics due to complex use of clay raw material deposits. Vestnik nauki Sibiri. 2012. No. 1 (2), pp. 339–347. (In Russian).
15. Storozhenko G.I., Shoeva T.E., Pshennikova V.V. Research of raw materials of Western Siberia for the production of ceramic facing materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 23–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-23-27
16. Avgustinik A.I. Кeramika [Ceramics]. Leningrad: Stroyizdat. 1975. 592 p.

For citation: Kotlyar V.D., Terekhina Yu.V., Kotlyar A.V., Yashenko R.A., Dyachenko N.E. Clays of the Kasminsky manifestation in the Kemerovo region – promising raw materials for production clinker bricks. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 17–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-17-22

Wall Ceramic Materials of Volume Coloring With Matrix Structure

Number of journal: 12-2021
Autors:

Akst D.V.,
Stolboushkin A.Yu.,
Fomina O.A.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-9-16
УДК: 666.7-12

 

AbstractAbout AuthorsReferences
The scientific principles of creating wall ceramic materials of volumetric coloring with a matrix structure have been developed. It has been substantiated the necessity of the structural concentration of coloring additives from industrial waste with a reduced content of chromophore compounds for the production of bulk colored wall ceramics with the required properties. It was proposed a model for the formation of a spatially organized structure and a distribution scheme for raw components during firing of a ceramic matrix composite. It was found that the concentration of the coloring component in the amount of 5–10 wt.% of the composition of the charge in the matrix of the composite material by aggregating the basic component of the charge into granules with a diameter of 1–3 mm, applying a shell 0.05–0.2 mm thick from the coloring component with subsequent pressing, drying and firing, provides volumetric coloring of wall ceramics while reducing the content of chromophores in the coloring component to 33%.Investigations of the macro- and microstructure of the obtained ceramic materials are presented. It is shown that the ceramic matrix composite at the macrolevel consists of cores formed from the basic component of the charge and covered with a shell of sintering products of a dark-colored dye additive, and a transition layer is formed in the boundary zone between them, formed as a result of the interaction of the core and shell components with their characteristic diffusion. in the process of heat and mass transfer during firing. In the current paper there are presented the results of a comprehensive study of the phase composition of the obtained ceramic matrix composites. The scientific principles of creating wall ceramic materials of volumetric coloring with a matrix structure are formulated. The main technical and economic indicators of the developed technology of new ceramic materials have been determined.
D.V. AKST1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A. Yu. STOLBOUSHKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.A. FOMINA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Siberian State Industrial University (42, Kirova Street, Novokuznetsk, 654007, Russian Federation)
2 Mechanical Engineering Research Institute of the RAS, (4, Maly Kharitonievsky side Street, Moscow, 101990, Russian Federation)

1. Stolboushkin A.Yu. Improving decorative properties of ceramic wall materials prodused of technogenic and natural resourses. Stroitel’nye Materialy [Construction Materials]. 2013. No. 8, pp. 24–29. (In Russian).
2. Pishch I.V., Maslennikova G.N., Gvozdeva N.A., Klimosh Yu.A., Baranovskaya E.I. Methods for ceramic bricks staining. Steklo i keramika. 2007. No. 8, pp. 15–18. (In Russian).
3. Zubekhin A.P., Yatsenko N.D., Golovanova S.P. Teoreticheskie osnovy belizny i okrashivaniya keramiki i portlandtsementa [Theoretical basis of whiteness and coloring of ceramics and portland cement]. Мoscow: Stroymaterialy. 2012. 152 p.
4. De Bonis A., Cultrone G., Grifa C. Langella A., Leone A.P., Mercurio M., Morra V. Different shades of red: The complexity of mineralogical and physicochemical factors influencing the colour of ceramics. Ceramics International. 2017. Vol. 43. Iss. 11, pp. 8065–1851. DOI: https://doi.org/10.1016/j.ceramint.2017.03.127
5. Vakalova T.V., Revva I.B., Pogrebenkov V.M. Protective and decorative coatings for building ceramics based on natural raw materials from Western Siberia. Steklo i keramika. 2007. No. 1, pp. 26–29. (In Russian).
6. Zaharov A.I., Surkov G.M. Basics of ceramic technology. Glazes and engobes for ceramic products. Steklo i keramika. 2000. No. 11, pp. 3–6. (In Russian).
7. Kara-Sal B.K. Intensification of sintering of fusible clay rocks with a change in the parameters of the firing medium. Steklo i keramika. 2007. No. 3, pp. 14–19. (In Russian).
8. Salahov A.M., Morozov V.P., Vagizov F.G., Eskin A.A., Valimuhametova A.R., Zinnatullin A.L. The scientific basis of color management of face brick at the Alekseevskaya Ceramics factory. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 90–95. (In Russian).
9. Kotlyar V.D., Yavruyan Kh.S., Bozhko Yu.A., Nebezhko N.I. Features of the production of soft-formed facing ceramic bricks based on opoka-like rocks. Stroitel’nye Materialy [Construction Materials]. 2019. No. 12, pp. 18–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-777-12-18-22
10. Vereshchagin V.I., Shil’tsina A.D., Selivanov Yu.V. The structure modeling and strength evaluation of construction ceramics from coarse-grained masses. Stroitel’nye Materialy [Construction Materials]. 2007. No. 6, pp. 65–68. (In Russian).
11. Gur’eva V.A., Dubinetskii V.V. Chemical method of activation of carbonate-containing raw materials in the technology of production of ceramic bricks by the method of semi-dry pressing. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 28–31. DOI: https://doi.org/10.31659/0585-430X-2021-795-9-28-31 (In Russian).
12. González I., Campos P., Barba-Brioso C., Romero A., Galán E., Mayoral E. A proposal for the formulation of high-quality ceramic “green” materials with traditional raw materials mixed with Al-clays. Applied Clay Science. 2016. Vol. 131, pp. 113–123. DOI: https://doi.org/10.1016/j.clay.2015.12.035
13. Abdrahimov V.Z., Kolpakov A.V. Ecological, theoretical and practical aspects of the use of calcium-containing waste in the production of ceramic materials. Izvestija vuzov. Stroitel’stvo. 2013. No. 7, pp. 28–36. (In Russian).
14. Yatsenko N.D., Zubekhin A.P. Scientific basis of innovative technologies of ceramic bricks and its properties management, depending on the chemical and mineralogical composition of raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 28–31. (In Russian).
15. Wiemes L., Pawlowsky U., Mymrin V. Incorporation of industrial wastes as raw materials in brick’s formulation. Journal of Cleaner Production. 2017. Vol. 142, pp. 69–77. DOI: https://doi.org/10.1016/j.jclepro.2016.06.174
16. Buruchenko A.E. Possibilities of using secondary raw materials for the production of building ceramics and sitalls. Vestnik Tuvinskogo gosudarstvennogo universiteta. Tekhnicheskie i fiziko-matematicheskie nauki. 2013. No. 3 (18), pp. 7–14. (In Russian).
17. Maslennikova G.N., Pishh I.V. Keramicheskie pigmenty [Ceramic pigments]. Мoscow: Stroimaterialy. 2009. 224 p.
18. Trojan J., Karolová L., Luxová J., Trojan M. Synthesis of SnO2/Cr pigments doped by praseodymium prepared by different methods and their pigmentary properties // Ceramics-Silikáty. 2016. No. 60 (3), pp. 234–242. DOI: https://doi.org/10.13168/cs.2016.0035
19. Ovčačíková H., Vlček J., Klárová M., Topinková M. Metallurgy dusts as a pigment for glazes and engobes. Ceramics International. 2017. Vol. 43, Iss. 10, pp. 7789–7796. DOI: https://doi.org/10.1016/j.ceramint.2017.03.091
20. Molinari C., Conte S., Zanelli C., Ardit M., Cruciani G., Dondi M. Ceramic pigments and dyes beyond the inkjet revolution: From technological requirements to constraints in colorant design. Ceramics International. 2020. Vol. 46, Iss. 14, pp. 21839–21872. DOI: https://doi.org/10.1016/j.ceramint.2020.05.302
21. Gurov N.G., Gurova O.E., Storozhenko G.I. Innovative directions of technological and instrumental reconstruction of semi-dry pressing plants. Stroitel’nye Materialy [Construction Materials]. 2013. No. 12, pp. 52–55. (In Russian).
22. Galindo R., Gargori C., Fas N., Llusar M., Monrós G. New chromium doped powellite (Cr–CaMoO4) yellow ceramic pigment. Ceramics International. 2015. Vol. 41. Iss. 5. Part A, pp. 6364–6372. DOI: https://doi.org/10.1016/j.ceramint.2015.01.071
23. Chen Z., Du Y., Li Z., Sun D., Zhu C. Synthesis of black pigments containing chromium from leather sludge. Ceramics International. 2015. Vol. 41, Iss. 8, pp. 9455–9460. DOI: https://doi.org/10.1016/j.ceramint.2015.04.001
24. Stolboushkin A.Yu. A promising direction for the development of building ceramic materials from low-quality raw materials. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 24–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-758-4-24-28
25. Stolboushkin A.Yu., Akst D.V., Fomina O.A. The use of industrial waste when painting ceramic matrix composites based on natural and technogenic raw materials. Durability of building materials, products and structures: materials of the All-Russian scientific and technical conference. Saransk. 2016, pp. 154–160. (In Russian).
26. Patent RF 2701657. Sposob poluchenija syr’evoj smesi dlja dekorativnoj stroitel’noj keramiki [The method of obtaining a raw mix for decorative construction ceramics]. Akst D.V., Stolboushkin A.Yu., Fomina O.A. Declared 19.12.2018. Published 30.09.2019. Bulletin No. 28. (In Russian).
27. Stolboushkin A.Yu. Method for a comprehensive study of the core-shell transition layer in semi-dry pressing ceramic matrix composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 28–35. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-28-35

For citation: Akst D.V., Stolboushkin A.Yu., Fomina O.A. Experimental-industrial tests of wall ceramics technology of volume staining with a matrix structure. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 9–16. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-9-16

Technology for the Rigid Moulding of Ceramic Bricks Based on Western Siberia Loams

Number of journal: 12-2021
Autors:

Storozhenko G.I.,
Shoeva T.E.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-4-8
УДК: 666.324

 

AbstractAbout AuthorsReferences
The possibility of using Siberian dusty loams in the technology of rigid formation of ceramic bricks is shown. Changing the rheological characteristics of raw materials to meet the requirements of this technology can be achieved by changing the colloid-chemical properties of the pore component of the charge by introducing an activated slurry containing ultradispersed clay particles. Such an addition of 10% to the clay loam of the Verkh-Tulinsky deposit resulted in an increase in plasticity by 60%, which made it possible to mould products from a charge with a moisture content of 16% on a laboratory extruder at nominal load on the motor.
G.I. STOROZHENKO1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.E. SHOEVA1, Candidate of Sciences (Engineering)

1 Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (113, Leningradskaya Street, Novosibirsk-8, 630008, Russian Federation)
2 The Siberian State Industrial University (42, Kirov Street, Kemerovo Region, Novokuznetsk, 654007, Russian Federation)

1. Khavkin A.Ya., Berman R.Z. Low-capacity brick factories using rigid extrusion technology. Stroitel’nye Materialy [Construction Materials]. 2000. No. 4, pp. 18–19. (In Russian).
2. Tarasevich B.P. Optimal options for brick production (modeling of a rigid molding scheme). Stroitel’nye Materialy [Construction Materials]. 1994. No. 6, pp. 8–10. (In Russian).
3. Berman R.Z. The use of rigid molding – a method of reconstruction of brick factories. Stroitel’nye Materialy [Construction Materials]. 1995. No. 5, pp. 25–27. (In Russian).
4. Storozhenko G.I., Shoeva T.E., Pshennikova V.V. Research of raw materials of Western Siberia for the production of ceramic facing materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 23–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-23-27
5. Storozhenko G.I., Syromyasov V.A., Ivanov A.I. Ceramic wall materials based on activated dispersed systems. Izvestiya vysshikh uchebnykh zavodeniy. Stroitel’stvo. 2020. No. 5 (737), pp. 86–93. (In Russian).
6. Isupov T.S., Lapuchova E.S., Korneva Т.А. Baniche Listy. Memorialnecislo. Kosice.1976, pp. 30–37.
7. Shcherbakova M.Ya. et al. Study of mechanically activated layered silicates by the EPR method. Reports of the USSR Academy of Sciences. 1978. Vol. 240. No. 3, pp. 714–717. (In Russian).
8. Lobanov B.V., Minchenko V.V., Kuzmovich V.V. Management of physical, chemical and technological properties of clays. In the book. Clay minerals and rocks, and their use in the national economy. Abstracts of Reports. Novosibirsk. 1988. 155 p. (In Russian).
9. Koloberdin VI et al. Investigation of the effect of mechanical activation of raw materials on the rate of its firing. In the book: Mechanochemistry of inorganic substances. Abstracts Reports of the All-Union meeting. Novosibirsk: SB AS USSR. 1982, pp. 88–90. (In Russian).
10. Frolov Yu.G. Kurs kolloidnoy khimii: poverkhnostnyye yavleniya i dispersnyye sistemy [Colloid chemistry course: surface phenomena and dispersed systems]. Moscow: Chemistry. 1988, pp. 111–118.
11. Abdelaoui М., Gaffet Е. The physics of mechanical alloying in a planetary ball mill. Acta Metallurgica et Materialia. 1995. Vol. 43. Iss. 3, pp. 1087–1098. https://doi.org/10.1016/0956-7151(95)92625-7
12. Saito F. Mechanochemistry and processing of inorganic materials. Shigen-to-Sozai. 1995. Vol. 111. Iss. 8, pp. 515–522. https://doi.org/10.2473/shigentosozai.111.515
13. Sharipov R.Ya., Storozhenko G.I. Factory experience of introducing new technologies to improve the quality of ceramic bricks. Stroitel’nye Materialy [Construction Materials]. No. 6, pp. 11–14. (In Russian).

For citation: Storozhenko G.I., Shoeva T.E. Technology for the rigid moulding of ceramic bricks based on Western Siberia loams. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 4–8. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-4-8

Bitumen Emulsions for Road Construction Purposes, Modified by Fly Ash

Number of journal: 11-2021
Autors:

Bezrodnykh A.A.,
Strokova V.V.,
Markova I.Yu.,
Potapov D.Yu.

DOI: https://doi.org/10.31659/0585-430X-2021-797-11-59-66
УДК: 625.861

 

AbstractAbout AuthorsReferences
Among the possible types of organic binders for the production of organomineral materials for road construction purposes, bitumen emulsions have gained the greatest popularity. Since the binder has the main structure-forming role and the final properties of the material directly depend on it, their regulation sometimes requires modification of the binder films. The most effective way to improve the quality characteristics of composite materials containing organic binder is dispersed reinforcement, which provides for the introduction of a highly dispersed component into the binder. However, bitumen emulsion is a multicomponent thermodynamically unstable material and the use of mineral raw materials in its composition can destroy the emulsion system. In this regard, the presented publication is devoted to the study of the influence of highly dispersed aluminosilicate technogenic raw materials in the form of fly ash on the properties of bitumen emulsions of various classes, which are widely used in road construction. The assessment of the normalized parameters of bitumen emulsions in the presence of mineral modifiers was made, the relationship between the basic characteristics of the initial components and the change in the parameters of the modified compositions was established, the maximum concentrations of the modifiers were determined, allowing to obtain stable compositions.
A.A. BEZRODNYKH, Researcher, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. STROKOVA, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.Yu. MARKOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.Yu. POTAPOV, Student, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Булдаков С.И., Сарафанов К.В. К вопросу применения битумной эмульсии в дорожном хозяйстве. Актуальные вопросы проектирования автомобильных дорог: Сборник научных трудов ОАО ГИПРОДОРНИИ. 2014. № 5 (64). С. 72–75.
1. Buldakov S.I., Sarafanov K.V. The question of bitumen emulsion in road construction. Topical issues of road design. Collection of scientific works of JSC GIPRODORNII. 2014. No. 5 (64), pp. 72–75. (In Russian).
2. Измаилова Г.Г., Сивохина Е.С., Елшибаев А.О. К вопросу применения битумной эмульсии в составе ресайклированного слоя // Вестник Казахской академии транспорта и коммуникаций им. М. Тынышпаева. 2018. № 2 (105). С. 182–188.
2. Izmailova G.G., Sivokhina E.S., Elshibayev A.O. To the matter of application of bituminous emulsion in content of recycled of layer. Vestnic of Kazakh Academy of Transport and Communications named after M. Tynyshpayev. 2018. No. 2 (105), pp. 182–188.
3. Шахарбаев К.А., Измаилова Г.Г., Сивохина Е.С. Опыт применения шероховатой поверхностной обработки с битумной эмульсией // Вестник Казахской академии транспорта и коммуникаций им. М. Тынышпаева. 2018. № 2 (105). С. 244–251.
3. Shakharbayev K.A., Izmailova G.G., Sivokhina E.S. Experience for the use of rough surface treatment with bitumen emulsion. Vestnik of Kazakh Academy of Transport and Communications named after M. Tynyshpayev. 2018. No. 2 (105), pp. 244–251. (In Russian).
4. Vaitkus A., Gražulytė J., Juknevičiūtė-Žilinskienė L., Andrejevas V. Review of Lithuanian experience in asphalt pavements cold recycling. 10th International Conference on Environmental Engineering, ICEE 2017. Enviro. 2017. 153. DOI: 10.3846/enviro.2017.153
5. Iwański M., Chomicz-Kowalska A. Application of the foamed bitumen and bitumen emulsion to the road base mixes in the deep cold recycling technology. Baltic Journal of Road and Bridge Engineering. Vol. 11 (4), pp. 291–301. DOI: 10.3846/bjrbe.2016.34
6. Балабанов В.Б., Николаенко В.Л. Укатываемый дорожный золасф бетон // Архитектура и строительство России. 2012. № 1. С. 19–24.
6. Nikolaenko V.B., Balabanov V.L. The pavement concrete is compaction by rolling on basis of ash and asphalt. Arkhitektura i stroitel’stvo Rossii. 2012. No. 1, pp. 19–24. (In Russian).
7. Kukielka J., Bankowski W. The experimental study of mineral-cement-emulsion mixtures with rubber powder addition. Construction and building materials. 2019. Vol. 226, pp.759–766. DOI: 10.1016/j.conbuildmat.2019.07.276
8. Траутваин А.И. Анализ влияния качественного состава асфальтобетонной смеси на основные показатели характеристик асфальтобетона в покрытии // Строительные материалы и изделия. 2018. Т. 2. № 1. С. 17–23. https://doi.org/10.34031/2618-7183-2019-2-1-17-23
8. Trautvain A.I. Analysis of the influence of the qualitive composition of the asphalt-concrete mixture on the main performance characteristics of asphalt concrete pavement. Stroitel’nyye materialy i izdeliya. 2019. Vol. 2. No. 1, pp. 17–23. (In Russian).
9. Маркова И.Ю., Строкова В.В., Дмитриева Т.В. Влияние зол-уноса на вязкоупругие характеристики дорожного битума // Строительные материалы. 2015. № 11. С. 28–32.
9. Markova I.Yu., Strokova V.V., Dmitrieva T.V. Influence of fly ashes on the viscoelastic characteristics of the bitumen. Stroitel’nye Materialy [Construction Materials]. 2015. No. 11, pp. 28–32.
10. Лебедев М.С., Чулкова И.Л. Исследование реологических свойств битумных композиций, наполненных золами-уноса различного состава // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 11. С. 45–52.
10. Lebedev M.S., Chulkova I.L. Study of rheological characteristics of bitumen composites with different fly ashes. Vestnik of the Belgorod State Technological University named after V.G. Shukhova. 2016. No. 11, pp. 45–52. (In Russian).
11. Нуштаева А.В., Вилкова Н.Г. Твердые стабилизаторы дисперсных систем: свойства и применение // Фундаментальные исследования. 2014. № 3–1. С. 64–67.
11. Nushtaeva A.V., Vilkova N.G. Solid stabilizers of disperse systems: properties and application. Fundamentalnye Issledovaniya. 2014. No. 3–1, pp. 64–67. (In Russian).
12. Binks B.P., Murakami R. Phase inversion of particle stabilized materials from foams to dry water. Nature Materials. 2006. Vol. 5, pp. 865–869.
13. Horosov T.S., Aveyard R., Clint J., Neumann B. Particle zips vertical emulsion fi lms with particle monolayers at their surfaces. Langmuir. 2005. Vol. 21, pp. 2330–2341.
14. Kaptey G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006. Vol. 282–283, pp. 387–401.
15. Kruglyakov P.M., Nushtaeva A.V. Effect of streching a solid particle stabilized emulsion film on its capillary pressure. Colloid Journal. 2008. Vol. 70. No. 3, pp. 278–273.
16. Kruglyakov P.M, Nushtaeva A.V. Investigation of the influence of capillary pressure on stability of a thing layer emulsion stabilized by solid particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005. Vol. 263, pp. 330–335.
17. Марков А.Ю., Строкова В.В., Безродных А.А., Степаненко М.А. Свойства топливных зол различных типов как компонентов битумной эмульсии // Строительство и реконструкция. 2020. № 2 (88). С. 67–76.
17. Markov A.Yu., Strokova V.V., Bezrodnykh A.A., Stepanenko M.A. Properties of fuel ashes of various types as components of bitumen emulsion. Stroitel’stvo i rekonstrukciya. 2020. No. 2 (88), pp. 67–76. (In Russian).
18. Markov A.Yu., Strokova V.V., Markova I.Yu., Stepanenko M.A. Physico-chemical properties of fuel ashes as factor of interaction with cationic bitumen emulsion. In book: Innovations and Technologies in Construction, Selected Papers of BUILDINTECH. BIT 2020, pp. 294–300. DOI:10.1007/978-3-030-54652-6_44
19. Петленко С.В., Кошкаров В.Е., Кошкаров М.А. Аналитические исследования свойств анионо- и катионоактивных битумных эмульсий, анализ развития их производства. Актуальные вопросы проектирования автомобильных дорог: Сборник научных трудов ОАО «Гипродорнии». 2012. № 3. С. 83–89.
19. Petlenko S.V., Koshkarov V.Ye., Koshkarov M.A. Analytical researches of properties of anion- and cation-active asphalt emulsions, analysis of their production development. Topical issues of road design. Collection of scientific works of JSC GIPRODORNII. 2012. No. 3, pp. 83–89. (In Russian).

For citation: Bezrodnykh A.A., Strokova V.V., Markova I.Yu., Potapov D.Yu. Bitumen emulsions for road construction purposes, modified by fly ash. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 59–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-59-66

Fluoroanhydrite-Gypsum Compositions for the Manufacture of Decorative Architectural Details and Sculptural Products

Number of journal: 11-2021
Autors:

Kalabina D.A.,
Alexandrov A.M.,
Yakovlev G.I.

DOI: https://doi.org/10.31659/0585-430X-2021-797-11-52-56
УДК: 691.553.2

 

AbstractAbout AuthorsReferences
The influence of the addition of gypsum on the properties of the plasticized fluoroanhydrite binder was investigated. It has been shown that by introducing gypsum it is possible to purposefully influence the setting time of the fluoroanhydrite composition, varying them within wide limits from 3 hours to 14 minutes. Binders based on a mixture with a percentage of fluoroanhydrite/gypsum in the amount of 94/6 and 95.5/4.5 can be used for the manufacture of waterproof moldings, including architectural details, sculpture and decorative stone. Experimental testing of the developed fluoroanhydrite-gypsum material has shown its high efficiency. The involvement of fluoroanhydrite in the production of building materials and products provides economic and environmental benefits.
D.A. KALABINA, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. ALEXANDROV, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Samigov N.A., Atakuziev T.A., Asamatdinov M.O., Akhundzhanova S.R. Physicochemical structure and properties of waterproof and high-strength composite gypsum binders. Universum: Technical sciences. 2015. No. 10 (21). (In Russian).
2. Korovyakov V.F. Increasing the water resistance of gypsum binders and expanding their areas of application. Stroitel’nye Materialy, oborudovaniye, tekhnologii XXI veka. 2005. No. 3, pp. 28–31. (In Russian).
3. Patent RU2081076C1. Vyazhushchee [Binder]. Panchenko A.I., Airapetov G.A., Nesvetaev G.V., Nechushkin A.Yu. Appl. 06/10/1994; Publ. 10.06.1997. https://patentimages.storage.googleapis.com/2d/07/56/e02a208d3e2302/RU2081076C1.pdf (In Russian).
4. Tesárek P., Rovnaníková P., Kolísko J., Černý R. Properties of hydrophobized FGD gypsum. Cement-wapno-beton. 2005. Vol. 5, pр. 255–264.
5. Gordina A.F., Yakovlev G.I., Polyanskikh I.S., Kerene Ya., Fisher Kh.-B., Rakhimova N.R., Buryanov A.F. Plaster compositions with complex modifiers of structure. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, рр. 90–95. (In Russian).
6. Letenko D.G., Mokrova M.V., Matveeva L.Yu., Tikhonov Yu.M. The influence of the size distribution of nanomodified latex particles on the structure of gypsum materials. Vestnik grazhdanskikh inzhenerov. 2019. No. 4 (75), pp. 95–101. (In Russian). DOI 10.23968/1999-5571-2019-16-4-95-101
7. Konusheva V.V., Syrkin O.O., Steshenko A.B., Kudyakov A.I. Influence of modifying additives on gypsum water resistance. Effective formulations and technologies in building materials science: collection of the International Scientific and Technical Conference. Novosibirsk. 2017, pp. 161–163 (In Russian).
8. Solovyev V.G., Eremin A.V., Eliseev D.M., Buryanov A.F. Improvement of water resistance of gypsum binder by paraffin emulsion. Stroitel’nye Materialy [Construction materials]. 2017. No. 1–2, pp. 45–49. (In Russian).
9. Kolkataeva N.A., Garkavi M.S. The influence of styrene-acrylate emulsion on the performance properties of gypsum materials. Stroitel’nye Materialy [Construction Materials]. 2007. No. 9, pp. 50–51. (In Russian).
10. Haev T.Eh., Tkach E.V., Oreshkin D.V. Lightweight strengthened gypsum stone for restoration of architec-tural monuments. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 68–72. DOI: https://doi.org/10.31659/0585-430X-2018-759-5-68-72 (In Russian).
11. Kramar L.Ya., Trofimov B.Ya., Chernykh T.N. Properties and modification of anhydrite binder from technogenic raw materials. Collection of reports of the fifth scientific-practical conference “Innovative materials and technologies KNAUF-GARANT quality and safety in modern construction”. Chelyabinsk. 2012, pp. 30–58. (In Russian).
12. Patent RU 2723788 C1 Vysokoprochnoye ftorangidritovoye vyazhushcheye, sposob polucheniya vysokoprochnogo ftorangidritovogo vyazhushchego i kompozitsii na yego osnove (varianty) [High-strength fluoroanhydrite binder, a method of obtaining high-strength fluoroanhydrite binder and compositions based on it (options)]. Grakhov V.P., Pervushin G.N., Kalabina D.A., Yakovlev G.I. and others. Appl. 03/29/2019. Publ. 06/17/2020. (In Russian).
13. Vinogradova L.A. Tekhnologiya dekorativno-khudozhestvennykh izdelii na osnove vyazhushchikh veshchestv [Technology of decorative and artistic products based on binders]. Moscow: Yurayt Publishing House. 2021. 138 p. (In Russian).
14. Vinogradova L.A. Khudozhestvennoe materialovedenie vyazhushchikh veshchestv i tekhnologiya izgotovleniya dekorativno-otdelochnykh materialov na ikh osnove [Artistic materials science of binders and the technology of making decorative and finishing materials based on them]. Ivanovo: Ivanovo State University of Chemical Technology. 2018. 173 p. (In Russian).
15. Bondarenko S.A. Modified fluoroanhydrite binder and building materials based on it. Diss. Candidate of Sciences (Engineering). Chelyabinsk, 2008.148 p. (In Russian).
16. Kalabina D.A., Yakovlev G.I., Dufek Z., Pervu-shin G.N., Bazhenov K.A., Troshkova V.V. Fluoro-anhydrite compositions plasticized by polycarboxylate esters. Engineering Structures and Technologies. 2019. No. 11 (3), pp. 101–105. DOI: https://doi.org/10.3846/est.2019.11949

For citation: Kalabina D.A., Alexandrov A.M., Yakovlev G.I. Fluoroanhydrite-gypsum compositions for the manufacture of decorative architectural details and sculptural products. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 52–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-52-56

https://www.traditionrolex.com/10