Wall Ceramic Materials of Volume Coloring With Matrix Structure

Number of journal: 12-2021
Autors:

Akst D.V.,
Stolboushkin A.Yu.,
Fomina O.A.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-9-16
УДК: 666.7-12

 

AbstractAbout AuthorsReferences
The scientific principles of creating wall ceramic materials of volumetric coloring with a matrix structure have been developed. It has been substantiated the necessity of the structural concentration of coloring additives from industrial waste with a reduced content of chromophore compounds for the production of bulk colored wall ceramics with the required properties. It was proposed a model for the formation of a spatially organized structure and a distribution scheme for raw components during firing of a ceramic matrix composite. It was found that the concentration of the coloring component in the amount of 5–10 wt.% of the composition of the charge in the matrix of the composite material by aggregating the basic component of the charge into granules with a diameter of 1–3 mm, applying a shell 0.05–0.2 mm thick from the coloring component with subsequent pressing, drying and firing, provides volumetric coloring of wall ceramics while reducing the content of chromophores in the coloring component to 33%.Investigations of the macro- and microstructure of the obtained ceramic materials are presented. It is shown that the ceramic matrix composite at the macrolevel consists of cores formed from the basic component of the charge and covered with a shell of sintering products of a dark-colored dye additive, and a transition layer is formed in the boundary zone between them, formed as a result of the interaction of the core and shell components with their characteristic diffusion. in the process of heat and mass transfer during firing. In the current paper there are presented the results of a comprehensive study of the phase composition of the obtained ceramic matrix composites. The scientific principles of creating wall ceramic materials of volumetric coloring with a matrix structure are formulated. The main technical and economic indicators of the developed technology of new ceramic materials have been determined.
D.V. AKST1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A. Yu. STOLBOUSHKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.A. FOMINA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Siberian State Industrial University (42, Kirova Street, Novokuznetsk, 654007, Russian Federation)
2 Mechanical Engineering Research Institute of the RAS, (4, Maly Kharitonievsky side Street, Moscow, 101990, Russian Federation)

1. Stolboushkin A.Yu. Improving decorative properties of ceramic wall materials prodused of technogenic and natural resourses. Stroitel’nye Materialy [Construction Materials]. 2013. No. 8, pp. 24–29. (In Russian).
2. Pishch I.V., Maslennikova G.N., Gvozdeva N.A., Klimosh Yu.A., Baranovskaya E.I. Methods for ceramic bricks staining. Steklo i keramika. 2007. No. 8, pp. 15–18. (In Russian).
3. Zubekhin A.P., Yatsenko N.D., Golovanova S.P. Teoreticheskie osnovy belizny i okrashivaniya keramiki i portlandtsementa [Theoretical basis of whiteness and coloring of ceramics and portland cement]. Мoscow: Stroymaterialy. 2012. 152 p.
4. De Bonis A., Cultrone G., Grifa C. Langella A., Leone A.P., Mercurio M., Morra V. Different shades of red: The complexity of mineralogical and physicochemical factors influencing the colour of ceramics. Ceramics International. 2017. Vol. 43. Iss. 11, pp. 8065–1851. DOI: https://doi.org/10.1016/j.ceramint.2017.03.127
5. Vakalova T.V., Revva I.B., Pogrebenkov V.M. Protective and decorative coatings for building ceramics based on natural raw materials from Western Siberia. Steklo i keramika. 2007. No. 1, pp. 26–29. (In Russian).
6. Zaharov A.I., Surkov G.M. Basics of ceramic technology. Glazes and engobes for ceramic products. Steklo i keramika. 2000. No. 11, pp. 3–6. (In Russian).
7. Kara-Sal B.K. Intensification of sintering of fusible clay rocks with a change in the parameters of the firing medium. Steklo i keramika. 2007. No. 3, pp. 14–19. (In Russian).
8. Salahov A.M., Morozov V.P., Vagizov F.G., Eskin A.A., Valimuhametova A.R., Zinnatullin A.L. The scientific basis of color management of face brick at the Alekseevskaya Ceramics factory. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 90–95. (In Russian).
9. Kotlyar V.D., Yavruyan Kh.S., Bozhko Yu.A., Nebezhko N.I. Features of the production of soft-formed facing ceramic bricks based on opoka-like rocks. Stroitel’nye Materialy [Construction Materials]. 2019. No. 12, pp. 18–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-777-12-18-22
10. Vereshchagin V.I., Shil’tsina A.D., Selivanov Yu.V. The structure modeling and strength evaluation of construction ceramics from coarse-grained masses. Stroitel’nye Materialy [Construction Materials]. 2007. No. 6, pp. 65–68. (In Russian).
11. Gur’eva V.A., Dubinetskii V.V. Chemical method of activation of carbonate-containing raw materials in the technology of production of ceramic bricks by the method of semi-dry pressing. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 28–31. DOI: https://doi.org/10.31659/0585-430X-2021-795-9-28-31 (In Russian).
12. González I., Campos P., Barba-Brioso C., Romero A., Galán E., Mayoral E. A proposal for the formulation of high-quality ceramic “green” materials with traditional raw materials mixed with Al-clays. Applied Clay Science. 2016. Vol. 131, pp. 113–123. DOI: https://doi.org/10.1016/j.clay.2015.12.035
13. Abdrahimov V.Z., Kolpakov A.V. Ecological, theoretical and practical aspects of the use of calcium-containing waste in the production of ceramic materials. Izvestija vuzov. Stroitel’stvo. 2013. No. 7, pp. 28–36. (In Russian).
14. Yatsenko N.D., Zubekhin A.P. Scientific basis of innovative technologies of ceramic bricks and its properties management, depending on the chemical and mineralogical composition of raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 28–31. (In Russian).
15. Wiemes L., Pawlowsky U., Mymrin V. Incorporation of industrial wastes as raw materials in brick’s formulation. Journal of Cleaner Production. 2017. Vol. 142, pp. 69–77. DOI: https://doi.org/10.1016/j.jclepro.2016.06.174
16. Buruchenko A.E. Possibilities of using secondary raw materials for the production of building ceramics and sitalls. Vestnik Tuvinskogo gosudarstvennogo universiteta. Tekhnicheskie i fiziko-matematicheskie nauki. 2013. No. 3 (18), pp. 7–14. (In Russian).
17. Maslennikova G.N., Pishh I.V. Keramicheskie pigmenty [Ceramic pigments]. Мoscow: Stroimaterialy. 2009. 224 p.
18. Trojan J., Karolová L., Luxová J., Trojan M. Synthesis of SnO2/Cr pigments doped by praseodymium prepared by different methods and their pigmentary properties // Ceramics-Silikáty. 2016. No. 60 (3), pp. 234–242. DOI: https://doi.org/10.13168/cs.2016.0035
19. Ovčačíková H., Vlček J., Klárová M., Topinková M. Metallurgy dusts as a pigment for glazes and engobes. Ceramics International. 2017. Vol. 43, Iss. 10, pp. 7789–7796. DOI: https://doi.org/10.1016/j.ceramint.2017.03.091
20. Molinari C., Conte S., Zanelli C., Ardit M., Cruciani G., Dondi M. Ceramic pigments and dyes beyond the inkjet revolution: From technological requirements to constraints in colorant design. Ceramics International. 2020. Vol. 46, Iss. 14, pp. 21839–21872. DOI: https://doi.org/10.1016/j.ceramint.2020.05.302
21. Gurov N.G., Gurova O.E., Storozhenko G.I. Innovative directions of technological and instrumental reconstruction of semi-dry pressing plants. Stroitel’nye Materialy [Construction Materials]. 2013. No. 12, pp. 52–55. (In Russian).
22. Galindo R., Gargori C., Fas N., Llusar M., Monrós G. New chromium doped powellite (Cr–CaMoO4) yellow ceramic pigment. Ceramics International. 2015. Vol. 41. Iss. 5. Part A, pp. 6364–6372. DOI: https://doi.org/10.1016/j.ceramint.2015.01.071
23. Chen Z., Du Y., Li Z., Sun D., Zhu C. Synthesis of black pigments containing chromium from leather sludge. Ceramics International. 2015. Vol. 41, Iss. 8, pp. 9455–9460. DOI: https://doi.org/10.1016/j.ceramint.2015.04.001
24. Stolboushkin A.Yu. A promising direction for the development of building ceramic materials from low-quality raw materials. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 24–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-758-4-24-28
25. Stolboushkin A.Yu., Akst D.V., Fomina O.A. The use of industrial waste when painting ceramic matrix composites based on natural and technogenic raw materials. Durability of building materials, products and structures: materials of the All-Russian scientific and technical conference. Saransk. 2016, pp. 154–160. (In Russian).
26. Patent RF 2701657. Sposob poluchenija syr’evoj smesi dlja dekorativnoj stroitel’noj keramiki [The method of obtaining a raw mix for decorative construction ceramics]. Akst D.V., Stolboushkin A.Yu., Fomina O.A. Declared 19.12.2018. Published 30.09.2019. Bulletin No. 28. (In Russian).
27. Stolboushkin A.Yu. Method for a comprehensive study of the core-shell transition layer in semi-dry pressing ceramic matrix composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 28–35. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-28-35

For citation: Akst D.V., Stolboushkin A.Yu., Fomina O.A. Experimental-industrial tests of wall ceramics technology of volume staining with a matrix structure. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 9–16. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-9-16


Print   Email