Study of the Superabsorbent Polymer Additive Effectiveness to Reduce the Autogenous Shrinkage of Concrete without Reducing its Strength

Number of journal: 12-2021
Autors:

Sharafutdinov K.B.,
Saraykina K.A.,
Kashevarova G.G.
Erofeev V.T.

DOI: https://doi.org/10.31659/0585-430X-2021-798-12-61-68
УДК: 666.972

 

AbstractAbout AuthorsReferences
The results of experimental studies of the effect of different types of additives of superabsorbent polymers (SAP) on the strength of various types of concrete carried out by both domestic and foreign authors are analyzed. The purpose of research was to study the effectiveness of using a new type of additive to activate the processes of self-healing of cracks in concrete structures without losing hardened concrete. As a result of field experiments, the optimal dosage of the used additive was revealed. It is shown that the strength of concrete remains unchanged if the dosage of the superabsorbent additive (SAP) is equal to 0.5% of the cement weight or less. The results of a study of the properties of fine-grained and heavy concrete modified with a superabsorbent polymer additive are presented. The possibility of using modern intelligent technologies (artificial neural networks) to predict the properties of concrete mixture and finished concrete (cone spreading, bending and compressive strength) at given values of input parameters (dosages of SAP and I/C), on the characteristics of concrete is shown. This opens up the prospects of using a neural network to create materials with predefined properties.
K.B. SHARAFUTDINOV1, Engineer,
K.A. SARAYKINA1, Candidate of Sciences (Engineering);
G.G. KASHEVAROVA1,2, Doctor of Sciences (Engineering), Professor, Сorresponding member of RAACS;
V.T. EROFEEV2,3, Doctor of Sciences (Engineering), Academician of RAACS

1 Perm National Research Polytechnic University (29, Komsomolsky Prospect, Perm, 614990, Russian Federation)
2 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
3 National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 30005, Russian Federation)

1. Achal V. Microbial remediation of defects in building materials and structures: PhD thesis. India:Thapar University, Patiala. 2010. 263 p.
2. Castanier S., Métayer-Levrel G.L., Perthuisot J.P. Bacterial roles in the precipitation of carbonate minerals. In: Riding R.E., Awramik S.M. (eds) Microbial Sediments. 2000, pp. 32–39. https://doi.org/10.1007/978-3-662-04036-2_5
3. Chun Xiang Qian, Qingfeng Pan, Ruixing Wang. Cementation of sand grains based on carbonate precipitation induced by microorganism. Science China Technological Sciences. 2010. Vol. 53 (8), pp. 2198–2206. DOI: 10.1007/s11431-009-3189-z
4. De Muynckab W., Coxa K., De Beliea N., Verstraeteb W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials. 2008. Vol. 22. Iss. 5, pp. 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011
5. Jonkers H.M., Schlangen E. Development of a bacteria-based self-healing concrete. Tailor Made Concrete Structures – New Solution for Society. 2008, pp. 425–430. DOI: 10.1201/9781439828410.ch72
6. De Muynck W., De Belie N., Verstraeteb W. Microbial carbonate precipitation in construction materials: A review. Ecological Engineering. 2010. Vol. 36. Iss. 2, pp. 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
7. Sanchez-Silva M. Microbial mediated deterioration of reinforced concrete structures. International Biodeterioration & Biodegradation. 2010. Vol. 64 (8), pp. 748–754. DOI:  10.1016/j.ibiod.2010.09.001
8. Park J., Park M., Chun W.-Y., Ghim S.-Y. Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology. 2010. Vol. 20 (4), pp. 782–788.
9. Wang J.Y., Van Tittelboom K., De Belie N., Verstratete W. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction Building Materials. 2012. Vol. 26. No. 1, pp. 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054
10. Akimov L., Ilenko N., Mizharev R., Cherkashin A., Vatin N., Chumadova L. Composite concrete modifier CM 02-10 and its impact on the strength characteristics of concrete. MATEC Web of Conferences 53, 01022 (2016). https://doi.org/10.1051/matecconf/20165301022
11. Frolov A., Cherkashin A., Akimov L.,Vatin N., Koltsova T., Nasibulin A., Tolochko O., Chumadova L. An impact of carbon nanostructured additives on the kinetics of cement hydration. Applied Mechanics and Materials. 2014. Vol. 725–726, pp. 425–430. DOI: 10.4028/www.scientific.net/AMM.725-726.425
12. Akimov L., Ilenko N., Mizharev R., Cherkashin A. Influence of plasticizing siliceous additives on the strength characteristics of concrete. Applied Mechanics and Materials. 2015. Vol. 725–726, pp. 461–468. DOI: 10.4028/www.scientific.net/AMM.725-726.461
13. Lee H.X.D., Wong H.S., Buenfeld N.R. Self-sealing of cracks in concrete using superabsorbent polymers. Cement and Concrete Research. 2016. Vol. 79, pp. 194–208. https://doi.org/10.1016/j.cemconres.2015.09.008
14. Бруяко М.Г., Григорьева А.И., Голотенко Д.С., Подсевалова А.А. Биомодифицирование строительных материалов бактериями с уреазной активностью // Строительство и реконструкция. 2020. № 2 (88). C. 5–15.
14. Bruyako M.G., Grigorieva A.I., Golotenko D.S., Podsevalova A.A. Biomodification of building materials by bacteria with urease activity. Stroitel’stvo i rekonstruktsiya. 2020. No. 2 (88), pp. 5–15. (In Russian).
15. Ерофеев В.Т., Фомичев В.Т. Химические аспекты процесса устранения трещин бетона с помощью бактерий // Транспортные сооружения: Интернет-журнал. 2018. Т. 5. № 3. С. 12. https://t-s.today/PDF/13SATS318.pdf
15. Erofeev V.T., Fomichev V.T. Chemical aspects of the process of eliminating concrete cracks with the help of bacteria. Transportnyye sooruzheniya: Online Journal. 2018. Vol. 5. No. 3, p. 12. https: //t-s.today/PDF/13SATS318.pdf (In Russian).
16. Ерофеев В.Т., Смирнов В.Ф. Бактерии для получения самовосстанавливающихся бетонов. Транс-портные сооружения: Интернет-журнал. 2018. T. 5. № 4. С. 6. https://t-s.today/PDF/07SATS418.pdf
16. Erofeev V.T., Smirnov V.F. Bacteria for obtaining self-healing concretes. Transportnyye sooruzheniya: Online Journal. 2018. Vol. 5. No. 4, p. 6. https://t-s.today/PDF/07SATS418.pdf (In Russian).
17. Bobrishev A.A., Shafigullin L.N., Erofeev V.T., Treshchev A.A., Study of effects of redispersable latex powders on hardening kinetics of cement-sand composites. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. Vol. 7 (4), pp. 795–802.
18. Erofeev V., Bobryshev A., Lakhno A., Shafigullin L., Khalilov I., Sibgatullin K., Igtisamov R. Theoretical evaluation of rheological state of sand cement composite systems with polyoxyethylene additive using topological dynamics concept. Solid State Phenomena. 2016. Vol. 871, pp. 96–103. DOI: 10.4028/www.scientific.net/MSF.871.96.
19. Pattharaphon C., Hiroshi Y. Paponpat P. Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Construction and Building Materials. 2020. Vol. 233. 116975. https://doi.org/10.1016/j.conbuildmat.2019.116975
20. Byoungsun P., Young C.C. Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Construction and Building Materials. 2018. Vol. 189, pp. 1054–1066. https://doi.org/10.1016/j.conbuildmat.2018.09.061
21. Silva E., Alejandro M.R.M., Lopes A.N.M., Dias R.T.F. Effect of sap on the autogenous shrinkage and compressive strength of high-strength fine-grained concrete. 2020. Conference: International Conference Application of Superabsorbent Polymers and other New Admixtures in Concrete Construction.
22. Meyst L., Kheir J., Roberto J.T.F., Tittelboom K.V. The use of superabsorbent polymers in high performance concrete to mitigate autogenous shrinkage in a large-scale demonstrator. Sustainability. 2020. 12 (Special Issue Crack Prediction and Preventive Repair Methods for the Increasing Sustainability and Safety Requirements of Structures). DOI: 10.3390/su12114741
23. Kang S.H., Hong S.G., Moon J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete. Construction and Building Materials. 2018. Vol. 172, pp. 29–40. https://doi.org/10.1016/j.conbuildmat.2018.03.193
24. Olawuyi B.J., Babafemi A.J., Boshoff W.P. Early-age and long-term strength development of high-performance concrete with SAP. Construction and Building Materials. 2021. Vol. 267. 121798 https://doi.org/10.1016/j.conbuildmat.2020.121798
25. Li L., Dabarera A.G.P., Dao V. Time-zero and deformational characteristics of high performance concrete with and without superabsorbent polymers at early ages. Construction and Building Materials. 2020. Vol. 264. 120262 https://doi.org/10.1016/j.conbuildmat.2020.120262
26. Tan Y., Lu X., He R., Chen H. Influence of superabsorbent polymers (SAPs) type and particle size on the performance of surrounding cement-based materials. Construction and Building Materials. 2020. Vol. 270. 121442. DOI: 10.1016/j.conbuildmat.2020.121442
27. Попов Д.Ю., Лесовик В.С., Мещерин В.С. Влияние суперабсорбирующих полимеров на пластическую усадку цементного камня // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 11. С. 6–12.
27. Popov D.Y., Lesovik V.S., Mechtcherine V.S. Influence of superabsorbent polymers on plastic shrinkage of cement stone. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2016. No. 11, pp. 6–12. (In Russian).

For citation: Sharafutdinov K.B., Saraykina K.A., Kashevarova G.G. Erofeev V.T. Study of the superabsorbent polymer additive effectiveness to reduce the autogenous shrinkage of concrete without reducing its strength. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 61–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-61-68


Print   Email