Log in

Facade Paints Based on Filled Styrene-Acrylic Dispersions

Number of journal: 8-2021
Autors:

Fomina N.N.,
Ismagilov A.R.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-60-66
УДК: 685.34.043

 

AbstractAbout AuthorsReferences
The relevance of the development of domestic competitive paint and varnish materials for construction purposes on a water-dispersion basis is justified. Such developments are hindered by the lack of information on filling, pigmentation and modification of modern water-dispersion binders. Styrene-acrylic dispersions, pigment titanium dioxide, defoamers and other modifying additives of domestic and imported production, as well as mineral fillers – microcalcite and kaolin were used in the studies. It is shown that the styrene-acrylic dispersion Orgal Pst 65 of the Turkish production with an increased content of acrylic links in the copolymer is advisable to use in low-pigmented compositions, and for facade paints with a volume concentration of the pigment part of more than 30%, it is rational to use the domestic dispersion Acrylan 101. The increased foam formation of this dispersion during processing is effectively eliminated by the use of a mineral oils-based defoamer. The amount of pigment titanium dioxide in the facade paint formulation has been optimized – its dosage has been reduced from 9 to 5% by weight by replacing it with kaolin. At the same time, the covering capacity remained at the same level, rheological indicators improved, the consumption of thickener decreased, the degree of whiteness of coatings decreased, which is not critical for facade and base paints. Informative criteria for choosing a pigment based on the dispersion parameters determined by laser analyzers are proposed: a high-quality pigment should have a sufficient number of particles with sizes in the range of 0.2–0.25 microns and the most likely particle size close to 0.25 microns. The domestic TiOx 230 pigment meets these requirements. As a result, an effective recipe for facade paint has been developed, including a binder, pigment and fillers of domestic production, as well as the necessary and sufficient complex of modifying additives. In April 2021, an experimental batch of the developed paint was released and finishing works were carried out on the facade of a residential building.
N.N. FOMINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.R. ISMAGILOV, Engineer (Postgraduate)

Yuri Gagarin State Technical University of Saratov (77, Politechnicheskaya Street, Saratov, 410054, Russian Federation)

1. Strategy for the development of the chemical and petrochemical complex for the period up to 2030. Approved by order of the Ministry of Industry and Trade of Russia and the Ministry of Energy of Russia dated April 8, 2014 No. 651/172. URL: https://docs.cntd.ru/document/420245722
2. Averyanov G.V. Does the state intend to develop the national paint and varnish industry? Vestnik khimicheskoy promyshlennosti. 2019. No. 4 (109), pp. 8–11. (In Russian).
3. Averyanov G.V. Why is the national globalization of the Russian paint and varnish industry important? Vestnik khimicheskoy promyshlennosti. 2019. No. 6 (111), pp. 8–10. (In Russian).
4. Lambourne R. Lakokrasochnyye materialy i pokrytiya: teoriya i praktika [Paints and varnishes and coatings: theory and practice]. Saint Petersburg: Khimiya. 1991. 481 p.
5. Muller B., Pot U. Lakokrasochnyye materialy i pokrytiya. Printsipy sostavleniya retseptur [Paints and varnishes and coatings. Formulation principles]. Moscow: Paint-Media. 2007. 237 p.
6. Freytag V., Stoye D. Kraski, pokrytiya i rastvoriteli: sostav, proizvodstvo, svoystva i analiz [Paints, coatings and solvents: composition, production, properties and analysis]. Saint Petersburg: Professiya. 2007. 526 p.
7. Yakovlev A.D. Khimiya i tekhnologiya lakokrasochnykh pokrytiy [Chemistry and technology of paint and varnish coatings]. Saint Petersburg: Khimizdat. 2008. 448 p.
8. Polymer Dispersions and Their Industrial Applications. Еdited by Dieter Urban and Koichi Takamura. Weinheim: Wiley-VCH Verlag GmbH, 2002. 417 р.
9. Kazakova E.E., Skorokhodova O.N. Vodno-dispersionnyye akrilovyye lakokrasochnyye materialy stroitel’nogo naznacheniya [Water-dispersive acrylic paints and varnishes for construction purposes]. Moscow: Paint-Media, 2003. 136 p.
10. Stroganov V.F., Amelchenko M.O. Influence of fillers of silicate nature on the properties of styrene-acrylic coatings. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2018. No. 3 (45), pp. 196–202. (In Russian).
11. Ivaschenko Yu.G., Fomina N.N., Ismagilov A.R. Analysis of styrene-acrylic dispersions as binders for building paints Vestnik BGTU imeni V.G. Shukhova. 2018. No. 1, pp. 6–11. (In Russian). DOI: https://doi.org/10.12737/article_5a5dbd2d492241.03354026.
12. Haylen V. Dobavki dlya vodorastvorimykh lakokrasochnykh materialov [Additives for water-soluble paints and varnishes. Trans. from English A.A. Korda]. Moscow: Paint-Media. 2011. 176 p.
13. Ismagilov A.R., Fomina N.N. Investigation of the effectiveness of antifoam agents in water-dispersion paints Tekhnicheskoye regulirovaniye v transportnom stroitel’stve. 2016. No. 1 (15). (In Russian). URL: trts.esrae.ru/28-143
14. Diebold M.P. A Monte Carlo determination of the effectiveness of nanoparticles as spacers for optimizing TiO2 opacity. Journal of Coatings Technology and Research. 2011. Vol. 8 (5), pp. 541–552. DOI: https://doi.org/10.1007/s11998-011-9342-1
15. Diebold M.P. Optimizing the benefits of TiO2 in paints. Journal of Coatings Technology and Research. 2020. Vol. 17, pp. 1–17. DOI: https://doi.org/10.1007/s11998-019-00295-2
16. Diebold M.P., Kwoka R.A., Mehr S.R., Vargas R.W. Rapid assessment of TiO2 pigment durability via the acid solubility test. Journal of Coatings Technology and Research. 2004. Vol. 3. No. 1, рр. 239–241. DOI: https://doi.org/10.1007 / s11998-004-0018-у
17. Ismagilov A.R., Fomina N.N. Dispersion parameters of mineral components of paints and varnishes. Durability, strength and fracture mechanics of building materials and structures: Materials of the XI Academic Readings of the RAASN. International Scientific and Technical Conference. Saransk. 2020, pp. 337–342. (In Russian).
18. Ermilov P.I., Indeikin E.A., Tolmachev I.A. Pigmenty i pigmentirovannyye lakokrasochnyye materialy [Pigments and pigmented paints and varnishes]. Leningrad: Khimiya. 1987. 200 p.
19. Fomina N.N., Ismagilov A.R., Fomin V.G. Dispersion of pigment titanium dioxide. Stroitel’stvo i rekonstruktsiya. 2020. No. 2, pp. 136–142. (In Russian).

For citation: Fomina N.N., Ismagilov A.R. Facade paints based on filled styrene-acrylic dispersions. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 60–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-60-66

Composite Aggregate for Lightweight Concrete Using Chrysotile Cement and Ash and Slag Waste

Number of journal: 8-2021
Autors:

Lukuttsova N.P.,
Pykin A.A.,
Soboleva G.N.,
Zolotukhina N.V.,
Obydennaya A.A.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-53-59
УДК: 666.973

 

AbstractAbout AuthorsReferences
The composition has been developed and the physical and mechanical properties of a composite aggregate (CA) with a «core-shell» structure for lightweight concrete using chrysotile cement slurry (CCS) and ash and slag mixture (ASM) of a thermal power plant have been developed. A method for the manufacture of CA is presented, including the granulation of a core from CCS with a moisture content of 50–60%, the formation of a shell on the surface of the core by dusting it in a dry mixture with a specific surface area of particles of 320–340 m2/kg, prepared by joint grinding of Portland cement, acidic ash and slag mixture and pre-dried chrysotile cement slurry at a temperature of 110оC, heat and moisture treatment of finished granules. Mathematical models of the dependence of the bulk density and compressive strength of the CA on the quantitative ratio of the components of the mixture for dusting the core and the moisture content of the CCS have been constructed. A rational composition has been proposed that makes it possible to obtain a composite aggregate for lightweight concrete with a bulk density of up to 380 kg/m3, thermal conductivity up to 0.09 W/(m·оC), compressive strength up to 3 MPa, and water absorption by weight of 30%. The possibility of utilization of chrysotile-cement and ash and slag waste in the production of efficient and environmentally friendly aggregates for concrete with low bulk density and thermal conductivity has been substantiated.
N.P. LUKUTTSOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. PYKIN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. SOBOLEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.V. ZOLOTUKHINA2, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. OBYDENNAYA1, Student

1 Bryansk state engineering-technological university (3, Stanke Dimitrova Avenue, Bryansk, 241037, Russian Federation)
2 Bendery Polytechnic Branch of the State Educational Institution «Pridnestrovian State University named after T.G. Shevchenko» (7, Bendery Uprising Street, Bendery, 3200, Moldavian Republic)

1. Davydov S.Y., Apakashev R.A., Valiev N.G., Kozhushko G.G. Chrysotile Asbestos: raw materials for the construction industry from deep quarries. Refractories and Industrial Ceramics. 2020. Vol. 61, pp. 249–252. DOI: https://doi.org/10.1007/s11148-020-00466-4
2. Khozin V.G., Khritankov V.F., Pichugin A.P. A role of the building industry in the development of a circular economy of industrial regions of Russia. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 6–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-6-12
3. Umarov T.Yu., Razzokov S.Z. Chrizotile-asbestos regeneration from technogenic waste of the chrizotile-cement industry. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 52–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-52-56
4. Shchetkova E.A., Sevast’ianov R.V. Chrysotile as optimal reinforcing agent for fiber-reinforced concrete. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvo i arkhitektura. 2015. No. 2, pp. 174–191. (In Russian). DOI: https://doi.org/10.15593/2224-9826/2015.2.12
5. Pligina A.I., Semenov V.S., Egorova L.V., Ashadullin A.A. Usage of chrysotile-cement waste in manufacturing ferroconcrete products. Nauchnoye obozreniye. 2015. No. 10–2, pp. 84–88. (In Russian).
6. Kozlov V.V., Popov K.N., Mezhov A.G., Liljak A.I. Ways of using chrysotile cement industry waste. Vestnik MGSU. 2011. No 1–2, pp. 284–287. (In Russian).
7. Yakovlev G.I., Drochytka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina А.F., Shaybadullina A.V., Pudov I.A., Elrefai A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10
8. Strokova V.V., Vezentsev A.I., Kolesnikov D.A., Solokha A.S. Chrysotile is a natural nanotubular material. Vestnik BGTU im. V.G. Shukhova. 2010. No. 2, pp. 34–38 (In Russian).
9. Naumova L.N., Pavlenko V.I., Cherkashina N.I. Modification of chrysotile fiber surface and its effect on the physical and mechanical characteristics of chrysotile cement. Protection of Metals and Physical Chemistry of Surfaces. 2019. Vol. 55, pp. 330–334. DOI: https://doi.org/10.1134/S2070205119020229
10. Vezentsev A.I., Gudkova Ye.A., Pylev L.N., Smirnova O.V. On the question of changing the surface and biological properties of chrysotile in asbestos cement. Stroitel’nye Materialy [Construction Materials]. 2008. No. 9, pp. 26–27. (In Russian).
11. Repina Zh.V., Chemyakina N.A., Tarskaya-Lapteva E.G. Khrizotiltsementnyye stroitel’nyye materialy. Oblasti primeneniya [Chrysotile cement building materials. Areas of use]. Yekaterinburg: AMB. 2009. 152 p.
12. Oreshkin D.V., Popov K.N., Liljak A.I., Mezhov A.G. Utilization of asbestos cement waste in the building materials. Vestnik MGSU. 2011. No. 1–2, pp. 296–298. (In Russian).
13. Guyumdzhyan P.P., Kashnikova M.L., Kuligina T.N. Use of wastes from the asbestos-cement industry. Stroitel’nye Materialy [Construction Materials]. 2006. No. 9, pp. 20–21. (In Russian).
14. Lukuttsova N.P., Pykin A.A., Chivikova E.V. Use of opal-crystobalite-tridimite micro-filler in dense aggregate concrete. Vestnik BGTU im. V.G. Shukhova. 2020. No. 2, pp. 8–17. (In Russian). DOI: https://doi.org/10.34031/2071-7318-2020-5-2-8-17
15. Orentlikher L.P., Soboleva G.N. Non-fired composite porous aggregate from wet asbestos-cement waste and lightweight concrete based on it. Stroitel’nye Materialy [Construction Materials]. 2000. No. 7, pp. 18–19. (In Russian).
16. Certificate of state registration of a computer program 2018616850. Experimental data modeling program Extr.sce. Karpikov E.G., Yanchenko V.S., Lukuttsova N.P., Golovin S.N. Declared 25.04.2018. Published 07.06.2018. (In Russian).

For citation: Lukuttsova N.P., Pykin A.A., Soboleva G.N., Zolotukhina N.V., Obydennaya A.A. Composite aggregate for lightweight concrete using chrysotile cement and ash and slag waste. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 53–59. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-53-59

Composition and Rheological Properties of Molding Mixtures on a Composite Gypsum Binder

Number of journal: 8-2021
Autors:

Chernysheva N.V.,
Lesovik V.S.,
Drebezgova M.Yu.,
Motorykin D.A.,
Lesnichenko E.N.,
Bocharnikov A.L.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-45-52
УДК: 691.533

 

AbstractAbout AuthorsReferences
In low-rise construction, 3D technology is one of the new and promising, for the development of which it is necessary to create special materials with a complex of modifying additives with the necessary regulated properties. Effective for these purposes are molding mixtures based on composite gypsum binders (CGB), which have significant advantages in the possibility of regulating the setting time and hardening speed within a wide range compared to mixtures based on Portland cement. The results of experimental studies of the rheological characteristics of fast-hardening molding mixtures based on composite gypsum binders with a complex of organic additives, which were studied on a rotary viscometer “RHEOTEST RN 4.1”, are presented. The studies conducted confirm the possibility of controlling the rheological properties of special molding mixtures on composite gypsum binders due to combined functional and rheologically active additives, ensuring the optimization of their properties for the characteristics of various types of molding equipment and the tasks to be solved. It is established that the developed special molding mixtures based on CGB for 3D additive technologies of low-rise construction without aggregate and with quartz sand quickly harden and gain strength in an early period.
N.V. CHERNYSHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.S. LESOVIK, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.Yu. DREBEZGOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. MOTORYKIN, Engineer (graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.N. LESNICHENKO, Engineer (graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.L. BOCHARNIKOV, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov(46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Bazhenov Y.M., Zagorodnjuk L.H., Lesovik V.S., Yerofeyeva I.V., Chernysheva N.V., Sumskoy D.A. Concerning the role of mineral additives in composite binder content. International Journal of Pharmacy and Technology. 2016. Vol. 8. No. 4, pp. 22649–22661.
2. Permyakov M.B., Permyakov A.F., Davydova A.M. Additive technologies in construction. European Research. 2017. No. 1 (24), pp. 4–18. (In Russian).
3. Vatin N.I., Chumadova L.I., Goncharov I.S., Zykova V.V., Karpenya A.N., Kim A.A., Finashenkov E.A. 3D printing in construction. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2017. No. 1 (52), pp. 27–46. (In Russian).
4. Luneva D.A., Kozhevnikova E.O., Kaloshina S.V. The use of 3D printing in construction and the prospects for its development. Vesytnik of the Perm National Research Polytechnic University. Construction and architecture. 2017. Vol. 8. No. 1, pp. 90–101. (In Russian).
5. Pustovgar A.P., Adamtsevich A.O., Volkov A.A. Technology and organization of additive construction. Promyshlennoye i grazhdanskoye stroitel’stvo. 2018. No. 9, pp. 12–20. (In Russian).
6. Inozemtsev A.S., Korolev E.V., Zyong T.K. Analysis of existing technological solutions for 3D printing in construction. Vestnik MGSU. 2018. Vol. 13. No. 7 (118), pp. 863–876. (In Russian).
7. Elistratkin M.Y., Lesovik V.S., Alfimova N.I., Shurakov I.M. The question of mix composition selection for construction 3D printing. Materials Science Forum. 2019. Vol. 945, pp. 218-225. https://doi.org/10.4028/www.scientific.net/MSF.945.218
8. Glagolev E.S., Chernysheva N.V., Lesovik V.S., Lesnichenko E.N. Compounding features of special molding mixes for 3D printing technology. In book: Proceedings of the International Conference Industrial and Civil Construction. 2021, pp. 250–257. DOI: 10.1007/978-3-030-68984-1_37
9. Klyuev S.V., Klyuev A.V., Shorstova E.S. The micro silicon additive effects on the fine-grassed concrete properties for 3-D additive technologies. Materials Science Forum. 2019. Vol. 974, pp. 131–135. https://doi.org/10.4028/www.scientific.net/MSF.974.131
10. Slavcheva G.S., Artamonova O.V., Shvedova M.A., Britvina E.A. Effect of viscosity modifiers on structure formation in cement systems for construction 3D printing. Inorganic Materials. 2021. Vol. 57 (1), pp. 94–100. https://doi.org/10.1134/S0020168521010143
11. Uriev NB Dynamics of structured dispersed systems. Kolloidnyy zhurnal. 1998. No. 5, pp. 662–683. (In Russian).
12. Drebezgova M.Yu. Rheological properties of the system «composite gypsum binder – superplasti-cizer – water». Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 68–70. DOI: https://doi.org/10.31659/0585-430X-2017-755-12-68-70. (In Russian).
13. Glagolev E.S., Chernysheva N.V., Drebezgova M.Y., Motorykin D.A. Rheological properties of molding mixes on composite gypsum binders for 3D-additive technologies of low-height monolithic construction. Lecture Notes in Civil Engineering. 2021. Vol. 160, pp. 23–29. https://doi.org/10.1007/978-3-030-75182-1_4
14. Slavcheva G., Artamonova O., Babenko D., Ibryaeva A. Effect of limestone filler dosage and granulometry on the 3D printable mixture rheology. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 972 (1). 012042. DOI: 10.1088/1757-899X/972/1/012042
15. Slavcheva G.S., Shvedova M.A., Babenko D.S. Analysis and criteria assessment of rheological behavior of mixes for construction 3-D printing. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 34–40. (In Russian). DOI:  https://doi.org/10.31659/0585-430X-2018-766-12-34-40

For citation: Chernysheva N.V., Lesovik V.S., Drebezgova M.Yu., Motorykin D.A., Lesnichenko E.N., Bocharnikov A.L. Composition and rheological properties of molding mixtures on a composite gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 45–52. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-45-52

The use of Gypsum Compositions in the Technologies of Construction 3D Printing of Low-Rise Residential Buildings. Problems and Prospects

Number of journal: 8-2021
Autors:

Ryazanov A.N.,
Shigapov R.I.,
Sinitsin D.A.,
Kinzyabulatova D.F.,
Nedoseko I.V.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44
УДК: 691.311:004.925.84

 

AbstractAbout AuthorsReferences
The use of 3D printing technology for the construction of construction objects is becoming more widespread every year. The equipment for construction 3D printing is rapidly developing, formulas of mixtures are being developed, printing technology is being improved. The first experimental low-rise buildings using this technology are being built not only by foreign, but also by domestic builders. Currently, dry cement-based mixtures are mainly used as a material for construction 3D printing, and recipes for gypsum-based mixtures have also been developed. The main reason for the rapid development of 3D printing technology in construction is its significant advantages, such as high architectural and artistic expressiveness of buildings, an increase in the speed of construction, a significant reduction in labor costs, and a reduction in the amount of construction waste. However, in addition to the advantages, the technology of construction 3D printing has a number of currently unresolved issues, the main of which is the construction of ceiling elements and coatings. The article presents the results of tests of large-sized fragments of walls made with the use of 3D printing technology using a dry mixture based on gypsum binder, and also describes the experience of experimental design of a two-story residential building intended for construction using 3D printing technology. It is noted that the most rational technical solution for such buildings is beam inter-floor and attic floors made of thin-walled lightweight steel structures (galvanized Light Thin-Walled Steel Structures profiles) and monolithic foam gypsum, and filling the inner space of the outer walls with monolithic foam gypsum can be recommended as thermal insulation. The proposed construction of floors makes it possible to build a low-rise residential building using 3D printing technology almost entirely from non-flammable environmentally friendly materials on a gypsum basis with a minimum weight of structures and a minimum load on the foundation.
A.N. RYAZANOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.I. SHIGAPOV2, Chief Technologist (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.A. SINITSIN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.F. KINZYABULATOVA1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.V. NEDOSEKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ufa State Petroleum Technological University (195, Mendeleeva Street, Ufa, 450062, Russian Federation)
2 “Ufa Gypsum Company” LLC (8, Proizvodstvennaya Street, Ufa, 450028, Russian Federation)

1. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials & Structures. 2012. Vol. 45, pp. 1221–1232. https://doi.org/10.1617/s11527-012-9828-z
2. Zhang Ts. Technology of design and construction of reinforced concrete structures for 3D printing. In the collection: International Scientific and Technical Conference of Young Scientists BSTU. V.G. Shukhov. Conference materials. Belgorod. 2021, pp. 1696–1700. (In Russian).
3. Sharapova A.V., Dmitrieva M.A. Selection of compositions suitable for the implementation of additive technologies in construction. In the collection: Modern building materials and technologies. Ed. by M.A. Dmitrieva. 2019, pp. 51–72. (In Russian).
4. Slavcheva G.S., Shvedova M.A., Babenko D.S. Analysis and criteria assessment of rheological behavior of mixes for construction 3-D printing. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 34–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-766-12-34-40
5. Akulova I.I., Slavcheva G.S., Makarova T.V. Technical and economic estimate of efficiency of using 3D printing in housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 12, pp. 52–56. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-12-52-56
6. Slavchev G.S., Makarova T.V. Foam concretes for heat insulation layers of external walls constructed by the method of 3D printing. Stroitel’nye Materialy [Construction Materials]. 2018. No. 10, pp. 30–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-764-10-30-35
7. Slavcheva G.S. 3D-build printing today: potential, challenges and prospects for implementation. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 28–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
8. Kumar L.J., Krishnadas Nair C.G. Current Trends of Additive Manufacturing in the Aerospace Industry. In: Wimpenny D., Pandey P., Kumar L. (eds) Advances in 3D Printing & Additive Manufacturing Technologies. Springer, Singapore. 2017 https://doi.org/10.1007/978-981-10-0812-2_4
9. Glagolev E.S., Lesovik V.S., Bychkova A.A. 3D printing of buildings and building components for the future of sustainable construction. In the collection: Nature-like technologies of building composites to protect the human environment. II International online congress dedicated to the 30th anniversary of the Department of Building Materials Science, Products and Structures. Belgorod. 2019, pp. 303–309. (In Russian).
10. Alekseeva N.S. Prospects for the use of 3D printing in construction. In the collection: Economics and Management: Trends and Prospects. Materials of the I Interuniversity Scientific and Practical Conference of the Faculty of Economics and Management. St. Petersburg. 2020, pp. 211–216. (In Russian).
11. Mirsaev R.N., Babkov V.V., Nedoseko I.V., Yunusova S.S. and others. Experience in the production and operation of gypsum wall products. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 78-80. (In Russian).
12. Nedoseko I.V., Babkov V.V., Yunusova S.S., Gaitova A.R., Akhmadullina I.I. Gypsum and gypsum slag compositions based on natural raw materials and industrial waste. Stroitel’nye Materialy [Construction Materials]. 2012. No. 8, pp. 66–68. (In Russian).
13. Bessonov I.V., Shigapov R.I., Babkov V.V. Thermal insulation foam gypsum in low-rise construction. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 9–13. (In Russian).
14. Shigapov R.I., Sinitsin D.A., Kuznetsov D.V., Gaysin A.M., Nedoseko I.V. The use of structural and thermal insulation foam gypsum in the construction and reconstruction of buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 28–33. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-28-33

For citation: Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44

Investigation of the Role of Potassium Sulfate in the Design of a Hardening Activator

Number of journal: 8-2021
Autors:

Buryanov A.F.,
Fisher H.-B.,
Gal'tseva N.A.,
Buldyzhova E.N.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-34-38
УДК: 691.311

 

AbstractAbout AuthorsReferences
The article is devoted to the study of the possibility of structure control during the modification of anhydrite systems. The study of insoluble anhydrite hardening activators and accelerators will make it possible to expand the possibility of using anhydrite in the production of construction products and materials. The dependences of the setting time and the compressive strength of three types of modified binder were studied: firing anhydrite binder, synthetic anhydrite binder, natural anhydrite binder on the content of K2SO4. The conducted studies have shown that the addition of potassium sulfate accelerates the hydration of anhydrite binders and leads to a set of compressive strength of hardened samples. The physical and technical characteristics of binders depend on the amount of the K2SO4 additive being introduced and on the type of anhydrite binder. For further study, potassium sulfate in the amounts of 1 and 2% was adopted as the basic hardening activator
A.F. BURYANOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
H.-B. FISHER2, Doctor-Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.A. GAL'TSEVA1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.N. BULDYZHOVA1, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Bauhaus-Universität Weimare (Coudraystraβe 11, 99421 Weimar, Deutschland)

1. Guerra-Cossio M.A., González-Lopez J.R., Magal-lanes-Rivera R.X., Zaldivar-Cadena A.A., Figueroa-Torres M.Z. Calcium sulfate: an alternative for environmentally friendly construction. 2 International conference on Bio-based Building materials. 2017, pp. 1–5.
2. Kaklyugin A.V., Kastornykh L.I., Stupen N.S., Kovalenko V.V. Press-formed composites with alternate wetting and drying resistance based on modified gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 40–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-40-46
3. Klimenko V.G., Pavlenko V.I., Gasanov S.K. Effect of pH of the mixing fluid on the strength properties of gypsum binders. Vestnik BGTU im. V.G. Shukhova. 2014. No. 5, pp. 16–20. (In Russian).
4. Kalabina D.A., Yakovlev G.I., Drochitka R., Grakhov V.P., Pervushin G.N., Bazhenov K.A., Troshkova V.V. Rheological activation of fluoroanhydrite compositions with polycarboxylate esters. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 38–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-38-47
5. Klimenko V.G. The role of double salts based on sulfates Na+, K+, Ca2+, NH4+ in the technology of producing anhydrite binders. Vestnik BGTU im. V.G. Shukhova. 2017. No. 12, pp. 119–125. (In Russian).
6. Tokarev Yu.V., Volkov M.A., Ageev A.V., Kuzmina N.V., Grakhov V.P., Yakovlev G.I., Khazeev D.R. Estimation of efficiency of applying aqueous dispersion of carbon particles in anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 24–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-24-35
7. Klimenko V.G., Gasanov S.K., Kashin G.A. Research of physicochemical processes in the system calcium sulfate – magnetite. Vestnik BGTU im. V.G. Shukhova. 2017. No. 8, pp. 134–139. (In Russian).
8. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Nefedev A.P., Khudovekova E.A., Buryanov A.F., Fisher H.-B. Activated fillers for gypsum and anhydrite mixes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 14–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-762-8-14-17
9. Drebezgova M.YU., Chernysheva N.V., Shatalova S.V. Composite gypsum binder with multicomponent mineral additives of different genesis. Vestnik BGTU im. V.G. Shukhova. 2017. No. 10, pp. 27–34. (In Russian).
10. Anikanova L.A., Kurmangaliyeva A.I., Volkova O.V., Pervushina D.M. Influence of plasticizing additives on the properties of gas-gypsum materials. Vestnik TGASU. 2020. No. 1, pp. 106–117. (In Russian).
11. Kodzoev M-B., Isachenko S., Kosarev S., Basova A., Skvortzov A., Asamatdinov M., Zhukov A. Modified gypsum binder. MATEC Web of Conferences. St. Petersburg. 2017, pp. 1–7. DOI: 10.1051/matecconf/201817003022
12. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Nefedev A.P., Khudovekova E.A. Gypsum binder of low water demand: production and properties. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 34–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-34-38
13. Jassim Muhsin Aliewi, Abdul Qader Nihad Noori, Arshad Nadhom M. Ali. Effect of adding industrial wastes on the mechanical properties of gypsum. International Journal of Science and Research (IJSR). 2019. Vol. 8. Iss. 8, pp. 2123–2125. DOI: 10.21275/ART2020736
14. Dominic Gazdic, Jana Mokra, Jan Hanacek. Influence of Plasticizers on Properties of Anhydrite Binder. Key Engineering Materials. 2018. Vol. 760, pp. 16–21. DOI: 10.4028/www.scientific.net/ KEM.760.16
15. Batova М.D., Semenova Yu.А., Gordina А.F., Yakovlev G.I., Elrefai А.E.М.М., Saidova Z.S., Khazeev D.R. Сomplex mineral additives for the modification of calcium sulphate based materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 13–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-13-21

For citation: Buryanov A.F., Fisher H.-B., Gal'tseva N.A., Buldyzhova E.N. Investigation of the role of potassium sulfate in the design of a hardening activator. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 34–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-34-38

Modification of Fluoroanhydrite Composition for Flooring with Carbon-Containing Additives

Number of journal: 8-2021
Autors:

Kalabina D.A.,
Yakovlev G.I.,
Vasilchenko Yu.M.,
Kuzmina N.V.,
Gordina A.F.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-27-31
УДК: 691.311:692.53

 

AbstractAbout AuthorsReferences
The electrical conductive properties of the plasticized fluoroanhydrite composition for flooring have been investigated, the effect of three additives on its electrical conductivity has been studied: crushed graphite waste grade EGSP, thermally expanded graphite based on it, and metal/carbon nanocomposite. The technology of obtaining thermally expanded graphite from the waste of electrodes for arc furnaces is described. It is shown that the introduction of micro-sized particles of graphite leads to a decrease in the strength of the material by 28.7%, but does not affect its electrical resistance. Modification of the plasticized hydrite fluoride composition with a metal/carbon nanocomposite reduces the electrical resistance of the material by a factor of 3, while the compressive strength of the samples decreases by a factor of 4. The introduction of thermally expanded graphite in an amount of 7% of the mass of fluoroanhydrite shows its effectiveness in reducing the electrical resistance of the material by 11 times with a drop in strength on the 7th day from 34.9 to 29.8 MPa (15%).
D.A. KALABINA, Engineer (Postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.M. VASILCHENKO, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KUZMINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)

1. Sirenko O.G., Makhno S.M., Lisova O.M., et al. Electrophysical properties of composites based on the epoxy resin and expanded graphite. Chemistry, Physics and Technology of Surface. 2018. Vol. 9. No. 4, pp. 442–446. DOI:  10.15407/hftp09.04.442
2. Cao J., Chung D.D.L. Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding. Cement and Concrete Research. 2003. Vol. 33. Iss. 11, pp. 1737–1740. doi.org/10.1016/S0008-8846(03)00152-2
3. Kaur R., Kothiyal N.C. Comparative effects of sterically stabilized functionalized carbon nanotubes and graphene oxide as reinforcing agent on physico-mechanical properties and electrical resistivity of cement nanocomposites. Construction and Building Materials. 2019. Vol. 202, pp. 121–138. https://doi.org/10.1016/j.conbuildmat.2018.12.220
4. Авдушева М.А., Невзоров А.Л. Влияние магнетита на электропроводность растворной смеси // Строительные материалы. 2017. № 11. С. 55–58.
4. Avdusheva M.A., Nevzorov A.L. Effect of magnetite on the electrical conductivity of the solution mixture. Stroitel’nye Materialy [Construction Materials]. 2017. No. 11, pp. 55–58. (In Russian).
5. Mar Barbero-Barrera M., Flores Medina N., Guardia-Martín C. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes. Construction and Building Materials. 2017. Vol. 149, pp. 599–611; https://doi.org/10.1016/j.conbuildmat.2017.05.156
6. Герасимова А.В., Меметов Н.Р., Ткачев А.Г., Ягубов В.С. Электропроводящие композиты на основе эпоксидной смолы, модифицированной графеном // Вектор науки Тольяттинского государственного университета. 2020. № 3 (53). С. 19–25. DOI: 10.18323/2073-5073-2020-3-19-25
6. Gerasimova A.V., Memetov N.R., Tkachev A.G., Yagubov V.S. Electrically conductive composites based on epoxy resin modified with graphene. Vektor nauki Tol’yattinskogo gosudarstvennogo universiteta. 2020. No. 3 (53), pp. 19–25. (In Russian). DOI: 10.18323/2073-5073-2020-3-19-25
7. Flores Medina N., Mar Barbero-Barrer M., Bustamante R. Improvement of the properties of gypsum-based composites with recycled isostatic graphite powder from the milling production of molds for Electrical Discharge Machining (EDM) used as a new filler. Construction and Building Materials. 2016. Vol. 107, pp. 17–27. https://doi.org/10.1016/j.conbuildmat.2015.12.194
8. Flores Medina N., Mar Barbero-Barrer M., Jové-Sandoval F. Improvement of the mechanical and physical properties of cement pastes and mortars through the addition isostatic graphite. Construction and Building Materials. 2018. Vol. 189, pp. 898–905. https://doi.org/10.1016/j.conbuildmat.2018.09.055
9. Лемешев М.С. Электропроводные металлонасыщенные бетоны полифункционального назначения // Актуальные проблемы архитектуры, строительства, энергоэффективности и экологии: Сборник материалов международной научно-практической конференции. Тюмень. 27–29 апреля 2016 г. С. 242–247.
9. Lemeshev M.S.Conductive metal-saturated concretes for polyfunctional purposes. Actual problems of architecture, construction, energy efficiency and ecology. 2016: Collection of materials of the international scientific and practical conference. Tumen. 2016 April 27–29, pp. 242–247. (In Russian).
10. Yakovlev G., Pervushin G., Smirnova O., Begunova E., Saidova Z. The electrical conductivity of fluoroanhydrite compositions modified at the nanoscale level with carbon black. Environmental and Climate Technologies. 2020. Vol. 24 (1), pp. 706–717. https://doi.org/10.2478/rtuect-2020-0044
11. Yakovlev G.I., Begunova E.V., Drochytka R., Melichar J., Pudov I.A., Saidova Z.S. The influence of activated dispersed additives on electrical conductivity of anhydrite compositions. Solid State Phenomena. 2021. Vol. 321, pp. 51–57. https://doi.org/10.4028/www.scientific.net/ssp.321.51
12. Патент на изобретение 2723788 C1. 17.06.2020. Высокопрочное фторангидритовое вяжущее, способ получения высокопрочного фторангидритового вяжущего и композиции на его основе (варианты) / Грахов В.П., Первушин Г.Н., Кала-бина Д.А. [и др.]. Заявка № 2019109289 от 29.03.2019.
12. Invention patent 2723788 C1, 17.06.2020. High-strength fluoroanhydrite binder, a method of obtaining high-strength fluoroanhydrite binder and compositions based on it (options). Grakhov V.P., Pervushin G.N., Kalabina D.A. Application № 2019109289 29.03.2019. (In Russian).
13. Калабина Д.А., Яковлев Г.И., Кузьмина Н.В. Безусадочные фторангидритовые композиции для устройства полов // Известия КГАСУ. 2021. № 1 (55). С. 24–38. DOI: 10.52409/20731523_2021_1_24
13. Kalabina D.A., Yakovlev G.I., Kuzmina N.V. Shrinkage-free fluoroanhydrite compositions for flooring. Izvestia KGASU. 2021. No. 1 (55), pp. 24–38. (In Russian). DOI: 10.52409/20731523_2021_1_24
14. Патент 2075438 РФ МПК С01В 31/04, Н05В 6/64. Способ получения расширенного графита / Смирнов А.В., Смирнова В.А. 1997.
14. Patent 2075438 RF MPK С01В 31/04, Н05В 6/64 Expanded graphite production method. Smirnov A.V., Smirnova V.A. 1997. (In Russian).
15. Патент 2715655 РФ МПК C2. Способ получения металл/углеродных нанокомпозитов / Кодолов В.И., Тринеева В.В., Мустакимов Р.В. и др. 2020. Бюл. № 7.
15. Patent 2715655 RF IPC C2. Method of obtaining metal / carbon nanocomposites. Kodolov V.I., Trineeva V.V., Mustakimov R.V. and other. 2020. Bull. No. 7. (In Russian).

For citation: Kalabina D.A., Yakovlev G.I., Vasilchenko Yu.M., Kuzmina N.V., Gordina A.F. Modification of fluoroanhydrite composition for flooring with carbon-containing additives. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 27–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-27-31

Gypsum-Containing Modified Materials

Number of journal: 8-2021
Autors:

Bessonov I.V.,
Zhukov A.D.,
Gorbunova E.A.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-18-26
УДК: 666.914

 

AbstractAbout AuthorsReferences
The use of gypsum-based materials in facade systems involves special preparation of the material for increasing the water resistance and frost resistance of gypsum products. The method of modifying the composition of the gypsum mixture with water-soluble polymers has a number of advantages. The introduction of organic additives into the mixture leads to the fact that gypsum, during hydration, creates a framework of crystalline aggregates of dihydrate, and the resin, when cured, forms a continuous polymer matrix. The purpose of this experiment was to identify the effectiveness of modifying mineral compositions based on gypsum binder with melamine-formaldehyde resin and other additives; to clarify the mechanism of curing melamine-formaldehyde resin (MFS) in polymer-mineral materials; to study the effect of modifying additives on the hydration process of gypsum binder. The study of the properties of the material was carried out using X-ray phase analysis, complex thermal analysis. The structure of the samples was studied using an electron microscope. The content of water-soluble substances was determined by boiling pre-crushed samples. After boiling, the solution was filtered through a “blue ribbon” filter and evaporated in porcelain cups in a water bath. The content of melamine-formaldehyde resin in water extracts was determined using a UV spectrophotometer. The ratio of two-water and semi-water gypsum in the samples was calculated using the Hermans and Weidinger method. As a result of the research, the possibility of using melamine – formaldehyde resin for the production of water-and weather-resistant polymers is justified. It is established that the presence of fluorosilicic acid makes it possible to obtain a degree of curing of the resin similar to the heat-treated material. The resin is almost completely retained in the polymer-mineral material due to the formation of a common spatial structure. Modification of the gypsum binder with melamine-formaldehyde resin, as well as the introduction of a superplassifier, leads to a decrease in the degree of gypsum hydration. Phosphogypsum helps to slow down the process of hydration of the gypsum binder and reduce the degree of its hydration during heat treatment.
I.V. BESSONOV1, Сandidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV1,2, Сandidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. GORBUNOVA1,2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Gipsovye materialy i izdeliya (proizvodstvo i primenenie) [Gypsum materials and products (production and use)]. Edited by A.V. Ferronskaya. Moscow: ASV. 2004. 488 p.
2. Petropavlovskaya V.B., Buryanov A.F., Novichenkova T.B., Petropavlovsky K.S. Samoarmirovannye gipsovye kompozity [Self-reinforced gypsun composites]. Moscow: De Nova. 2015. 163 p.
3. Buryanov A.F. Gypsum, researching and application from P.P. Budnikov to the present time. Stroitel’nye Materialy [Construction Materials]. 2005. No. 9, pp. 46–48. (In Russian).
4. Petropavlovskii K.S., Buryanov A.F., Petropavlovskaya V.В., Novichenkova T.B. Lightened self-reinforced gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 40–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-40-45
5. Yakovlev G., Khozin V., Polyanskikh I., Keriene J., Gordina A., Petrova T. Utilization of blast furnace flue dust while modifying gypsum binders with carbon nanostructures. The 9th International Conference “Environmental engineering”. 22–23 May 2014. Vilnius, Lithuania, pp. 1–5.
6. Strokova V.V., Cherevatova A.B., Zhernovskiy I.V., Voytovich E.V. Peculiarities of phase formation in a composite nanostructured gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 9–12. (In Russian).
7. Kuzmina V.P. Mechanoactivation of materials for construction. Stroitel’nye Materialy [Construction Materials]. 2007. No. 9, pp. 2–4. (In Russian).
8. Rakhimov R.Z., Khaliullin M.I., Gayfullin A.R. Composite gypsum binders with the use of claydite dust and blast-furnace slags. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 13–16. (In Russian).
9. Korovyakov V.F. Structure of hardening stone from composite gypsum binder. Sukhie stroitel’nye smesi. 2013. No. 1, pp. 16–19. (In Russian).
10. Baranov I.M. Composite gypsum polymer materials. Stroitel’nye Materialy [Construction Materials]. 2008. No. 8, pp. 25–28. (In Russian).
11. Baranov I.M. Composite mineral-polymer construction materials on the basis of acrylic copolymer. Stroitel’nye Materialy [Construction Materials]. 2012. No. 2, pp. 68–71.
12. Khaev T.E., Tkach E.V. Oreshkin D.V. Modified lightweight gypsum material with hollow glass microspheres for restoration works. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 45–51. (In Russian).
13. Meshheryakov Yu.G., Tairov T.N., Fedorov S.V. Verfahzen der komplexen production der Anhydzit und Gipsbinder. Int. Kongress Fachmess Euro ECO. 2011.
14. Sychugov S., Tokarev Y., Plekhanova T., Kazantseva A., Gaynetdinova D. Binders based on natural anhydrite and modified by finely-dispersed galvanic and petrochemical waste. Procedia Engineering Modern Building Materials, Structures and Techniques. 2013. Vol. 57, pp. 1022–1028.
15. Bessonov I.V. “Capital” – weatherproof gypsum cladding of buildings. Stroitel’nye Materialy [Construction Materials]. 1999. No. 9, pp. 12–14. (In Russian).
16. Bessonov I.V. Gypsum of increased water resistance. Conf. “Problems of construction thermophysics and energy saving in buildings”. Moscow. 1998, pp. 112–117.

For citation: Bessonov I.V., Zhukov A.D., Gorbunova E.A. Gypsum-containing modified materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 18–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-18-26

Application of Metakaolin and Wet Ash Discharge in Non-Fired Gypsum Composites

Number of journal: 8-2021
Autors:

Petropavlovskaya V.B.,
Zavad'ko M.Yu.,
Novichenkova T.B.,
Petropavlovskii K.S.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-11-17
УДК: 666.914

 

AbstractAbout AuthorsReferences
The article discusses the results of studies of non-fired gypsum composites modified with mineral additives – highly active metakaolin and enriched ash – waste from hydro removal of thermal power plants. Waste gypsum dihydrate in the form of waste molds for casting, generated at the enterprises of ceramic production, was used as the main raw material. The growing interest in non-firing technologies abroad is caused by the need to solve environmental and economic problems. The elimination of the most energy-intensive operations – firing, in the first place, and the preservation of the unique properties inherent in gypsum materials, corresponds to the principles of green building – the preservation or improvement of the quality of buildings and the comfort of their internal environment. The use of industrial waste for their production adds value in terms of reducing the level of consumption of energy and material resources. In order to expand the possibilities of using non-fired technologies, it is proposed to modify the structure of the gypsum material with additives that increase its quality and efficiency. The research provides a comparative analysis of the structure and properties of the resulting non-fired modified gypsum stone. The effectiveness of the use of metakaolin and hydro removal ash additives as an active mineral additive in non-fired gypsum composites has been confirmed.
V.B. PETROPAVLOVSKAYA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.Yu. ZAVAD/KO, Engineer (Assistant Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.B. NOVICHENKOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.S. PETROPAVLOVSKII, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Tver State Technical University (22, Afanasiy Nikitin Еmbankment, Tver, 170026, Russian Federation)

1. Orynbekov E.S., Nurlybaev R.E., Selyaev V.P., Kul’deev E.I. Dry building mixtures for plaster works with fine mineral active additives. Regional’naya arhitektura i stroitel’stvo. 2019. No. 2 (39), pp. 72–79. (In Russian).
2. Sencova A.YU., Gurova E.V. Active mineral additives in the production of dry building mixtures. Architectural, construction and road transport complexes: problems, prospects, innovations: Materials of the IV International Scientific and Practical Conference. Omsk. 2019, pp. 456–460. (In Russian).
3. Kajs H.A. Composition and properties of concrete based on gypsum-cement-pozzolan binders (RCP). Tendencii razvitiya nauki i obrazovaniya. 2019. No. 50–2, pp. 21–24. (In Russian).
4. Graiti A.A.H., Kolosova N.B. The effect of recycled aggregate and pozzolana on concrete properties. Components of Scientific and Technological Progress. 2018. No. 1 (35), pp. 6–14. (In Russian).
5. Starkova E.M. The history of the emergence of an environmentally friendly mineral supplement – metakaolin. Scientific community of students of the XXI century. Engineering: Proceedings of the XCV Student International Scientific and Practical Conference. Novosibirsk. 2020, pp. 44–46. (In Russian).
6. Shishkanova V.N., Nikitina K.V. Study of the influence of metakaolin on water absorption and concrete strength. Ideas and Projects of Russian Youth: Materials of the II All-Russian Scientific and Practical Conference. Cheboksary. 30 May 2019, pp. 56–64. (In Russian).
7. Arutyunov G.M. Modification of white cement with an organic mineral additive based on slaked lime and metakaolin. Days of student science: Collection of reports of a scientific and technical conference on the results of research work of students of the Institute of Civil Engineering and Architecture. Moscow. 4–7 March 2019, pp. 1084–1086. (In Russian).
8. Khamrabaeva Yu.A., Fazlitdinova A.G. Influence of metakaolin addition on gypsum hydration kinetics. Modern problems of physics and technology VIII-th International Youth Scientific School-Conference. Moscow. 15–20 April 2019, pp. 307–308. (In Russian).
9. Aubakirova B.M., Nurmaganbetova A.T. Effect of methacaolin as a modifying additive on the performance of dry building mixtures. Tekhnologii betonov. 2020. No. 9–10 (170–171), pp. 76–80. (In Russian).
10. Shirinzade I.N., Bashirov E.H., Kurbanova I.D. The study of the impact of ultradisperse metakaolin additives on the properties of gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 79–81. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-79-81
11. Gryzlov V.S., Fomenko A.I., Kaptyushina A.G., Chornaya T.N. Dry building mixtures based on local raw materials. Suhie stroitel’nye smesi. 2017. No. 3, pp. 28–31. (In Russian).
12. Kaklyugin A.V., Kastornykh L.I., Stupen N.S., Kovalenko V.V. Press-formed composites with alternate wetting and drying resistance based on modified gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 40–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-40-46
13. Zhukova N.S., Blinova A.A., Gordina A.F. Modification of a gypsum binder with complex mineral additives based on industrial products. Construction – the formation of the living environment: Collection of materials of the seminar of young scientists of the XXIV International scientific conference. Moscow. 2021, pp. 25–30. (In Russian).
14. Kavardakov V.N. Methods of increasing strength and water resistance of composite gypsum mixtures. Aktual’nye issledovaniya. 2020. No. 8 (11), pp. 33–36. (In Russian).
15. Makarenko S.V., Vasil’ev K.O., Hohryakov O.V., Hozin V.G. The production of ash-based building ceramics based on ash and slag waste from thermal power plants of the Irkutsk region is an example of the best available technology for their utilization. Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2020. No. 4 (54), pp. 54–61. (In Russian).
16. Kosach A.F., Rashchupkina M.A., Kuznecova I.N., Darulis M.A. Influence of ultradisperse filler based on water removal ash on cement stone properties. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2019. Vol. 21. No. 1, pp. 150–158. (In Russian). DOI: 10.31675/1607-1859-2019-21-1-150-158
17. Zhelev N., Zavadko M.Yu., Novichenkova T.B., Petropavlovskaya V.B. On the issue of using microdispersed ash filler in dispersed cement systems. Conference Proceedings Young Scientists – Development of the National Technological Initiative – “Search”. Ivanovo. 2020, pp. 212–214. (In Russian).
18. Petropavlovskaya V.В., Zavad’ko M.Yu., Novichenkova T.B., Petropavlovskii K.S., Buryanov A.F. Gypsum modified compositions with the use of activated basalt filler. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-10-17
19. Petropavlovskaya V.B., Zavad’ko M.Yu., Petropavlovskii K.S., Novichenkova T.B., Buryanov A.F. The use of plasticizers in modified gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 28–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-28-35
20. Lesovik V.S., Zagorodnyuk L.Kh., Glagolev E.S., Chernysheva N.V., Feduk R.S. Nature similar technologies in construction industry. International Journal for Computational Civil and Structural Engineering. 2018. Vol.14. No. 4, pp. 98–108. (In Russian). DOI: 10.22337/2587-9618-2018-14-4-98-108
21. Khozin V.G., Maysuradze N.V., Mustafina A.R., Kornyanen M.E. Influence of the chemical nature of plasticizers on the properties of gypsum paste and stone. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 35–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-35-39

For citation: Petropavlovskaya V.B., Zavad'ko M.Yu., Novichenkova T.B., Petropavlovskii K.S. Application of metakaolin and wet ash discharge in non-fired gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 11–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-11-17

Composite Materials Based on Fluoranhydrite and Industrial Sulfur

Number of journal: 8-2021
Autors:

Gumeniuk A.N.,
Polyanskikh I.S.,
Khodyreva M.A.,
Shevchenko F.E.,
Pudov I.A.,
Pervushin G.N.,
Yakovlev G.I.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-4-10
УДК: 691.311

 

AbstractAbout AuthorsReferences
This article shows the results of fluoranhydrite and industrial sulfur composite research. 15% of industrial sulfur and 2% of sodium sulfate are the key components for a composite material with high performance properties. 2% of sodium sulphate is required to form the required structure of the composite. The heat treatment (60 min, 180оС) is the next stage and there an engineered stone is finally formed due to a sulfur polymerization. Physical-mechanical properties of modified composite, including compressive strength, are significantly increased (2 times) in comparison with the reference specimen (fluoranhidrite activated by 2% of sodium sulphate). The increase of water resistance properties up to 22,2% has also been established.
A.N. GUMENYUK, assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH, PhD, Assoc. Prof. (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. KHODYREVA, student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
F.E. SHEVCHENKO, graduate student, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.А. PUDOV, PhD, Assoc. Prof. (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. PERVUSHIN, Dr. Sc. Engineering, Prof, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (ISTU) (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Erkinbaeva N., Ysmanov E., Tashpolotov Y. The use of technogenous waste from the kadamjai antimony plant as a raw material for the production of portland cement. Bulletin of Science and Practice. 2021. No. 7 (3), pp. 206–211. https://doi.org/10.33619/2414-2948/64/21
2. Орешкин Д.В., Шадрунова И.В., Чекушина Т.В., Прошляков А.Н. Утилизация отходов мрамора и бурового шлама в процессе производства строительных материалов // Строительные материалы. 2019. № 4. С. 65–72. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-65-72
2. Oreshkin D.V., Shadrunova I.V., Chekushina T.V., Proshlyakov A.N. Disposal of waste marble and drill cuttings in the production of building materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 65–72. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-65-72 (In Russian).
3. Guryanov A., Korenkova S., Bezgina L. Technogenic resources for nanotechnologies in construction. MATEC Web of Conferences. 2017. No. 117. 00061 https://doi.org/10.1051/matecconf/20171170006
4. Kansal C.M., Goyal R. Effect of nano silica, silica fume and steel slag on concrete properties. Materials Today: Proceedings. 2020. Vol. 45. Part 6, pp. 4535–4540. https://doi.org/10.1016/j.matpr.2020.12.1162
5. Будников П.П., Зорин С.П. Ангидритовый цемент. M.: Государственное издательство литературы по строительным материалам, 1954. 93 c.
5. Budnikov P.P., Zorin S.P. Angidritovyy tsement [Anhydrite cement]. Moscow: State publishing house of literature on building materials. 1954. 93 p.
6. Биспен Т.А., Масленников И.Г., Молдавский Д.Д. Получение фтористого водорода и плавиковой кислоты высокой чистоты // Известия Санкт-Петербургского государственного технологического института. 2016. № 33 (59). 13–18.
6. Bispen T.A., Maslennikov I.G., Moldavsky D.D. Production of hydrogen fluoride and high-purity hydrofluoric acid. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta. 2016. No. 33 (59), pp. 13–18. (In Russian).
7. Федорчук Ю.М., Цыганкова Т.С. Разработка способов снижения воздействия фтороводородных производств на окружающую среду: Монография. Томск: Издательство Томского политехнического университета, 2010. 149 с.
7. Fedorchuk Yu.M., Tsygankova T.S. Razrabotka sposobov snizheniya vozdeystviya ftorovodorodnykh proizvodstv na okruzhayushchuyu sredu: monografiya [Development of ways to reduce the impact of hydrogen fluoride production on the environment: monograph]. Tomsk: Publishing house of the Tomsk Polytechnic University. 2010. 149 p.
8. Аниканова А.Л., Волкова О.В., Кудяков А.И., Курмангалиева А.И. Активированное композиционное фторангидритовое вяжущее // Строительные материалы. 2019. № 1–2. С. 36–42. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-36-42
8. Anikanova L.A., Volkova О.V., Kudyakov A.I., Kur-mangalieva A.I. Mechanically activated composite fluoroanhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 36–42. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-36-42 (In Russian).
9. Zhakupova G., Sadenova M.A., Varbanov P.S. Possible alternatives for cost-effective neutralisation of fluoroanhydrite minimising environmental impact. Chemical Engineering Transactions. 2019. Vol. 76, pp. 1069–1074. https://doi.org/10.3303/CET19761791069-1074
10. Ponomarenko A. Obtaining of granulated gypsum anhydrite on the basis of technogenic wastes of chemical and metallurgical complex for use in portland cement production. KnE Materials Science. 2020. No. 6 (1), pp. 143–149. https://doi.org/10.18502/kms.v6i1.8059
11. Fornés I.V., Vaičiukynienė D., Nizevičienė D., Doroševas V. The improvement of the water-resistance of the phosphogypsum by adding waste metallurgical sludge. Journal of Building Engineering. 2021. No. 43. 102861 https://doi.org/10.1016/j.jobe.2021.102861
12. Hassan S., Salah H., Shehata N. Effects of alternative calcium sulphate-bearing materials on cement characteristics in vertical mill and storing. Case Studies in Construction Materials. 2021. No. 14. e00489 https://doi.org/10.1016/j.cscm.2021.e00489
13. Raisa F., Kamouna A., Jelidib A., Chaabounia M. A study on fluoroanhydrite: a solid waste of the chemical industry: characterization and valorization attempts. IOP Conf. Series: Materials Science and Engineering. 2012. No. 28. 012025. doi:10.1088/1757-899X/28/1/012025
14. Курмангалиева А.И., Аниканова Л.А., Волкова О.В., Кудяков А.И., Саркисов Ю.С., Абзаев Ю.А. Активация процессов твердения фторангидритовых композиций химическими добавками солей натрия // Известия вузов. Химия и химическая технология. 2020. Т. 63. Вып. 8. С. 73–80. DOI 10.6060/ivkkt.20206308.6137
14. Kurmangalieva A.I., Anikanova L.A., Volkova O.V. Activation of hardening processes of fluorogypsum compositions by chemical additives of sodium salts. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2020. Vol. 63. No. 8, pp. 73–80. DOI: 10.6060/ivkkt.20206308.6137
15. Manjit Singh, Mridul Garg. Making of anhydrite cement from waste gypsum. Cement and Concrete Research. 2000. No. 30 (4), pp. 571–577. https://doi.org/10.1016/S0008-8846(00)00209-X
16. Gdoutos E.E. Composite Materials. In: Fracture Mechanics. Solid Mechanics and Its Applications. 2020. Vol. 263. https://doi.org/10.1007/978-3-030-35098-7_11
17. Попов К.Н. Полимерные и полимерцементные бетоны, растворы и мастики. М.: Высшая школа, 1987. 72 с.
17. Popov K.N. [Polymer and polymer-cement concretes, mortars and mastics]. Moscow: Vysshaya shkola. 1987. 72 p.
18. Grigore M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling. 2017. Vol. 2 (4). https://doi.org/10.3390/recycling2040024
19. Lei Gu, Togay Ozbakkaloglu. Use of recycled plastics in concrete: A critical review. Waste Management. 2016. No. 51, pp. 19–42 https://doi.org/10.1016/j.wasman.2016.03.005
20. Gumeniuk A., Hela R., Polyanskikh I. [et al.]. Durability of Concrete with Man-made Thermoplastic Sulfur Additive. IOP Conference Series: Materials Science and Engineering: XXIII International Scientific Conference on Advance in Civil Engineering: «CONSTRUCTION – THE FORMATION OF LIVING ENVIRONMENT». Hanoi, Vietnam, 23–26 September 2020. 032012. DOI: 10.1088/1757-899X/869/3/032012.
21. Fediuk R., Mugahed Amran Y., Mosaberpanah M., Danish A., El-Zeadani M., Klyuev S., Vatin N., A сritical review on the properties and applications of sulfur-based concrete. Materials. 2020. No. 13. 4712, DOI: https://doi.org/10.3390/ma13214712
22. Le H., The application of sulfur-asphalt concrete with modifiers in the climatic conditions of Vietnam. IOP Conference Series: Materials Science and Engineering. 2020. No. 890. 012101. DOI: https://doi.org/10.1088/1757-899X/890/1/012101
23. Wagenfeld J.G., Al-Ali K., Almheiri S. [et al.] Sustainable applications utilizing sulfur, a by-product from oil and gas industry: A state-of-the-art review. Waste Management. 2019. No. 95, pp. 78–89. DOI: 10.1016/j.wasman.2019.06.002.
24. Бобылев Ю.Н. Мировой рынок нефти: основные тенденции 2018 г. // Экономическое развитие России. 2019. № 1 (26). С. 10–13.
24. Bobylev Yu.N. World oil market: main trends in 2018. Ekonomicheskoye razvitiye Rossii. 2019. No. 1 (26), pp. 10–13. (In Russian).
25. Патуроев В.В. Полимербетоны. НИИ бетона и железобетона. М.: Стройиздат, 1987. 286 p.
25. Paturoev V.V. Polimerbetony. NII betona i zhelezobetona [Polymer concrete. Research Institute of Concrete and Reinforced Concrete]. Мoscow: Stroyizdat. 1987. 286 p.
26. Mohamed Sassi, Ashwani K. Gupta Sulfur recovery from acid gas using the claus process and high temperature air combustion technology. American Journal of Environmental Sciences. 2008. No. 4 (5), pр. 502–511. DOI: 10.3844/ajessp.2008.502.511
27. Dugarte M., Martinez-Arguelles G., Torres J. Experimental evaluation of modified sulfur concrete for achieving sustainability in industry applications. Sustainability. 2019. No. 11 (1), p. 70. https://doi.org/10.3390/su11010070
28. Королев Е.В., Прошин А.П., Баженов Ю.М., Соколова Ю.А. Радиационно-защитные и коррозионностойкие серные строительные материалы. 2-е изд. М.: Палеотип, 2006. 272 с.
28. Korolev E.V., Proshin A.P., Bazhenov Yu.M., Sokolova Yu.A. Radiatsionno-zashchitnyye i korrozionnostoykiye sernyye stroitel’nyye materialy. 2-ye izdaniye. [Radiation-protective and corrosion-resistant sulfur building materials / 2nd edition]. Moscow: Paleotype. 2006. 272 p.

For citation: Gumeniuk A.N., Polyanskikh I.S., Khodyreva M.A., Shevchenko F.E., Pudov I.A., Pervushin G.N., Yakovlev G.I. Composite materials based on fluoranhydrite and industrial sulfur. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-4-10

Plaster Coverings as a Regulator of Indoor Microclimate Parameters: an Overview of Theoretical and Experimental Research

Number of journal: 7-2021
Autors:

Strokova V.V.,
Sivalneva M.N.,
Nerovnaya S.V.,
Vtorov B.B.

DOI: https://doi.org/10.31659/0585-430X-2021-793-7-32-72
УДК: 666.9.015.3

 

AbstractAbout AuthorsReferences
The subject of this paper is a multicriteria analysis of theoretical and experimental studies of the production and use of plaster mixes, ways to increase their efficiency by adjusting the formulation and determining the prospects for further development. An assessment was made of publication activity, which peaks in 2020, and the interest of various scientific schools. An analysis of the results of experimental studies carried out by both native and foreign authors over the past decade and presented in open peer-reviewed sources made it possible to classify plaster mixtures by the type of binders, purpose, areas of application and type of products sold. Based on the accumulated empirical material, a generalization, structuring and analysis of the available data on the development of rational compositions according to such criteria as the type of binder, aggregate, functional additives, the ratio of components, physical, mechanical and functional properties of both mixtures and plaster coatings based on them was carried out. The main components regulating the quality of plaster mixes, mortars and coatings are highlighted. Classic binding systems for plaster mixes are cement, lime, gypsum and cement-lime. In order to reduce the consumption of cement or impart special properties, mixed (composite) binders are used in the composition of plaster mixtures. Among aggregates of various composition and granulometry, both natural raw materials – sands, crushed gravel-cobble mixtures, and wastes from various industries – crushing screenings of various types of rocks, granulated foam glass, foamed volcanic glass, ground aerated concrete, dehydrated sludge and flotation tailings, slags, ash, paper, etc are used. Fillers are natural pozzolans, calcium hydrosilicates, lime dust, microspheres, etc. A large group consists of additives: air-entraining, reinforcing, plasticizing, hydrophobizing, redispersible, superabsorbent, photocatalytic, phase transition materials, etc. It is shown that the actual direction of the production of functional plaster mixes is the development of solutions for creation of compositions with increased environmental friendliness, bio-positivity and medical and valeological parameters of plaster coatings in order to form favorable microclimatic conditions in a room for a comfortable environment for human life.
V.V. STROKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.N. SIVALNEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. NEROVNAYA1, Postgraduate Student;
B.B. VTOROV2, Candidate of Sciences (Engineering)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 «Baumit» OOO (11, Universitetskaya Street, Dubna, 141982, Russian Federation)

1. Теличенко В.И., Бенуж А.А., Рудь Н.С., Йейе О.У. Параметры проектирования комфортной среды жизнедеятельности в нормативной документации // Промышленное и гражданское строительство. 2020. № 5. С. 51–56. https://doi.org/10.33622/0869-7019.2020.05.51-56
1. Telichenko V.I., Benuzh A.A., Rud N.S., Yeye O.W. Design parameters of a comfortable living environment in the normative documentation. Promyshlennoe i grazhdanskoe stroitel'stvo. 2020. No. 5, pp. 51–56. (In Russian). DOI: 10.33622/0869-7019.2020.05.51-56.
2. Дамбергер Б. Здоровое строительство. Здоровая жизнь / Под ред. Ю. Пош. Вопфинг: Издательство: Viva Forschungspark der Baumit Beteiligungen GmbH. 2019. 150 с. https://baumit.ru/files/ru/Brochures_pdf/VIVA_________.pdf
2. Damberger B. Healthy construction. Healthy life / Ed. Yu Posh. Wopfing: Publisher: Viva Forschungspark der Baumit Beteiligungen GmbH. 2019. 150 p. https://baumit.ru/files/ru/Brochures_pdf/VIVA_________.pdf (In Russian).
3. Махортова Я.И., Разаков М.А., Трофимова И.В. Экологическое строительство зданий и сооружений. Экология и строительство. 2020. № 2. С. 27–35. https://doi.org/10.35688/2413-8452-2020-02-004
3. Makhortova Ya.I., Razakov M.A., Trofimova I.V. Ecological construction of buildings and structures. Ekologiya i stroitel'stvo. 2020. No. 2, pp. 27–35. (In Russian). https://doi.org/10.35688/2413-8452-2020-02-004
4. Теличенко В.И., Бенуж А.А., Морозов Д.Н. Создание национальной системы «зеленых» стандартов в РФ. Строительные материалы, оборудование, технологии XXI века. 2019. № 3–4 (242–243). С. 10–11.
4. Telichenko V.I., Benuzh A.A., Morozov D.N. Creation of a national system of "green" standards in the Russian Federation. Stroitel'nye materialy, oborudovaniye, tekhnologii XXI veka. 2019. No. 3–4 (242–243), pp. 10–11. (In Russian).
5. Telichenko V., Benuzh A., Eames G., Orenburova E., Shushunova N. Development of green standards for construction in Russia. Procedia Engineering. 2016. Vol. 153, pp. 726–730. https://doi.org/10.1016/j.proeng.2016.08.233
6. Бакаева Н.В., Натарова А.Ю., Игин А.Ю. Нормативное регулирование экологической безопасности строительства с помощью «зеленых» стандартов. Известия Юго-Западного государственного университета. 2016. № 4 (67). С. 68–79.
6. Bakaeva N.V., Natarova A.Yu., Igin A.Yu. Regulatory regulation of environmental safety of construction using "green" standards. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2016. No. 4 (67), pp. 68–79. (In Russian).
7. Wei W., Ramalho O., Mandin C. Indoor air quality requirements in green building certifications. Building and Environment. 2015. Iss. 92, pp. 10–19. https://doi.org/10.1016/j.buildenv.2015.03.035
8 Yue X., Ma N.L., Sonne C., Guan R., Lam S.S., Van Le Q., Chen X., Yang Y., Gu H., Rinklebe J., Peng W. Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. Journal of Hazardous Materials. 2021. Vol. 405. 124138. https://doi.org/10.1016/j.jhazmat.2020.124138
9. Cascione V., Maskell D., Shea A., Walker P., Mani M. Comparison of moisture buffering properties of plasters in full scale simulations and laboratory testing. Construction and Building Materials. 2020. Vol. 252. 119033. https://doi.org/10.1016/j.conbuildmat.2020.119033
10. Cascione V., Maskell D., Shea A., Walker P. The moisture buffering performance of plasters when exposed to simultaneous sinusoidal temperature and RH variations. Journal of Building Engineering. 2021. Iss. 34. 101890. https://doi.org/10.1016/j.jobe.2020.101890
11. Lü X., Lu T., Kibert C., Zhang Q., Hughes M. A novel methodology and new concept of structural dynamic moisture buffering for modeling building moisture dynamics. Building and Environment. 2020. Vol. 180. 106958. https://doi.org/10.1016/j.buildenv.2020.106958
12. Yang M., Kong F., He X. Moisture buffering effect of hygroscopic materials under wall moisture transfer. Indoor and Built Environment. 2020. https://doi.org/10.1177/1420326x20975835
13. Lelièvre D., Colinart T., Glouannec P. Modeling the moisture buffering behavior of a coated biobased building material by including hysteresis. Energy Procedia. 6th International Building Physics Conference, IBPC 2015. Politecnico di TorinoTorino, Italy. 14-17 June 2015. Vol. 78, pp. 255–260. https://doi.org/10.1016/j.egypro.2015.11.631
14. Brenton K. Kreiger, Wil V. Srubar III. Moisture buffering in buildings: A review of experimental and numerical methods. Energy and Buildings. 2019. Vol. 202. 109394. https://doi.org/10.1016/j.enbuild.2019.109394
15. Pavlík Z., Fořt J., Pavlíková M., Pokorný J., Trník A., Černý R. Modified lime-cement plasters with enhanced thermal and hygric storage capacity for moderation of interior climate. Energy and Buildings. 2016. Vol. 126, pр. 113–127. https://doi.org/10.1016/j.enbuild.2016.05.004
16. Pavlík Z., Trník A., Fořt J., Maděra J., Černý R. Application of latent-heat-storage building envelope systems for increasing energy efficiency in the building sector. WIT Transactions on Ecology and the Environment. 2015. Vol. 195, pp. 163–172. http://doi.org/10.2495/ESUS150141
17. Veiga R. Air lime mortars: What else do we need to know to apply them in conservation and rehabilitation interventions? A review. Construction and Building Materials. 2017. Vol. 157, pp. 132–140. http://doi.org/10.1016/j.conbuildmat.2017.09.080
18. Kočí V., Maděra J. Hygrothermal modelling of wall assemblies: Quantification of convenient conditions for biofilms growth. AIP Conference Proceedings: Central European Symposium on Thermophysics. CEST 2019. 2019. Vol. 2133. 020021. https://doi.org/10.1063/1.5120151
19. Wasserbauer R., Rácová Z., Loušová I., Lecák M. The occurrence of cyanobacteria and green algae on facades of historical sacral buildings. Advanced Materials Research 18th Conference of Research Institute for Building Materials Ecology and New Building Materials and Products, ICEBMP 2014. Cerna Hora, Czech Republic. 3–5 June 2014. Vol. 1000, pр. 243–246. https://doi.org/10.4028/www.scientific.net/amr.1000.243
20. Petković J., Huinink H.P., Pel L., Kopinga K., van Hees R.P.J. Moisture and salt transport in three-layer plaster/substrate systems. Construction and Building Materials. 2010. Vol. 24. Iss. 1, pр. 118–127. https://doi.org/10.1016/j.conbuildmat.2009.08.014
21. Vysvaril M., Topolar L., Dvorak R. Acoustic insulation properties of lime mortars with natural lightweight aggregate. MATEC Web of Conferences 4TH Central European symposium on building physics (CESBP 2019). 2019. Vol. 282. 02075. https://doi.org/10.1051/matecconf/201928202075
22. Kočí, V., Maděra, J., Jerman, M. et al. Application of waste ceramic dust as a ready-to-use replacement of cement in lime-cement plasters: an environmental-friendly and energy-efficient solution. Clean Technologies and Environmental Policy. 2016. Vol. 18, pp. 1725–1733. https://doi.org/10.1007/s10098-016-1183-2
23. Fernandez F., Germinario S., Basile R., Mangiapane M., Maravelaki P. Development of eco-friendly and self-cleaning lime-pozzolan plasters for bio-construction and cultural heritage. Buildings. 2020. Vol. 172. Iss. 10, pp. 1–12. https://doi.org/10.3390/buildings10100172
24. Garcia-Cuadrado J., Santamaria-Vicario I., Rodriguez A. Lime-cement mortars designed with steelmaking slags as aggregates and validation study of their properties using mathematical models. Construction and Building Materials. 2018. Vol. 188, pр. 210–220. https://doi.org/10.1016/j.conbuildmat.2018.08.093
25. Giosuè C., Pierpaoli M., Mobili A., Ruello M.L., Tittarelli F. Influence of binders and lightweight aggregates on the properties of cementitious mortars: From traditional requirements to indoor air quality improvement. Materials. 2017. Vol. 10. Iss. 8. 978. https://doi.org/10.3390/ma10080978
26. Giosuè C., Pierpaoli M., Mobili A., Ruello M.L., Tittarelli F. Multifunctional Lightweight mortars for indoor applications to improve comfort and health of occupants: thermal properties and photocatalytic efficiency. Frontiers in Materials. 2020. Vol. 7. 255. https://doi.org/10.3389/fmats.2020.00255
27. Giosuè C., Mobili A., Citterio B., Biavasco F., Ruello M.L., Tittarelli F. Innovative hydraulic lime-based finishes with unconventional aggregates and TiO2 for the improvement of indoor air quality. Manufacturing Review. 2020. Vol. 7, p. 13. https://doi.org/10.1051/mfreview/2020010
28. Giosuè C., Mobili A., Yu Q.L., Brouwers H.J.H., Ruello M.L., Tittarelli F. Properties of multifunctional lightweight mortars containing zeolite and natural fibers. Journal of Sustainable Cement-Based Materials. 2019. Vol. 8. Iss. 4, pp. 214–227. https://doi.org/10.1080/21650373.2019.1615012
29. Giosuè C., Yu Q.L., Ruello M.L., Tittarelli F., Brouwers H.J. Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortar. Construction and Building Materials. 2018. Vol. 171, pp. 232–242. https://doi.org/10.1016/j.conbuildmat.2018.03.106
30. Mobili A., Belli A., Giosuè C., Pierpaoli M., Bastianelli L., Mazzoli A., Ruello M.L., Bellezze T., Tittarelli F. Mechanical, durability, depolluting and electrical properties of multifunctional mortars prepared with commercial or waste carbon-based fillers. Construction and Building Materials. 2021. Vol. 283. 122768. https://doi.org/10.1016/j.conbuildmat.2021.122768
31. Jerman M., Scheinherrová L., Medveď I., Krejsová J., Doleželová M., Bezdička P.,Černý R. Effect of cyclic wetting and drying on microstructure, composition and length changes of lime-basedplasters. Cement and Concrete Composites. 2019. Vol. 104. 103411. https://doi.org/10.1016/j.cemconcomp.2019.103411
32. Čáchová M., Koňáková D., Vejmelková E., Vyšvařil M., Bayer, P. Hygric and mechanical parameters of ternary binder based plasters lightweighted by expanded perlite. IOP Conference Series: Materials Science and Engineering. 21st International Conference on Building Materials. Products and Technologies. ICBMPT 2018. Blansko-Ceskovice, Czech Republic. 29–31 May 2018. Vol. 379. Iss. 1. 012004. https://doi.org/10.1088/1757-899X/379/1/012004
33. Santos T., Gomes M.I., Silva A.S., Ferraz E., Faria P. Comparison of mineralogical, mechanical and hygroscopic characteristic of earthen, gypsum and cement-based plasters. Construction and Building Materials. 2020. Vol. 254. 119222. https://doi.org/10.1016/j.conbuildmat.2020.119222
34. Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Pavlík Z. Influence of wood-based biomass ash admixing on the structural, mechanical, hygric, and thermal properties of air lime mortars. Materials. 2019. Iss. 12. 2227. https://doi.org/10.3390/ma12142227
35. Golaszewska M., Golaszewski J., Cygan G., Bochen J. Assessment of the impact of inaccuracy and variability of material and selected technological factors on physical and mechanical properties of fresh masonry mortars and plasters. Materials. 2020. Vol. 13. Iss. 6, 1382. https://doi.org/10.3390/ma13061382
36. Zemanova L., Pokorny J., Pavlikova M., Pavlik Z. Hygric properties of cement-lime plasters with incorporated lightweight mineral admixture. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 603. Iss. 2. 022046. http://doi.org/10.1088/1757-899X/603/2/022046
37. Pokorný, J., Pavlíková, M., Pavlík, Z. Properties of cement-lime render containing perlite as lightweight aggregate. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 596. Iss. 1. 012015. http://doi.org/10.1088/1757-899X/596/1/012015
38. Vyšvařil M., Pavlíková M., Záleská M., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Construction and Building Materials. 2020. Vol. 263. 120617. https://doi.org/10.1016/j.conbuildmat.2020.120617
39. Benyahia A., Choucha S., Ghrici C., Omran A. Influence of limestone dust and natural pozzolan on engineering properties of self-compacting repair mortars. Frattura ed Integrità Strutturale. 2018. Iss. 45, pp. 135–146. https://doi.org/10.3221/IGF-ESIS.45.11
40. Радаев С.С., Кудоманов М.В., Горгодзе Г.А. Эффективность использования комплексных добавок и смешанного вяжущего в производстве штукатурных смесей. Вестник Тюменского государственного университета. Экология и природопользование. 2014. № 5. С. 154–160.
40. Radaev S.S., Kudomanov M.V., Gorgodze G.A. Efficiency of using complex additives and mixed binder in the production of plaster mixtures. Vestnik Tyumenskogo gosudarstvennogo universiteta. Ekologiya i prirodopol'zovaniye. 2014. No. 5, pp. 154–160. (In Russian).
41. Кузьмина В.П. Финишные технологии отделки малоэтажных зданий. Сухие строительные смеси. 2013. № 1. С. 34–37.
41. Kuzmina V.P. Finishing technologies for finishing low-rise buildings. Sukhiye stroitel'nyye smesi. 2013. No. 1, pp. 34–37. (In Russian).
42. Логанина В.И., Фролов М.В., Рябов М.А. Теплоизоляционные известковые сухие строительные смеси для отделки стен из газобетона. Вестник МГСУ. 2016. № 5. С. 82–92.
42. Loganina V.I., Frolov M.V., Ryabov M.A. Heat-insulating lime dry building mixtures for aerated concrete walls. Vestnik MGSU. 2016. No. 5, pp. 82–92. (In Russian).
43. Харитонов А.М., Николаев В.А. Штукатурный состав для комплексной защиты кирпичных стен от солевой коррозии. Инновации и инвестиции. 2019. № 3. С. 230–234.
43. Kharitonov A.M., Nikolaev V.A. Plaster for complex protection of brick walls against salt corrosion. Innovatsii i investitsii. 2019. No. 3, pp. 230–234. (In Russian).
44. Čáchová M., Koťátková J., Koňáková D., Vejmelková E., Bartoňková E., Černý R. Hygric properties of lime-cement plasters with the addition of a pozzolana. Procedia engineering international conference on ecology and new building materials and products, ICEBMP 2016. Cerna Hora, Czech Republic. 31 May–2 June 2016. Vol. 151, pр. 127–132. https://doi.org/10.1016/j.proeng.2016.07.403
45. Jerman M., Žumár J. Experimental determination of material characteristics of new type of plaster. Materials Science Forum 7th International Conference on Building Materials. Zahradky, Czech Republic. 20–22 May 2015. Vol. 824, pр. 21–26. https://doi.org/10.4028/www.scientific.net/msf.824.21
46. Palszegi T., Holubek M. Effective permittivity modelling of lime-cement perlite plaster. Therophysics 2011 - Сonference proceedings. 2011, pр. 174-179.
47. Чекардовский М.Н., Гусева К.П., Лебедев С.Ю. Теплоизоляционные перлитовые штукатурки. Инженерно-строительный вестник Прикаспия: научно-технический журнал. 2020. № 2 (32). С. 88–91.
47. Chekardovsky M.N., Guseva K.P., Lebedev S.Yu. Heat-insulating perlite plasters. Inzhenerno-stroitel'nyy vestnik Prikaspiya: nauchno-tekhnicheskiy zhurnal. 2020. No. 2 (32), pp. 88–91. (In Russian).
48. Сопегин Г.В., Семейных Н.С., Рустамова Д.Ч. Оценка влияния стеклосодержащего компонента на свойства гипсового вяжущего и сухих строительных смесей. Вестник Томского государственного архитектурно-строительного университета. 2020. Т. 22. № 5. С. 129–138. https://doi.org/10.31675/1607-1859-2020-22-5-129-138
48. Sopegin G.V., Semeinykh N.S., Rustamova D.Ch. Assessment of the effect of the glass-containing component on the properties of gypsum binder and dry building mixtures. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2020. Vol. 22. No. 5, pp. 129–138. (In Russian). https://doi.org/10.31675/1607-1859-2020-22-5-129-138
49. Peterková J., Zach J., Sedlmajer M. Development of advanced plasters for insulation and renovation of building constructions with regard to their hygrothermal behavior. Cement and Concrete Composites. 2018. Vol. 92, pр. 47–55. https://doi.org/10.1016/j.cemconcomp.2018.05.014
50. Логанина В.И., Фролов М.В., Рябов М.А. Известковый состав для отделки стен зданий из газобетона. Вестник ЮУрГУ. Сер. Строительство и архитектура. 2016. Том 16. № 2. С. 33–37. https://doi.org/10.14529/build160206
50. Loganina V.I., Frolov M.V., Ryabov M.A. Lime composition for wall decoration of aerated concrete buildings. Vestnik YUUrGU. Seriya «Stroitel'stvo i arkhitektura». 2016. Vol. 16. No. 2, pp. 33–37. (In Russian). https://doi.org/10.14529/build160206
51. Логанина В.И., Фролов М.В., Исследование синергетического эффекта добавки на основе гидросиликатов и гидроалюмосиликатов кальция. Вестник БГТУ им. В.Г. Шухова. 2019. № 7. С. 8-13. https://doi.org/10.34031/article_5d35d0b645d6f8.37881085
51. Loganina V.I., Frolov M.V. Study of the synergistic effect of an additive based on hydrosilicates and hydroaluminosilicates of calcium. Vestnik BSTU named after V.G. Shukhov. 2019. No. 7, pp. 8–13. (In Russian). https://doi.org/10.34031/article_5d35d0b645d6f8.37881085
52. Чулкова И.Л. Известково-реставрационные композиты. Вестник СибАДИ. 2012. № 5 (27). С. 71–77.
52. Chulkova I.L. Lime-restoration composites. Vestnik SibADI. 2012. No. 5 (27), pp. 71–77. (In Russian).
53. Логанина В.И., Фролов М.В., Скачков Ю.П. Оценка влияния отделочных покрытий на изменение влажностного режима газобетонной ограждающей конструкции. Вестник МГСУ. 2018. Т. 13. № 11. С. 1349–1356. https://doi.org/10.22227/1997-0935.2018.11.1349-1356
53. Loganina V.I., Frolov M.V., Skachkov Yu.P. Assessment of the effect of finishing coatings on the change in the humidity regime of aerated concrete enclosing structures. Vestnik MGSU. 2018. Vol. 13. No. 11, pp. 1349–1356. (In Russian). https://doi.org/10.22227/1997-0935.2018.11.1349-1356
54. Дворкин Л.И., Житковский В.В., Сухие строительные смеси с добавкой известково-карбонатной пыли. Сухие строительные смеси. 2018. № 4. С. 13–16.
54. Dvorkin L.I., Zhitkovsky V.V. Dry building mixtures with the addition of lime-carbonate dust. Sukhiye stroitel'nyye smesi. 2018. No. 4, pp. 13–16. (In Russian).
55. Кандаев А.В., Губарь В.Н., Сравнительный анализ водостойкости реставрационных растворов. Вестник Донбасской национальной академии строительства и архитектуры. 2020. № 4. С. 91–95.
55. Kandaev A.V., Gubar V.N. Comparative analysis of the water resistance of restoration solutions. Vestnik Donbasskoy natsional'noy akademii stroitel'stva i arkhitektury. 2020. No. 4, pp. 91–95. (In Russian).
56. Пугин К.Г. Строительная смесь с бактерицидными свойствами. Вестник БГТУ им. В.Г. Шухова. 2019. № 4. С. 40–46. https://doi.org/10.34031/article_5cb1e65debc933.57283217
56. Pugin K.G. Building mixture with bactericidal properties. Vestnik BSTU named after V.G. Shukhov. 2019. No. 4, pp. 40–46. (In Russian). https://doi.org/10.34031/article_5cb1e65debc933.57283217
57. Ghosh A., Ghosh A., Neogi S. Reuse of fly ash and bottom ash in mortars with improved thermal conductivity performance for buildings. Heliyon. 2018. Vol. ‏4. Iss. 11. e00934. https://doi.org/10.1016/j.heliyon.2018.e00934
57. Белых С.А., Кудряков А.И., Чикичев А.А. Сухая строительная смесь с повышенной адгезионной прочностью для отделки кирпичных поверхностей во влажных помещениях. Вестник Томского государственного архитектурно-строительного университета. 2017. №. 1(60). С. 122–133.
58. Belykh S.A., Kudryakov A.I., Chikichev A.A. Dry mortar with increased adhesive strength for finishing brick surfaces in damp rooms. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2017. No. 1 (60), pp. 122–133. (In Russian).
59. Ruello M.L., Bellezze T., Corinaldesi V., Donnini J. Eusebi A.L., Fatone F. Fava G., Favoni O., Fratesi R., Giosué C., Giuliani G., Marcellini M., Mazzoli A., Mobili A., Roventi G., Tittarelli F. Sustainability in construction materials: Fromwaste valorization to circular economy. The first outstanding 50 years of “Università politecnica delle marche”: research achievements in physical sciences and engineering. 2019, pp. 279–296. https://doi.org/10.1007/978-3-030-32762-0_16
60. Vares M.-L., Ruus A., Nutt N., Kubjas A., Raamets J. Determination of paper plaster hygrothermal performance: Influence of different types of paper on sorption and moisture buffering. Journal of Building Engineering. 2021. Iss. 33. 101830. https://doi.org/10.1016/j.jobe.2020.101830
61. Soolepp M., Ruus A., Nutt N., Raamets J., Kubjas A. Hygrothermal performance of paper plaster: Influence of different types of paper and production methods on moisture buffering. E3S Web of Conferences. 12th Nordic Symposium on Building Physics, NSB 2020; Tallinn, Estonia. 6-9 September 2020. Vol. 172. 14010. http://doi.org/10.1051/e3sconf/202017214010
62. Samkova A., Kulhavy P., Tunakova V., Petru M. Improving electromagnetic shielding ability of plaster-based composites by addition of carbon fibers. Advances in materials science and engineering. 2018. Vol. 2018. 3758364. https://doi.org/10.1155/2018/3758364
63. Kulhavý P., Samková A., Petru M., Pechociakova M. Improvement of the acoustic attenuation of plaster composites by the addition of short-fibre reinforcement. Advances in materials science and engineering. 2018. Vol. 2018. 7356721. https://doi.org/10.1155/2018/7356721
64. Rachedi M., Kriker A. Thermal properties of plaster reinforced with date palm fibers. Civil and environmental engineering. 2020. Vol. 16. Iss. 2, pp. 259–266. https://doi.org/10.2478/cee-2020-0025
65. Логанина В.И., Фролов М.В. Использование зольных алюмосиликатных микросфер в известковых сухих строительных смесях для отделки. Вестник БГТУ им В.Г. Шухова. 2017. № 3. С. 6–8.
ttps://doi.org/10.12737/24623
65. Loganina V.I., Frolov M.V. The use of ash aluminosilicate microspheres in lime dry building mixtures for finishing. Vestnik BSTU named after V.G. Shukhov. 2017. No. 3, pp. 6–8. (In Russian). https://doi.org/10.12737/24623
66. Антоненко М.В., Огурцова Ю.Н., Строкова В.В., Губарева Е.Н. Фотокаталитически активные самоочищающиеся материалы на основе цемента. Составы, свойства, применение // Вестник БГТУ им. В.Г. Шухова. 2020. № 3. С. 16–25. https://doi.org/10.34031/2071-7318-2020-5-3-16-25
66. Antonenko M.V., Ogurtsova Yu.N., Strokova V.V., Gubareva E.N. Cement-based photocatalytically active self-cleaning materials. Compositions, properties, application. Vestnik BSTU named after V.G. Shukhov. 2020. No. 3, pp. 16–25. (In Russian). https://doi.org/10.34031/2071-7318-2020-5-3-16-25
67. Antonenko M.V., Ogurtsova Y.N., Strokova V.V., Gubareva E.N. The effect of titanium dioxide sol stabilizer on the properties of photocatalytic composite material. Lecture Notes in Civil Engineering. 2021. Vol. 95, pp. 16-22. https://doi.org/10.1007/978-3-030-54652-6_3
68. Gubareva E.N., Strokova V.V., Ogurtsova Y.N., Baskakov P.S., Singh L.P. Composition and properties of TiO2 sol to produce a photocatalytic composite material. Key Engineering Materials. 2020. Vol. 854, pp. 45-50. https://doi.org/10.4028/www.scientific.net/KEM.854.45
69. Strokova V., Gubareva E., Ogurtsova Y., Fediuk R., Zhao P., Vatin N., Vasilev Y. Obtaining and properties of a photocatalytic composite material of the “SiO2–TiO2” system based on various types of silica raw materials. Nanomaterials. 2021. Vol. 11(4), pp. 866. https://doi.org/10.3390/nano11040866
70. Senff L., Ascensão G., Ferreira V.M., Seabra M.P., Labrincha J.A. Development of multifunctional plaster using nano-TiO2 and distinct particle size cellulose fibers. Energy and Buildings. 2018. Vol. 158, pp. 721-735. https://doi.org/10.1016/j.enbuild.2017.10.060
71. Dantas S.R.A., Serafini R., Romano R.C. de O., Vittorino F., Loh K. Influence of the nano TiO2 dispersion procedure on fresh and hardened rendering mortar properties. Construction and Building Materials. 2019. Vol. 215, pp. 544–556. https://doi.org/10.1016/j.conbuildmat.2019.04.190
72. Diamanti M., Del Curto B., Ormellese M., Pedeferri M. Photocatalytic and self-cleaning activity of colored mortars containing TiO2. Construction and Building Materials. 2013. Vol. 46, pp. 167–174. https://doi.org/10.1016/j.conbuildmat.2013.04.038
73. Jiang C., Li D., Zhang P., Li J., Wang J., Yu J. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: identification of odorous compounds and effects of heat treatment. Building and Environment. 2017. Vol. 117, pp. 118–126. https://doi.org/10.1016/j.buildenv.2017.03.004
74. Quiroz T.J., Royer S., Bellat J.P., Giraudon J.M., Lamonier J.F. Formaldehyde: catalytic oxidation as a promising soft way of elimination. Chemsuschem. 2013. Vol. 6, pp. 578–592. https://doi.org/10.1002/cssc.201200809
75. Shayegan Z., Haghighat F., Lee C.-S. Carbon-doped TiO2 film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds. Journal of Environmental Chemical Engineering. 2020. Vol. 8. Iss. 5. 104162. https://doi.org/10.1016/j.jece.2020.104162
76. Hu X., Li C., Sun Z., Song J., Zheng S. Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light. Building and Environment. 2020. Vol. 168, 106481. https://doi.org/10.1016/j.buildenv.2019.106481
77. Balayevaa N., Fleischa M., Bahnemann D. Surface-grafted WO3/TiO2 photocatalysts: Enhanced visible-light activity towards indoor air purification. Catalysis Today. 2018. Vol. 313, pp. 63–71. https://doi.org/10.1016/j.cattod.2017.12.008
78. Франке Р. Легкие штукатурки компании «Quick-mix». Сухие строительные смеси. 2011. № 5. С. 20–22.
78. Franke R. Light plasters of the company "Quick-mix". Sukhiye stroitel'nyye smesi. 2011. No. 5, pp. 20–22. (In Russian).
79. Fořt J., Kočí J., Pokorný J., Černý R. Influence of superabsorbent polymers on moisture control in building interiorsInfluence of superabsorbent polymers on moisture control in building interiors. Energies. 2020. Vol. 13. Iss. 8. 2009. https://doi.org/10.3390/en13082009
80. Fořt J., Hotěk P., Kočí J., Cerný R. Utilization plasters with superabsorbent admixture to moderate moisture level in constructions. E3S Web of Conferences. 2020. Vol. 172. 11009. http://doi.org/10.1051/e3sconf/202017211009
81. Fořt J., Kočí J., Pokorný J., Podolka L., Kraus M., Černý R. Characterization of responsive plasters for passive moisture and temperature control. Applied Sciences (Switzerland). 2020. Vol. 10. Iss. 24, pp. 1–16. https://doi.org/10.3390/app10249116
82. Samková A., Kulhavý P., Pechočiaková M. Possibilities to improve electromagnetic shielding of plaster composites adding carbon fibers. IOP Conference Series: Materials Science and Engineering. 17th World Textile Conference: Shaping the Future of Textiles, AUTEX 2017. Corfu, Greece. 29–31 May 2017. Vol. 254. Iss. 4. 042025. https://doi.org/10.1088/1757-899x/254/4/042025
83. Samkova A., Kulhavy P. Study of the acoustic attenuation in plaster composites in dependency on added fiber reinforcement. Vibroengineering Procedia. 25th International Conference on Vibroengineering. Liberec, Czech Republic. 30 May–1 June 2017. Vol. 11, pр. 179–185. https://doi.org/10.21595/vp.2017.18567
84. Jerman M., Medveď I., Maděra J., Kočí V., Cerný R. Effect of moisture variations on damage cumulation in surface layers of building structures. AIP Conference Proceedings. International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017. Thessaloniki, Greece. 25–30 September 2017. Vol. 1978. 080005. https://doi.org/10.1063/1.5043730
85. Парута В.А., Брынзин Е.В., Гринфельд Г.И. Физико-механические основы проектирования штукатурных растворов для газобетонной кладки. Строительные материалы. 2015. № 8. С. 30–34. https://doi.org/10.31659/0585-430X-2015-728-8-30-34
85. Paruta V.A., Brynzin E.V., Grinfeld G.I. Physical and mechanical foundations for the design of plaster solutions for aerated concrete masonry. Stroitel’nye Materialy [Construction Materials]. 2015. No. 8, pp. 30–34. (In Russian).
86. Čáchová M., Koňáková D., Vejmelková E., Keppert M., Polozhiy K., Černý R. Heat and water vapor transport properties of selected commercially produced plasters. Advanced Materials Research 1st International Doctoral Conference on Advanced Materials, IDC-AM 2014. Zahradky, Czech Republic. 23-25 July 2014. Vol. 982, pр. 90–93. https://doi.org/10.4028/www.scientific.net/amr.982.90
87. Sathiparan N., Rupasinghe M.N., Pavithra H.M. Performance of coconut coir reinforced hydraulic cement mortar for surface plastering application. Construction and Building Materials. 2017. Iss. 142, pp. 23–30. http://dx.doi.org/10.1016/j.conbuildmat.2017.03.058
88. Stahl T., Vonbank R., Holzer M. Die Entwicklung eines mineralischen Feuchtespeicher-Grundputzes. Bauphysik. 2013. Vol. 35. Iss. 5, pp. 346–355. https://doi.org/10.1016/j.conbuildmat.2020.121385
89. Парута В.А. Теоретические основы проектирования составов штукатурных растворов для автоклавного газобетона с учетом механики разрушения системы «кладка – покрытие». Сухие строительные смеси. 2014. № 5. С. 38–43.
89. Paruta V.A. Theoretical basis of design of plaster solutions compositions for autoclave aerated concrete taking into account the mechanics of destruction of the masonry-coating system. Sukhie stroitel'nye smesi. 2014. No. 5, pp. 38–43. (In Russian).

For citation: Strokova V.V., Sivalneva M.N., Nerovnaya S.V., Vtorov B.B. Plaster coverings as a regulator of indoor microclimate parameters: an overview of theoretical and experimental research. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 32–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-32-72

Increasing the Thermal Stability of the Embankment in Permafrost Regions

Number of journal: 7-2021
Autors:

Galkin A.F.,
Zheleznyak M.N.,
Zhirkov A.F.

DOI: https://doi.org/10.31659/0585-430X-2021-793-7-26-31
УДК: 625.7/8

 

AbstractAbout AuthorsReferences
In many, practically significant cases, the thermal factor determines the reliability and safety of the operation of roads in permafrost, especially in a sharply continental climate, when daily changes in air temperature and road surface can reach tens of degrees. To reduce the negative impact of sudden changes in daily temperatures on the load-bearing capacity of roads, you can use structural layers of materials with a high value of thermal massiveness in road clothing. Quantitative regularities of changes in the optimal concentration of heat-intensive filler in the structural layer to achieve the maximum index of thermal massiveness of road surfaces are obtained. 2D and 3D graphs are presented that allow us to estimate the possible range of changes in the optimal concentration of heat-intensive filler in the structural heat-protective layer of the road surface both in a wide and characteristic range of changes in the initial values.
A.F. GALKIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.N. ZHELEZNYAK, Doctor of Sciences (Geology and Mineralogy) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. ZHIRKOV, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences (36, Merzlotnaya Street, Yakutsk, 677010, Russian Federation

1. Shats M.M. The current state of the Yakutsk urban infrastructure and ways to improve its reliability. Georisk. 2011. No. 2, pp. 40–46. (In Russian).
2. Pankov V.Yu., Burnasheva S.G. Analysis of ways to protect highways from negative cryogenic processes. In the collection “The best student article 2020”. ICNS “Science and Education”. Moscow. 2020, pp. 52–55. (In Russian)
3. Shesternev D.M., Litovko A.V. Complex studies on the detection of deformations on the Amur highway. Proceedings of the Fourteenth All-Russian Scientific and Practical Conference and Exhibition of Research Organizations “Prospects for the Development of Engineering Research in Construction in the Russian Federation”. Moscow. December 11–14, 2018, pp. 309–314. (In Russian)
4. Zheleznyak M.N., Shesternev D.M., Litovko A.V. Problems of stability of highways in the cryolithozone. Proceedings of the Fourteenth All-Russian Scientific and Practical Conference and Exhibition of Research Organizations “Prospects for the Development of Engineering Research in Construction in the Russian Federation”. Moscow. December 11–14, 2018, pp. 223–227. (In Russian)
5. Kondrat’ev V.G., Kondrat’ev S.V. How to protect Federal highway “Amur” Chita – Khabarovsk threat from engineering-geocryological processes and phenomena. Inzhenernaya geologiya. 2013. No. 5, pp. 40–47. (In Russian).
6. Shesternev D.M., Sokolova V.S., Elgina A.I. Influence of the freezing rate on the heaving of rocks of different composition, structure and properties. In the collection «Kulagin readings: technique and technology of production processes». Chita, November 28–30, 2016, pp. 191–196. (In Russian).
7. Sokolova O.V., Gorkovenko N.B. Assessment of the frost hazard of large-scale clastic soils with a dusty-clay aggregate. Osnovaniya i fundamenty. 1997. No. 2, pp. 11–15. (In Russian).
8. Serikov S.I., Shats M.M. Frost-breaking cracking of soils and its role in the state of the surface and infrastructure of Yakutsk. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Prikladnaya ekologiya. Urbanistika. 2018. No. 1, pp. 56–69. (In Russian). DOI: 10.15593/2409-5125/2018.01.04
9. Zheleznyak I.I., Sakisyan R.M. Metody upravleniya sezonnym promerzaniem gruntov v Zabaikal’e [Management methods seasonal freezing of soil in Zabaikalye]. Novosibirsk: Nauka. 1987. 128 p.
10. Galkin A.F. Efficiency evaluation of thermal insulation use in criolithic zone mine openings. Metallurgical and Mining Industry. 2015. No. 10, pp. 234–237. https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_10/037Galkin.pdf
11. Galkin A.F., Kurta I.V., Pankov V.Yu., Potapov A.V. Evaluation of the effectiveness of the use of layered thermal protection structures in the construction of roads in the cryolithozone. Energobezopasnost’ i energosberezhenie. 2020. No. 4, pp. 24–28. (In Russian). DOI: 10.18635/2071-2219-2020-4-24-28
12. Klochkov Ya.V., Nepomnyashchikh E.V, Lineitsev V.Yu. The use of foam glass for regulating the thermal regime of soils in difficult climatic conditions. Vestnik ZabGU. 2015. No. 6 (121), pp. 9–15. (In Russian).
13. Patent RF 2241798. Teplozashchitnyi ekran [Heat shield] Grechischev S.E., Korobkov N.F., Pavlov A.V., Sheshin Yu.B. Declared 12.01.2004. Published 10.12.2004. Bulletin No. 12. (In Russian).
14. Patent RF 1073403. Mnogosloinaya panel’ [Multi-layer panel]. Urzhumtsev Yu.S., Nikitina L.M., Timoshenko A.Т., Popov G.G., Tolctyakov D.N. Declared 07.04.1982. Published 15.02.1984. Bulletin No. 6. (In Russian).
15. Pankov V.Yu., Potapov A.V. Heat flow on the surface of the roadbed. Tendentsii razvitiya nauki i obrazo-vaniya. 2020. No. 7, pp. 91–93. (In Russian). DOI: 10.18411/lj-07-2020-79
16. Pankov V.Yu., Burnasheva S.G. Influence of wind speed on road surface temperature. Tendentsii razvitiya nauki i obrazovaniya. 2020. No. 8, pp. 116–121. (In Russian). DOI: 10.18411/lj-08-2020-63
17. Galkin A.F., Kiselev V.V., Kurilko A.S. Nabryzgbetonnaya teplozashchitnaya krep’ [Spray-concrete heat-protective support]. Yakutsk: YaNTs SO RAN. 1992. 164 p.
18. Bogoslovskiy V.N., Shcheglov V.P., Razumov N.N. Otoplenie i ventilyatsiya [Heating and ventilation]. Moscow: Stroyizdat.1980. 295 p.
19. Podnebesnyi S.V., Bogatikova N.P., Zaitsev O.N. Influence of inertia of enclosing structures and heating devices on the thermal regime of the room. Stroitel’stvo i tekhnogennaya bezopasnost’. 2016. No. 3 (55), pp. 87–91. (In Russian).
20. Schwerdtfeger P. The thermal properties of sea ice. Journal of Glaciology. 1963. Vol. 4. Iss. 36, pp. 789–807. doi:10.3189/S0022143000028379
21. Odelevskiy V.I. Calculation of the generalized conductivity of heterogeneous systems Zhurnal tekhnicheskoy fiziki. 1951. Vol. 21. Iss. 6, pp. 667–685. (In Russian).
22. Galkin А.F., Kurta I.V., Pankov V.Yu. Calculation of thermal conductivity coefficient of thermal insulation mixtures. IOP Conference Series: Materials Science and Engineering. VIII International Scientific Conference Transport of Siberia. 2020. Vol. 012009. doi:10.1088/1757-899X/918/1/012009

For citation: Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing the thermal stability of the embankment in permafrost regions. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-26-31

Improvement of Dispersed Monolithic Construction on the Coastal Territory

Number of journal: 7-2021
Autors:

Tilinin Yu.I.,
Zhivotov D.A.

DOI: https://doi.org/10.31659/0585-430X-2021-793-7-10-17
УДК: 624.05

 

AbstractAbout AuthorsReferences
The article discusses the problem of searching for efficient technological and organizational solutions to the construction takes into account not only resource but also a capital-based view of reducing working capital and overheads necessary for the organization of continuous construction industry. Based on the economic prerequisites and proven construction technologies for the construction of structures in the water area and residential buildings on the coastal territory, the authors propose a monolithic technology that is versatile and has a number of urgent problems. The main problems of improving the efficiency of monolithic construction are to reduce the labor intensity of concrete work and to reduce the cost of producing and delivering concrete mix to the construction site. It is proposed to reduce the complexity of concrete work by improving the method of feeding concrete mixture into the formwork of monolithic structures. Improvement of the method for feeding concrete mixture into the formwork of monolithic structures is carried out by using a stationary concrete pump, a mine lift, a self-lifting head with a distribution boom installed on it. It is proposed to reduce the cost of production and delivery of concrete mix to the construction site by efficiently placing concrete and mortar units of various capacities on the vast territory of the construction site, taking into account the size of construction objects, road conditions and distances between objects.
Yu.I. TILININ, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. ZHIVOTOV, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Rybnov E.I. Egorov A.N., Khaidutskiy Z., Gdimiyan N.G. Organization and planning of the work of industrial structures in large-scale housing construction. Vestnik grazhdanskikh inzhenerov. 2018. No. 3 (68), pp. 98–102. (In Russian). https://doi.org/10.23968/1999-5571-2018-15-3-98-102
2. Golovina S.G., Sokol Yu.V. On the study of the joint work of building materials in external enclosing structures in the former apartment buildings of the historical center of St. Petersburg. Vestnik grazhdanskikh inzhenerov. 2018. No. 3 (68), pp. 112–117. (In Russian). https://doi.org/10.23968/1999-5571-2018-15-3-112-117
3. Diachkova O.N., Tilinin Yu.I., Ratushin V.A. Rational application of house-building technologies. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 1–2, pp. 11–15. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-1-2-11-15
4. Yudina A.F., Diachkova O.N. Analysis of options for design and construction solutions for residential multi-storey buildings (on the example of St. Petersburg). Vestnik grazhdanskikh inzhenerov. 2010. No. 2 (23), pp. 115–122. (In Russian).
5. Yumasheva E.I., Sapacheva L.V. Large-panel housing construction remains the fastest and most economical. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 10, pp. 3–10. (In Russian).
6. Evtyukov S.A., Tilinin Yu.I., Shcherbakov A.P. On the issue of automation of monolithic housing construction processes taking into account the study of structural steels in construction robotics. Vestnik grazhdanskikh inzhenerov. 2019. No. 3 (74), pp. 72–79. (In Russian). https://doi.org/10.23968/1999-5571-2019-16-3-72-79
7. Tilinin Yu.I., Yudina A.F. Influence of the technology of the device of drainage systems on the consolidation of the alluvial sand massif. Vestnik grazhdanskikh inzhenerov. 2018. No. 6 (71), pp. 62–67. (In Russian). https://doi.org/10.23968/1999-5571-2018-15-6-62-67
8. Gaido A.N., Verstov V.V. On the issue of determining the technological parameters of the production of pile works in cramped conditions. Vestnik grazhdanskikh inzhenerov. 2017. No. 3 (62), pp. 84–94. (In Russian).
9. Gaydo A.N. Ways of improving technological solutions of construction of pile foundations of residential buildings under conditions of urban development. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 9, pp. 12–15. (In Russian).
10. Tilinin Yu.I., Bakhtinov S.A. Development of the organization and technology of large-panel housing construction in the conditions of urban construction. In the collection: Organization of construction production. Materials of the II All-Russian Scientific Conference. St. Petersburg. 2020, pp. 85–93. (In Russian).
11. Yudina A. Enhancing technological processes in building construction and reconstruction by means of new technologies. Asian Journal of Civil Engineering. 2019. Vol. 20, pp. 727–732. https://doi.org/10.1007/s42107-019-00139-9
12. Judina A. Non-reagent methods for the activation of concrete mix raw components in the construction industry. Architecture and Engineering. 2020. No. 5. Iss. 1, pp. 30–35. DOI: 10.23968/2500-0055-2020-5-1-30-35.
13. Yudina A., Oganyan R. Technology of winter concreting of monolithic constructions with application of heating cable. Architecture and Engineering. 2017. Vol. 2. Iss. 2, pp. 43–48.
14. Kadyrov A.S., Kurmasheva B.K., Georgiadi I.V. Economic-mathematical modeling of foundation construction technology by the “wall in the ground” method. Vestnik SibADI. 2018. No. 15 (2), pp. 179–188. (In Russian). https://doi.org/10.26518/2071-7296-2018-2-179-188
15. Rybnov E.I., Egorov A.N., Gorovaya N.S. Development of contour construction technology. Vestnik grazhdanskikh inzhenerov. 2018. No. 2 (67), pp. 135–140. (In Russian).
16. Kolchedantsev L.M., Vasin A.P., Osipenkova I.G., Stupakova O.G. Tekhnologicheskiye osnovy monolitnogo betona. Zimneye betonirovaniye: Monografiya / Pod red. L.M. Kolchedantseva [Technological foundations of monolithic concrete. Winter concreting: Monograph / Ed. by L.M. Kolchedantsev]. SPb.: Lan’. 2016. 280 p.

For citation: Tilinin Yu.I., Zhivotov D.A. Improvement of dispersed monolithic construction on the coastal territory. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-10-17

https://www.traditionrolex.com/10