Log in

Painting of the Top Layer of Slate Sheets on a Sheet Forming Machine

Number of journal: 11-2021
Autors:

Umarov T.Yu.,
Razzokov S.Z.,
Hakberdiev U.N.,
Neyman S.M.

DOI: https://doi.org/10.31659/0585-430X-2021-797-11-47-51
УДК: 621.315.613.4

 

AbstractAbout AuthorsReferences
A method of painting the top layer of asbestos cement sheets directly on a sheet forming machine (SFM) in the traditional process of their manufacture by sprinkling dry colored asbestos cement powder is described. The industriality of the method, its high productivity and efficiency with the production of products conforming to GOST standards have been confirmed. The technology of painting wavy sheets developed at JSC “Akhangaranshifer” and the compositions of coloring mixtures with local natural minerals of high alkali resistance showed the principal possibility of producing high-quality decorative slate of various colors in Uzbekistan at an affordable price.
T.Yu. UMAROV1, Candidate of Sciences (Engeneering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.Z. RAZZOKOV1, Engineer,
U.N. HAKBERDIEV1, Engineer;
S.M. NEYMAN2, Candidate of Sciences (Engineering)

1 LLC Research and Engineering Center “UzbuildmaterialLITI” (68a,Taffakur Street, Tashkent,100047, Republic of Uzbekistan)
2 Chrysotile Association (35, Usacheva Street, 119048, Moscow, Russian Federation)

1. Neyman S.M., Vezentsev A.I., Kahsanskiy S.V. On the safety of asbestos cement materials and products. Moscow: Stroymaterialy. 2006. 64 p.
2. Yakovlev G.I., Drohitka P., Pervushin G.N., Grahov V.P., Saidova Z.S., Gordina A.F., Shaibadulina A.V.,Pudov I.A., Elrefai A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10
3. Kuzmina V.P. A method of obtaining decorative asbestos-cement coatings. Stroitel’nye Materialy [Construction Materials]. 2008. No. 5, pp. 90–91. (In Russian).
4. Timashev V.V., Grizak Yu. S. Technology of asbestos-cement products. Moscow: Stroyizdat. 1979. 336 р.
5. Berkovich T.M., Boyazny L.S., Davydova F.L. Proizvodstvo asbestocementnyh izdelij [Production of asbestos-cement products]. Moscow: State publishing house of literature on construction, architecture and building materials. 1962. 368 p.
6. Domokeev A.G. Stroitel’nye materialy [Construction materials]. Moscow: Vysshaja shkola. 1988. 495 p.
7. Lutskaya L.A. Paints for asbestos-cement building materials. Modern solutions. Stroitel’nye Materialy [Construction Materials]. 2000. No. 10, pp. 34–36 (In Russian).
8. Neiman S.M., Lukin E.G., Rygaev D.V., Mete-litsa R.V., Sobolev L.V. Silicate paint for chrysotile cement products from domestic raw materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 7, pp. 49–53. (In Russian)
9. Lukoshkina L.A., Davydova F.L. Proizvodstvo cvetnogo krovel’nogo i oblicovochnogo asbestocementa [Production of colored roofing and facing asbestos cement]. Moscow. Promstroyizdat. 1954. 28 р.
10. Neiman S.M. Study of the impact strength of asbestos cement and the way to increase it. Cand. Diss. (Engineering). 1976. 178 p.

For citation: Umarov T.Yu., Razzokov S.Z., Hakberdiev U.N., Neyman S.M. Painting of the top layer of slate sheets on a sheet forming machine. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 47–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-47-51

Modeling of Structural Transformations when Grinding Composite Cement

Number of journal: 11-2021
Autors:

Garkavi M.S.,
Artamonov A.V.,
Stavtseva A.V.,
Kolodezhnaya E.V.,
Dergunov S.A.,
Serikov S.V.

DOI: https://doi.org/10.31659/0585-430X-2021-797-11-41-46
УДК: 666.94

 

AbstractAbout AuthorsReferences
Composite cement is a modern building material, which contains a mineral component that improves the technological properties of cement. The production and application of composite cements with the use of mineral components of technogenic origin is gaining increased importance due to their advantages both from an economic and ecological point of view. When grinding the components of composite cement in an energetically stressed centrifugal impact mill, agglomerates of particles are formed – mechano-composites that affect the properties of the finished product. A phenomenological mathematical model of structural transformations of a powder mixture of components when manufacturing the composite cement is proposed. The kinetics of changes in the sizes of particles and mechano-composites, as well as their concentrations in composite cement, have been studied by analytical and numerical methods. The main parameters of the grinding process, which make it possible to obtain composite cement with the specified characteristics, have been identified.
M.S. GARKAVI1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. ARTAMONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. STAVTSEVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOLODEZHNAYA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. DERGUNOV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SERIKOV3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural-Omega ZAO (89, bldg. 7, Lenina Avenue, Magnitogorsk, 455037, Russian Federation)
2 Institute for the Problems of Integrated Development of Mineral Resources of the Russian Academy of Sciences (4, Kryukovsky Tupik, Moscow, 111020, Russian Federation)
3 Orenburg State University (13, Prospect Pobedy, Orenburg, 460018, Russian Federation)

1. Klassen V.K., Shilova I.A., Tekucheva E.V., Stepanov V.V. Energy and resource saving when using technogenic materials in cement technology Stroitel’nye Materialy [Construction Materials]. 2007. No. 8, pp. 18–19. (In Russian).
2. Borisov I.N., Manuilov V.E. Energy and resource saving in cement production with complex use of technogenic materials. ALITinform: Tsement. Beton. Sukhie smesi. 2009. No. 6, pp. 50–58. (In Russian).
3. Madloolab N.A., Saidurab R., Hossainab M.S., Rahimb N.A. A critical review on energy use and savings in the cement industries. Renewable and Sustainable Energy Reviews. 2011. Vol. 15. Iss. 4, pp. 2042–2060. https://doi.org/10.1016/j.rser.2011.01.005
4. Brand A.S., Fanijo E.O. A review of the influence of steel furnace slag type on the properties of cementitious composites. Applied Sciences. 2020. No. 10. 8210. https://doi.org/10.3390/app10228210
5. Zbigniew Giergiczny. Fly ash and slag. Cement and Concrete Research. 2019. Vol. 124. 105826. https://doi.org/10.1016/j.cemconres.2019.1058266.
6. Prokofiev V.Yu., Gordin N.E. Processes of grinding and mechanochemical activation in the technology of oxide ceramics (review). Steklo I keramika. 2012. No. 2, pp. 29–34. (In Russian).
7. Zadneprovsky R.P. Power engineering of grinding materials of different physical state. Tekhnologii betonov. 2014. No. 7, pp. 11–15. (In Russian).
8. Shevchenko A.F., Salei A.A., Sigunov A.A., Peskova N.P. Ways to intensify the process of grinding cement. Voprosy khimii i khimicheskoi tekhnologii. 2008. No. 5, pp. 129–137. (In Russian).
9. Pirotsky V.Z. Sovremennye sistemy izmel’cheniya tsementnogo klinkera i dobavok: Skhemy. Effektivnost’. Optimiza [Modern systems for grinding cement clinker and additives: Schemes. Efficiency. Optimization]. Saint Petersburg. 2000 . 71 p.
10. Khodakov G.S. Fizika izmel’cheniya [Grinding physics]. Moscow: Nauka. 1972. 307 p.
11. Amit Rai, Prabakar J., Raju C.B., Morchalle R.K. Metallurgical slag as a component in blended cement. Construction and Building Materials. 2002. Vol. 16. Iss. 8, pp. 489–494. https://doi.org/10.1016/S0950-0618(02)00046-6
12. Ziyatdinov N.N. Modeling and optimization of chemical technological processes and systems. Teoreticheskie osnovy khimicheskoi tekhnologii. 2017. Vol. 51. No. 6, pp. 613–618. (In Russian).
13. Smolyakov V.K., Lapshin O.V., Boldyrev V.V. Mathematical model of mechanochemical synthesis in the macroscopic approximation. Teoreticheskie osnovy khimicheskoi tekhnologii. 2008. Vol. 42. No. 1, pp. 57–62. (In Russian).
14. Lapshin O.V., Smolyakov V.K. Formation of a layered structure of mechanocomposites during grinding of a binary mixture. Khimicheskaya fizika i mezoskopiya. 2013. Vol. 15. No. 2, pp. 278–284. (In Russian).
15. Khripacheva I.S., Garkavi M.S. Mixed cements of centrifugal impact grinding based on blast-furnace dump slag. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 40–41. (In Russian).
16. Garkavi M.S., Vorobiev V.V., Kushka V.N., Svitov V.S. Modern equipment for grinding and classification of materials. Vestnik BGTU. 2003. No. 6, pp. 280–284.
17. Lapshin O.V., Smolyakov V.K. Dynamics of structural transformations during grinding of a binary mixture. Fizicheskaya mezomekhanika. 2011. Vol. 14. No. 2, pp. 77–84. (In Russian).
18. Lapshin O.V., Smolyakov V.K. Simulation of the synthesis of mechanocomposites in binary systems. Fizika goreniya i vzryva. 2011. Vol. 47. No. 5, pp. 63–74. (In Russian).
19. Kerton F. Prospects for the market of slag cements in Europe. Tsement i ego primenenie. 2006. No. 5, pp. 12–17. (In Russian).
20. Garkavi M.S., Dergunov S.A., Serikov S.V. Formation of the structure of composite cement in the grinding process. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 65–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68
21. Artamonov A.V., Khripacheva I.S. Mixed cements of centrifugal impact grinding. Proceedings of the 3rd International scientific and technical conference “Centrifugal technology – high technologies”. Minsk, 2008, pp. 65–68. (In Russian)
22. Khripacheva I.S., Garkavi M.S. Mixed cements of centrifugal impact grinding based on blast-furnace dump slag. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 40–41. (In Russian).
23. Garkavi M.S., Hripacheva I.S., Melchaeva O.K. Development of rational compositions of mixed cements. Non-Traditional Cement&Concrete IV. Brno, 2011, pp. 437–441.

For citation: Garkavi M.S., Artamonov A.V., Stavtseva A.V., Kolodezhnaya E.V., Dergunov S.A., Serikov S.V. Modeling of structural transformations when grinding composite cement. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-41-46

High-Temperature Modification of Saponite-Containing Material

Number of journal: 11-2021
Autors:

Drozdyuk T.A.,
Ayzenshtadt A.M.,
Korolev E.V.

DOI: https://doi.org/10.31659/0585-430X-2021-797-11-30-35
УДК: 691

 

AbstractAbout AuthorsReferences
One of the priority directions of the development of building materials science in the Russian Federation is the rational use of natural resources, which provides for the use of not only natural resources, but also various types of technogenic waste. In the Arkhangelsk Region, such waste is saponite-containing material (SCM), which is a multi-tonnage waste from the enrichment of kimberlite ores of the M.V. Lomonosov diamond deposit of the “Severalmaz” PJSC enterprise. Therefore, research on the search for new promising areas of use of this technogenic waste by its possible modification is relevant. For this purpose, the paper considers the issue of establishing the temperature regime of this process. As an integral criterion characterizing the change in the composition (nature) of the SCM during its high-temperature modification, it is proposed to use a physical characteristic similar to the Hamaker constant. It is established that at a temperature above 900oC, the proposed characteristic reaches an asymptotic value, which may indicate the completion of transformational transformations in SCM samples. Also, differential thermal analysis of the saponite-containing material pre-crushed and processed at a temperature of 900oC showed the absence of any thermal effects. In addition, high-temperature modification of saponite leads to a decrease in its specific surface area, porosity, pore diameter, moisture absorption and an increase in true density. These studies will serve as a prerequisite for optimizing the parameters of the temperature regime of the process of obtaining structural and thermal insulation material.
T.A. DROZDYUK1, Engineer (Magister) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. AYZENSHTADT1, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. KOROLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Northern (Arctic) Federal University (NAFU) named after M.V. Lomonosov (22, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)
2 St. Petersburg State University of Architecture and Civil Engineering (4, 2-nd Krasnoarmeyskaya Street, St. Petersburg, 190005, Russian Federation)

1. Oblitsov A.Yu. Some aspects of disposal of high-clay enrichment wastes. Gornyy informatsionno-analiticheskiy byulleten’. 2013. No. 7, pp. 390–392. (In Russian).
2. Mynenko V.H. Substantiation and development of an electrochemical method for extracting saponite from circulating waters. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014. No. 3, pp. 180–186. (In Russian).
3. Alekseyev A.I., Zubkova O.S., Polyanskiy A.S. Purification of open pit waters of PJSC “Severalmaz” from dispersed particles of clay mineral saponite by thickening. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta). 2020. No. 55, pp. 22–27. (In Russian).
4. Romanov E.M., Shabanova E.N., Nakvasina E.N., Popova A.A., Kosareva E.N. The problem of utilization of by-products during diamond mining at the Severalmaz concentration plant. Biomonitoring in the Arctic: a collection of abstracts of the participants of the international conference. Arkhangelsk. 2018, pp. 106–108. (In Russian).
5. Oblitsov A.Yu. Prospective directions of utilization of diamond-bearing rock enrichment wastes from the M.V. Lomonosov deposit. Zapiski gornogo universiteta. 2012. Vol. 195, pp. 163–167. (In Russian).
6. Korshunov A. A., Nevzorov A. L. Prospects and directions of utilization of kimberlite ore dressing wastes at the M.V. Lomonosov deposit. Problemy regional’noy ekologii. 2009. No. 2, pp. 213–216. (In Russian).
7. Drozdyuk T.A., Ayzenshtadt A.M., Frolova M.A., Rama Shanker Verma. Mineral wool composite using saponite-containing waste from the mining industry. Stroitel’nyye materialy i izdeliya. 2020. Vol. 3. No. 3, pp. 21–27. DOI: 10.34031/2618-7183-2020-3-3-21-27 (In Russian).
8. Frolova M.A., Morozova M.V., Ayzenshtadt A.M., Tutygin A.S. Aluminosilicate binder based on saponite-containing waste from the diamond mining industry. Stroitel’nyye materialy. 2017. No. 7, pp. 68–70. (In Russian).
9. Morozova M.V., Ayzenshtadt A.M., Makhova T.A. Application of saponite-containing material to obtain frost-resistant concrete. Promyshlennoye i grazhdanskoye stroitel’stvo. 2015. No. 1, pp. 28–31. (In Russian).
10. Stenin A.A., Ayzenshtadt A.M., Shinkaruk A.A., Demidov M.L., Frolova M.A. Mineral surface modifier for wood building materials. Stroitel’nyye materialy. 2014. No. 10, pp. 51–54. (In Russian).
11. Gayda Yu.V., Ayzenshtadt A.M., Malkov V.S., Fomchenkov M.A. Organomineral additive for strengthening sandy soils. Promyshlennoye i grazhdanskoye stroitel’stvo. 2015. No.11, pp. 17–21. (In Russian).
12. Drozdyuk T. A., Ayzenshtadt A. M., Frolova M. A. Effect of thermal modification of saponite-containing material on energy properties of its surface. Journal of Physics: Conference Series. 2019. Vol. 1400 (077053). DOI: 10.1088/1742-6596/1400/7/077056
13. Morozova M.V. Thermal modification of saponite-containing kimberlite ore beneficiation wastes. Construction – the formation of the living environment: a collection of scientific papers of the XVI International Interuniversity Scientific and Practical Conference of students, undergraduates, graduate students and young scientists. Moscow: MGSU. 2013, pp. 534–536. (In Russian).
14. Ayzenshtadt A.M., Korolev Ye.V., Drozdyuk T.A., Danilov V.Ye., Frolova M.A. possible approach to estimating the dispersion interaction in powder systems. Fizika i khimiya obrabotki materialov. 2021. No. 3, pp. 40–48. DOI: 10.30791/0015-3214-2021-3-40-48. (In Russian).
15. Deryagin B.V., Abrikosov Ye.M., Lifshits Ye.M. Molecular attraction of condensed bodies. Uspekhi fizicheskoy khimii. 2015. Vol. 185. No. 9, pp. 982–1001. (In Russian).
16. Roldugin V.I. Fizikokhimiya poverkhnosti: Uchebnik-monografiya [Physicochemistry of surfaces: Textbook-monograph]. Dolgoprudny: Publishing house “Intellect”. 2008. 508 p.
17. Deryagin B.V., Churayev N.V. Smachivayushchiye plenki [Wetting films]. Moscow: Nauka. 1984. 159 p.
18. Sokolova Y.V., Ayzenshtadt A.M., Strokova V.V., Malkov V.S. Surface tension determination in glyoxal-silica dispersed system. Journal of Physics: Conference Series. 2018. Vol. 1038. Nо. 1 (012141). DOI: 10.1088/1742-6596/1038/1/012141
19. Frolova M.A., Tutygin A.S., Ayzenshtadt A.M., Lesovik V.S., Makhova T.A., Pospelova T.A. Criterion for evaluating the energy properties of the surface. Nanosistemy: fizika, khimiya, matematika. 2011. No. 2 (4), pp. 1–6. (In Russian).
20. Patent RF №2448052. Sposob sgushcheniya saponitovoy suspenzii [Method for thickening saponite suspension] / Utin A.V. Declared 08.11.2010. Published 20.04.2012. Bulletin No. 11. (In Russian).
21. Nevzorov A. L., Korshunov A. A. Study of the properties of tailings deposits as a source of anthropogenic impact on the environment. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal. 2007. No. 4, pp. 140–143. (In Russian).
22. Patent RF № 2675871. Sposob osazhdeniya saponitovoy pul’py s primeneniyem kal’tsiyalyumosilikatnogo reagenta [Method for sedimentation of saponite pulp using calcium aluminosilicate reagent] / Alekseev A.I., Brichkin V.N., Zubkova O.S., Kononchuk O.O. Declared 17.10.2017. Published 25.12.2018. Bulletin No. 36. (In Russian).
23. Zapolskiy A.K., Kogan A.A. Koagulyanty i flokulyanty v protsessakh ochistki vody: svoystva. Polucheniye. Primeneniye [Coagulants and flocculants in water purification processes: properties. Receiving. Application] Leningrad: Chemistry. 1987. 208 p.
24. Tutygin A.S., Shinkaruk A.A., Ayzenshtadt A.M., Frolova M.A., Makhova T.A. Clarification of saponite-containing suspension by electron coagulation. Zhurnal Voda: khimiya i ekologiya. 2013. No. 5, pp. 93–99. (In Russian).

For citation: Drozdyuk T.A., Ayzenshtadt A.M., Korolev E.V. High-temperature modification of saponite-containing material. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 30–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-30-35

Influence of the Type of Filler from Production Waste on the Corrosion Resistance of Concrete

Number of journal: 11-2021
Autors:

Zaitseva L.R.,
Lutsyk E.V.,
Latypova T.V.,
Latypov V.M.,
Fedorov P.A.,
Popov V.P.

DOI: https://doi.org/10.31659/0585-430X-2021-797-11-23-29
УДК: 691:699.8

 

AbstractAbout AuthorsReferences
Sustainable modern construction implies maintaining a healthy economy and rational use of resources. In the work presented, studies have been carried out to obtain concretes of increased corrosion resistance. For this purpose, waste products of the non-metallic industry were used in the extraction of crushed stone - crushing screenings, construction waste - concrete scrap, as well as waste of mineral wool production – “beads”. The conducted experimental studies of concrete compositions indicate that: with the planned impact of sulfate media on the structures, the use of mineral wool production waste as a filler is effective; with the planned impact of sulfate-magnesia media on the structure, the use of the filler based on concrete scrap is effective. The concrete compositions developed with the use of crushing screenings of a fraction of 0–5 mm can be recommended for the widespread use of non-metallic raw material extraction waste, rational use of resources and the production of high-quality concrete. The use of additives based on polycarboxylates makes it possible to obtain concretes with a reduction in cement consumption in the mixture by 10–20% and a reduction in the heat-humidity treatment regime by 2 times. At the same time, to obtain concretes with high durability, it is important to use clean washed sands with a content of pulverized and clay particles of no more than 1%.
L.R. ZAITSEVA1, Engineer (graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. LUTSYK1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.V. LATYPOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.M. LATYPOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.A. FEDOROV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.P. POPOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ufa State Petroleum Technological University (1, Kosmonavtov Street, Ufa, 450062, Russian Federation)
2 Samara State Technical University (244, Molodogvardeyskaya Street, Samara, 443100, Russian Federation)

1. Kemenov D. Definitions and concepts of sustainable development in the field of low-rise construction. Arhitektura i dizayn. 2018. No. 4, pp. 1–7. (In Russian). DOI: 10.7256/2585-7789.2018.4.30093
2. Development of resource-saving technologies and complex technological lines for multi-tonnage waste of inert non-metallic raw materials with the production of economical construction products for mass use. State contract dated June 26, 2008 № 02.525.11.5007 (In Russian).
3. Falikman V., Rozental N., Rozental A. AAR in concrete: Russian experience. In RILEM, Proceedings of the Pro128-3 Durability, Monitoring and Repair of Structure, Proceedings of the International Conference on Sustainable Materials Systems and Structures (SMSS2019). Rovinj, Croatia. 20–22 March 2019. Vol. 3, pp. 192–199.
4. Butkevich G.R. Stages of development of non-metallic construction materials industry in Russia. Stroitel’nye Materialy [Construction Materials]. 2011. No. 1, pp. 3–5. (In Russian).
5. Bedov A.I., Tkach E.V., Pakhratdinov A.A. Issues of utilization of concrete scrap waste for the production of large aggregate in the production of reinforced concrete bending elements. Vestnik MGSU. 2016. No. 7, pp. 91–100. (In Russian).
6. Murtazaev S-A.Yu, Murtazaev A.T., Salamova M.Sh. Influence of recycled concrete aggregate on formation of concrete structure and properties. Science, education and production: materials of the All-Russian scientific and technical conference. Grozny. 2008. pp. 57–61. (In Russian).
7. Golovin M.V., Kutov D.V., Shchigoreva E.M., Shchigorev D.S. Influence of recycled concrete aggregate on corrosion resistance of concrete. International Scientific and Technical Conference of Young Scientists BSTU named after V.G. Shukhov. 2017. pp. 1489–1493. (In Russian).
8. Thomas M., Monkman S., Djerbi A. The carbonation of recycled concrete aggregate affected by alkali-silica reaction. In RILEM Proceedings of the PRO 133 International Workshop CO2 Storage in Concrete (CO2STO2019). Marne-la-Vallee, France. 24–25 June 2019, pp. 138–145.
9. Ekolu S.O., Makama L.N., Shuluuka W.P. Influence of different recycled aggregate types on strength and abrasion resistance properties of concrete. In Concrete Repair, Rehabilitation and Retrofitting III, Proceedings of the 3rd International Conference on Concrete Repair Rehabilitation and Retrofitting (ICCRRR). Cape Town, South Africa. 3–5 September 2012, pp. 72–73.
10. Serna P., Ulloa V.A., Pelufo M.J., Jacquin C. Analysis of zero-slump concrete made recycled aggregate from concrete demolition waste. In RILEM Proceedings of the PRO 82 2-nd International RILEM Conference on Progress of Recycling in the Built Environment. Sao Paulo, Brazil. 2–4 December 2009, pp. 243–252.
11. Gutiérrez P.A., Sanchez de Juan M. Utilization of recycled concrete aggregate for structural concrete. In RILEM Proceedings of the PRO 40 International RILEM Conference on the Use of Recycled Materials in Building and Structures. Barcelona, Spain. 8–11 November 2004. Vol. 2, pp. 693–702.
12. Tanaka K., Yada K., Maruyama I., Sato R., Kawai K. Study on corrosion of reinforcing bar in recycled concrete. In RILEM Proceedings of the PRO 40 International RILEM Conference on the Use of Recycled Materials in Building and Structures. Barcelona, Spain. 8–11 November 2004. Vol. 2, pp. 643–650.
13. Sun J., Huaqin J. Study on properties of recycled concrete aggregate and influence of it on properties of concrete. In RILEM Proceedings of the PRO 73 2-nd International Conference on Waste Engineering and Management (ICWEM 2010). Shanghai, China. 13–15 October 2010, pp. 261–268.
14. Khitskov A.A. Influence of different clay particles on efficiency of polycarboxylate superplasticizer, properties of cement stone. Vestnik YuUrGU. Seriya «Stroitel’stvo i arkhitektura». 2019. Vol. 19. No. 1, pp. 40–51. (In Russian).
15. Tolypina N.M., Shchigoreva E.M., Golovin M.V., Shchigorev D.S. Increase of corrosion resistance of concrete by application of active aggregates of the second type. Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta Im. V.G. Shukhova. 2019. No. 2, pp. 27–32. (In Russian).
16. Khokhrin N.I. Stoykost’ legkobetonnykh stroitel’nykh konstruktsiy [Resistance of lightweight building structures]. Kuibyshev: KuISI. 1973. 206 p.
17. Rakhimbaev Sh.M., Tolypina N.M., Khakhaleva E.N. Substantiation of methods for testing corrosion resistance of hydration hardening materials. II International Online Congress Nature-Like Technologies of Building Composites for the Protection of the Human Environment. Belgorod. 2019, pp. 735–739. (In Russian)

For citation: Zaitseva L.R., Lutsyk E.V., Latypova T.V., Latypov V.M., Fedorov P.A., Popov V.P. Influence of the type of filler from production waste on the corrosion resistance of concrete. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 23–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-23-29

Durability of Concrete and Reinforced Concrete in the Gas Environment of Petrochemicals and Refining

Number of journal: 11-2021
Autors:

Fedorov P.A.,
Lutsyk E.V.,
Latypova T.V.,
Latypov V.M.,
Anvarov A.R.,
Popov V.P.,
Chumachenko N.G.

DOI: https://doi.org/10.31659/0585-430X-2021-797-11-16-22
УДК: 624:691

 

AbstractAbout AuthorsReferences
The gas environment of petrochemical and oil refining enterprises is aggressive towards concrete and reinforced concrete. One of the most common gases in this case is carbon dioxide of increased concentration, which can carbonize cement materials and products. The maintenance-free period of operation of building structures made of these materials does not exceed 5–10 years with a standardized period of at least 25 years. The paper examines the features of the destructive processes occurring during this process, and describes the typical damage on the example of a technological stack located on the territory of an oil refinery in Ufa. Analysis of the operating environment near this plant showed that the concentration of carbon dioxide can reach 500–550 ppm in summer, excluding peak emissions. In order to assess the rate of carbonization of repair compounds, accelerated tests were carried out in conditions of high concentration of carbon dioxide. The mechanism of carbonization of repair compounds has been specified, the rate of which is described by the law of the “root of the nth degree of time” with the index n from 2.3 to 4.3. Under the action of static and dynamic loads, it is most rational to use thixotropic repair compounds with the presence of dispersed reinforcement (fiber), which additionally increase the crack resistance of the structure.
P.A. FEDOROV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. LUTSYK1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.V. LATYPOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.M. LATYPOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.R. ANVAROV1, Candidate of Sciences (Engineering);
V.P. POPOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.G. CHUMACHENKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ufa State Petroleum Technological University (1, Kosmonavtov Street, Ufa, 450062, Russian Federation)
2 Samara State Technical University (244, Molodogvardeyskaya Street, Samara, 443100, Russian Federation)

1. Алексеев С.Н., Розенталь Н.К. Коррозионная стойкость железобетонных конструкций в агрессивной промышленной среде. М.: Стройиздат, 1976. 205 с.
1. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ zhelezobetonnykh konstruktsii v agressivnoi promyshlennoi srede [Corrosion resistance of reinforced concrete structures in an aggressive industrial environment]. Moscow: Stroyizdat. 1976. 205 p.
2. Полак А.Ф. Моделирование коррозии железобетона и прогнозирование его долговечности // Итоги науки и техники. Коррозия и защита от коррозии. 1986. Т. XI. C. 136–180.
2. Polak A.F. Reinforced concrete corrosion modeling and prediction of its durability. Results of Science and Technology. Corrosion and corrosion protection. 1986. Vol. XI, pp. 136–180. (In Russian).
3. Латыпов В.М., Латыпова Т.В., Луцык Е.В., Федоров П.А. Долговечность бетона и железобетона в природных агрессивных средах. Уфа: РИЦ УГНТУ, 2014. 288 с.
3. Latypov V.M., Latypova T.V., Lutsyk E.V., Fedorov P.A. Dolgovechnost’ betona i zhelezobetona v prirodnykh agressivnykh sredakh [Durability of concrete and reinforced concrete in aggressive natural environments]. Ufa: RIC UGNTU. 2014. 288 p.
4. Speight J.G. Petroleum refining and environmental control and environmental effects. Fossil Energy: selected entries from the encyclopedia of sustainability science and technology. New York. 2013, pp. 61–97. DOI: https://doi.org/10.1007/978-1-4419-0851-3
5. Brooks S.B., Crawford T.L., Oechel W.C. Measurement of carbon dioxide emissions plumes from prudhoe bay, alaska oil fields. Journal of Atmospheric Chemistry. 1997. Vol. 27. No. 2, pp. 197–207. DOI: https://doi.org/10.1023/A:1005890318796
6. Carotenuto F., Gualtieri G., Miglietta F., Riccio A., Toscano P., Wohlfahrt G., Gioli B. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling. Environmental Monitoring and Assessment. 2018. Vol. 190. No. 3. pp. 165. DOI: https://doi.org/10.1023/A:1005890318796
7. Reuter M., Bovensmann H., Buchwitz M., Borchardt J., Krautwurst S., Gerilowski K., Lindauer M., Kubistin D., Burrows J.P. Development of a small unmanned aircraft system to derive CO2 emissions of anthropogenic point sources. Atmospheric Measurement Techniques. 2021. Vol. 14. No. 1, pp. 153–172. DOI: https://doi.org/10.5194/amt-14-153-2021
8. Possan E., Thomaz W.A., Aleandri G.A., Felix E.F., Santos A.C.P. dos CO2 uptake potential due to concrete carbonation: A case study. Case Studies in Construction Materials. 2017. Vol. 6, pp. 147–161. DOI: https://doi.org/10.1016/j.cscm.2017.01.007
9. Лагерблад Б. Механизм карбонизации // Цемент и его применение. 2014. № 1. C. 177–181.
9. Lagerblad B. Mechanism of carbonation. Tsement i ego primenenie. 2014. No. 1, pp. 177–181. (In Russian)
10. Ashraf W. Carbonation of cement-based materials: Challenges and opportunities. Construction and Building Materials. 2016. Vol. 120, pp. 558–570. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.080
11. Silva R.V., Neves R., Brito J. de, Dhir R.K. Carbonation behaviour of recycled aggregate concrete. Cement and Concrete Composites. 2015. Vol. 62, pp. 22–32. DOI: https://doi.org/10.1016/j.cemconcomp.2015.04.017
12. Hunkeler F. Corrosion in reinforced concrete: processes and mechanisms. Corrosion in Reinforced Concrete Structures. 2005, pp. 1–45. DOI: https://doi.org/10.1533/9781845690434.1
13. Полак А.Ф., Гельфман Г.Н., Яковлев В.В. Антикоррозионная защита строительных конструкций на химических и нефтехимических предприятиях. Уфа: Башкирское книжное издательство, 1980. 80 с.
13. Polak A.F., Gel’fman G.N., Yakovlev V.V. Antikorrozionnaya zashchita stroitel’nykh konstruktsii na khimicheskikh i neftekhimicheskikh predpriyatiyakh [Corrosion protection of building structures in chemical and petrochemical plants]. Ufa: Bashkir Book Publishing House. 1980. 80 p.
14. Новгородский В.И. Основы долговечности железобетонных конструкций. М.: Издательство «Спутник+», 2015. 362 с.
14. Novgorodskii V.I. Osnovy dolgovechnosti zhelezobetonnykh konstruktsii [Fundamentals of the durability of reinforced concrete structures]. Moscow: Publishing house «Sputnik +». 2015. 362 p.
15. Гильмутдинов Т.З., Федоров П.А. Влияние трещин на кинетику карбонизации бетона // Строительные материалы. 2016. № 10. C. 63–66.
15. Gil’mutdinov T.Z., Fedorov P.A. Influence of cracks on the kinetics of concrete carbonization. Stroitel’nye Materialy [Construction Materials]. 2016. No. 10, pp. 63–66. (In Russian).
16. Tuutti K. Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete Research Institute. 1982. 472 p.
17. Helland S. Design for service life: Implementation of FIB Model Code 2010 rules in the operational code ISO 16204. Structural Concrete. 2013. Vol. 14. No. 1, pp. 10–18. DOI: https://doi.org/10.1002/suco.201200021
18. Гусев В.В., Файвусович А.С., Степанова В.Ф., Розенталь Н.К. Математические модели процессов коррозии бетона. М.: Информационно-издательский центр «ТИМР», 1996. 104 с.
18. Gusev V.V., Faivusovich A.S., Stepanova V.F., Rozental’ N.K. Matematicheskie modeli protsessov korrozii betona [Mathematical models of concrete corrosion processes]. Moscow: Information and Publishing Center «TIMR». 1996. 104 p.
19. Schissel P., Gehlen C., Kapteina G. Assessment and service life updating of existing tunnels. Proceedings of the Hazards in tunnels, Structural Integrity» presented at the1st International Symposium “Safe & Reliable Tunnels, Innovative European Achievements”. Prague, Czech Republic. 2004, pp. 189–198.
20. Шалый Е.Е., Леонович С.Н., Ким Л.В. Деградация железобетонных конструкций морских сооружений от совместного воздействия карбонизации и хлоридной агрессии // Строительные материалы. 2019. № 5. C. 67–72. DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
20. Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
21. Papadakis V.G. Estimation of concrete service life–the theoretical background. Patras, Greece: Patras Science Park SA. 2005. 130 p.
22. Розенталь Н.К. Коррозионная стойкость цементных бетонов низкой и особо низкой проницаемости. М.: ФГУП ЦПП, 2006. 520 с.
22. Rozental’ N.K. Korrozionnaya stoikost’ tsementnykh betonov nizkoi i osobo nizkoi pronitsaemosti [Corrosion resistance of low and very low permeability cement concretes]. Moscow: FGUP TsPP. 2006. 520 p.
23. Parrott P.J. Design for avoiding damage due to carbonation-induced corrosion. ACI SP-145 International Conference Durability of Concrete. Detroit. 1994, pp. 283–298.
24. Анваров А.Р., Латыпова Т.В., Латыпов В.М. Обеспечение долговечности железобетона в обычных условиях эксплуатации // ALITinform: Цемент. Бетон. Сухие смеси. 2008. № 2. C. 52–57.
24. Anvarov A.R., Latypova T.V., Latypov V.M. Ensuring the durability of reinforced concrete under normal operating conditions. ALITinform: Tsement. Beton. Sukhie smesi. 2008. No. 2, pp. 52–57. (In Russian).
25. Fedorov P.A., Anvarov A.R., Lutsyk E.V., Latypov V.M., Latypova T.V. Kinetics of fine concrete carbonation in humid operational environment. International Journal of Applied Engineering Research. 2016. Vol. 11. No. 11, pp. 7439–7445.
26. Jiang L., Lin B., Cai Y. A model for predicting carbonation of high-volume fly ash concrete. Cement and Concrete Research. 2000. Vol. 30, pp. 699–702. DOI: https://doi.org/10.1016/S0008-8846(00)00227-1
27. Carević V., Ignjatović I., DragašJ. Model for practical carbonation depth prediction for high volume fly ash concrete and recycled aggregate concrete. Construction and Building Materials. 2019. Vol. 213, pp. 194–208. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.267
28. Федоров П.А., Абдуллин М.М., Абдуллин В.М., Нигматуллин Э.И. Вероятность безотказной работы надводной части нефтедобывающих железобетонных морских стационарных платформ гравитационного типа // Нефтегазовое дело. 2019. Т. 17. № 2. C. 111–120. DOI: https://doi.org/10.17122/ngdelo-2019-2-111-120
28. Fedorov P.A., Abdullin M.M., Abdullin V.M., Nigmatullin E.I. Probability of failure-free operation of the above-water part of oil-producing reinforced concrete offshore fixed platforms of gravity type. Neftegazovoe delo. 2019. Vol. 17. No. 2, pp. 111–120. DOI: https://doi.org/10.17122/ngdelo-2019-2-111-120 (In Russian).

For citation: Fedorov P.A., Lutsyk E.V., Latypova T.V., Latypov V.M., Anvarov A.R., Popov V.P., Chumachenko N.G. Durability of concrete and reinforced concrete in the gas environment of petrochemicals and refining. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 16–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-16-22

Features of Dissociation of Dolomite in the Composition of an Organomineral Mixture

Number of journal: 11-2021
Autors:

Riazanov A.N.,
Vinnichenko V.I.,
Riazanov A.A.,
Rakhimov R.Z.,
Riazanova V.A.,
Shagigalin G.Yu.,
Chumachenko N.G.

DOI: https://doi.org/10.31659/0585-430X-2021-797-11-9-15
УДК: 666.914

 

AbstractAbout AuthorsReferences
The influence of carbon and its gasification products on the process of dolomite decarbonization has been studied by the method of thermodynamic analysis. The intensifying effect of organic matter during the heat treatment of magnesium carbonate is shown. In addition to carbon, decarbonization reactions are affected by gases released as a result of gasification of the organic part of carbon enrichment waste. It is theoretically proved that the organic component of carbon enrichment waste contributes to lowering the temperature of the beginning and end of dolomite dissociation. To confirm the theoretical premises, experimental studies of the behavior of organomineral mixtures during heating were carried out. The products of thermochemical transformations of the organic component of carbon enrichment waste increase the efficiency of the dolomite decarbonization process. The organic component of the waste reduces the temperature of the dolomite decarbonization process.
A.N. RIAZANOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.I. VINNICHENKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. RIAZANOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.Z. RAKHIMOV3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
V.A. RIAZANOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
G.Yu. SHAGIGALIN1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.G. CHUMACHENKO4, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ufa State Petroleum Technological University (1, Kosmonavtov Street, Ufa, 450062, Russian Federation)
2 Cool Clean Researches & Technologies (37 Rue Sainte Catherine, Le Cannet, 06110, France)
3 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)
4 Samara State Technical University (244, Molodogvardeyskaya Street, Samara, 443100, Russian Federation)

1. Patent 53/092 Improved composition to be used as a cement and as a plastic material for molding various articles / Sorel S. United States Patent Office. 1866. Paris, France.
2. Kozlova V.K., Sweet T.F., Dushevina A.M., Chelyshev A.S., Pimenov A.T. Complex use of Taenzinskoye deposit dolomites. Stroitel’nye Materialy [Construction Materials]. 2004. No. 1, pp. 29–31. (In Russian).
3. Kozlova V.K., Dushevina A.M., Chelyshev A.S. Building materials based on Taenzinskoye dolomite. Reliability and durability of building materials and structures: Materials of the III International Scientific and Technical Conference. Volgograd: VolgGASA, 2003. Part 3, pp. 108–110. (In Russian).
4. De Wolff P.M., Walter M.L. Hydratations prozesse und erhartungs eigenschaften in systemen MgO-MgCl2. Zement-Kalk-Gips. 1953. No. 4, pp. 125–137.
5. Kasai J., Ichiba M., Nakanara M. Mechanism of the hydration of magnesia cement. Journal of the Chemical Society of Japan. 1956. Vol. 63. No. 7, pp. 1182–1184.
6. Vinnichenko V., Ryazanov A. Construction binders and environmental indicators of their production. 7th International Scientific Conference “Reliability and Durability of Railway Transport Engineering Structures and Buildings” (Transbud-2018). 2018. Vol. 230. https://doi.org/10.1051/matecconf/201823003020
7. Vinnichenko V., Ryazanov A. Energy efficiency of binder application in concrete. International Journal of Engineering & Technology. 2018. Vol. 7 (4), pp. 335-338. DOI: 10.14419/ijet.v7i4.3.19828
8. Vinnichenko V., Ryazanov A. Ecological indices of manufacture of Portland cement clinker and production of the dolomite clinker. MATEC Web of Conferences. 2017. Vol. 116. 01020. DOI: 10.1051/matecconf/201711601020
9. Biryuleva D.K., Shelikhov N.S., Rakhimov R.Z. On the mechanism of hardening of dolomite cement. Abstracts of III academic readings “Actual problems of building materials science”. Saransk. 1997.119 p. (In Russian).
10. Biryuleva D.K., Shelikhov N.S., Rakhimov R.Z. Dolomite cement modified with silicate additives. Abstracts of the jubilee International Scientific and Practical Conference “Building 99”. Rostov-on-Don. 1999. 49 p.
11. Komlev P.G., Ivanov L.K., Kurkina I.D. Development of a magnesian binder based on dolomite from the Melekhovskoye deposit. Waste utilization in the production of building materials. Abstracts of reports. Penza. 1992. (In Russian).
12. Komlev V.G., Ivanov A.K. Magnesian binder based on dolomite from the Melekhovskoye deposit. Resource-saving technologies of building materials, products and structures. Abstracts of reports. Belgorod. 1993, pp. 53–54. (In Russian).
13. Mazuranic C., Biliuski H., Matcovic B. Magnesium oxychloride cementobtained from partially calcined dolomite. Journal of the American Ceramic Society. 1982. Vol. 65. No. 10, pp. 523–526.
14. The land of our troubles. For materials additional information about the camp of the midwife in the Donetsk region in 2004. Edited by S. Tretyakov. Donetsk. LLC TsЄPI “ЄPITSENTR LTD”. 2005, pp. 110–120. (In Ukrainian).
15. Galetskiy L.S., Naumenko U.Z., Pilipchuk A.D. Technogenic ancestry – a new non-traditional dzherelo mineral sirin in Ukraine. Ecology of development and provision of life. 2002. No. 5–6, pp. 77–81. (In Ukrainian).
16. Petrova L.O. The inflow to the navkolishnє center of the entrance into the coalbutt and in the coal-crusher. Geol. magazine. Kiev. 2002. No. 2, pp. 81–87. (In Ukrainian).
17. Babushkin V.I., Matveev G.M., Mchedlov-Petrosyan O.P. Thermodynamics of silicates [Termodinamika silikatov]. Moscow: Gosstroyizdat. 1965. 352 p.
18. Glushko V.P. Termicheskiye konstanty veshchestv. Spravochnik v desyati vypuskakh. Vypusk IV (S, Si, Ge, Sn, Pb). Tablitsy prinyatykh znacheniy [Thermal constants of substances. A guide in ten editions. Issue IV (C, Si, Ge, Sn, Pb). Part I. Tables of accepted values]. Moscow: VINITI. 1970. 510 p.
19. Landia N.A. Raschet vysokotemperaturnykh teployemkostey tverdykh neorganicheskikh veshchestv po standartnoy entropii [Calculation of high-temperature heat capacities of solid inorganic substances by standard entropy]. Tbilisi. 1962. 224 p.

For citation: Riazanov A.N., Vinnichenko V.I., Riazanov A.A., Rakhimov R.Z., Riazanova V.A., Shagigalin G.Yu., Chumachenko N.G. Features of dissociation of dolomite in the composition of an organomineral mixture. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 9–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-9-15

Formation of the Structure of Composite Cement in the Grinding Process

Number of journal: 10-2021
Autors:

Garkavi M.S.,
Dergunov S.A.,
Serikov S.V.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68
УДК: 666.94

 

AbstractAbout AuthorsReferences
The production and application of composite cements based on man-made products is gaining increased importance due to their advantages not only from an economic point of view, but also from an environmental point of view. The basis for the creation of composite cements of a new generation is the fine grinding of their components and the use of mechano-chemical activation. Energy-stressed centrifugal impact mills meet these conditions to the greatest extent. Technogenic products that initially have an excess reserve of internal energy and are part of composite cements are crushed together with Portland cement clinker and gypsum. During grinding, mechano-composites are formed at the places of physical contact of the components, which affect the properties and hardening of composite cement. A mathematical model of the formation of mechano-composites has been developed depending on the particle size of the components and their ratio in the composition of cement. It is shown that the dispersion of the mineral additive should be higher than that of Portland cement clinker.
M.S. GARKAVI1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. DERGUNOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SERIKOV2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural-Omega ZAO (89, bldg. 7, Lenina Avenue, Magnitogorsk, 455037, Russian Federation)
2 Orenburg State University (13, Prospect Pobedy, Orenburg, 460018, Russian Federation)

1. Rickert J., Müller K. Efficient composite cements - a contribution to reducing CO2 emissions. ALITinform. 2011. No. 2, pp. 28–43. (In Russian).
2. Kerton F. Prospects for the market of slag cements in Europe. Tsement i ego primenenie. 2006. No. 5, pp. 12–17. (In Russian).
3. Zbigniew Giergiczny. Fly ash and slag. Cement and Concrete Research. 2019. Vol. 124. 105826. https://doi.org/10.1016/j.cemconres.2019.105826
4. Amit Rai, Prabakar J., Raju C.B., Morchalle R.K. Metallurgical slag as a component in blended cement. Construction and Building Materials. 2002. Vol. 16. Iss. 8, pp. 489–494. DOI: 10.1016/S0950-0618(02)00046-6
5. Garkavi M.S., Vorobiev V.V., Kushka V.N., Svitov V.S. Modern equipment for grinding and classification of materials. Vestnik of BSTU. 2003. No. 6, pp. 280–284. (In Russian).
6. Khripacheva I.S., Garkavi M.S., Artamonova A.V., Voronin K.M., Artamonova A.V. Cements of centrifugal impact grinding. Tsement i ego primenenie. 2013. No. 4, pp. 106–109. (In Russian).
7. Khripacheva I.S., Garkavi M.S. Mixed cements of centrifugal impact grinding based on blast-furnace dump slag. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 40–41. (In Russian).
8. Lapshin O.V., Smolyakov V.K. Dynamics of structural transformations during grinding of a binary mixture. Fizicheskaya mezomekhanika. 2011. Vol. 14. No. 2, pp. 77–84. (In Russian).
9. Lapshin O.V., Smolyakov V.K. Formation of a layered structure of mechanocomposites during grinding of a binary mixture. Khimicheskaya fizika i mezoskopiya. 2013. Vol. 15. No. 2, pp. 278–284. (In Russian).
10. Lapshin O.V., Smolyakov V.K. Dynamics of structural transformations during grinding of a binary mixture // Physical Mesomechanics. 2011. Vol. 14, No. 2, pp. 77–84.
11. Boldyrev V.V. and others. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii [Fundamental bases of mechanical activation, mechanosynthesis and mechanochemical technologies]. Novosibirsk: Publishing house of the SB RAS. 2009. 343 p.
12. Lapshin O.V., Smolyakov V.K., Boldyreva E.V., Boldyrev V.V. Dynamics of homogenization of binary powder mixtures. Zhurnal fizicheskoi khimii. 2018. Vol. 92. No. 1, pp. 76–80. (In Russian).
13. Greg S., Sing K. Adsorbtsiya, udel’naya poverkhnost’, poristost’ [Adsorption, specific surface, porosity]. Moscow: Mir. 1984. 306 p.
14. Entin Z.B., Yudovich B.E. Multicomponent cements. II International meeting on chemistry and technology of cements. Moscow. 2000. Vol. 1, pp. 94–109. (In Russian).
15. Kononova O.V., Dobshits L.M. Properties of cement stone with different dispersion of cement and filler. Tsement i ego primenenie. 2013. No. 3–4, pp. 124–128. (In Russian).
16. Maciej Zajac, Jan Skocek, Barbara Lothenbach, Mohsen Ben Haha. Late hydration kinetics: Indications from thermodynamic analysis of pore solution data // Cement and Concrete Research. 2020. Vol. 129. 105975. https://doi.org/10.1016/j.cemconres.2020.105975

For citation: Garkavi M.S., Dergunov S.A., Serikov S.V. Formation of the structure of composite cement in the grinding process. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 65–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68

Development of Low-Rise Housing Construction Based on Building Systems Using Composite Gypsum Concretes

Number of journal: 10-2021
Autors:

Losev Yu.G.,
Losev K.Yu.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-60-64
УДК: 711.643

 

AbstractAbout AuthorsReferences
The importance of the work carried out by the Russian Gypsum Association to unite specialists and develop gypsum issues for the widespread use of gypsum-based materials is emphasized. High energy efficiency, environmental friendliness, economical use of gypsum in construction are its main advantages; low energy consumption of production, high technological efficiency of use, low emissions of harmful substances and compliance with the principles of “green construction” are the the main competitive components of construction systems using composite gypsum concretes. It is proposed to link large-scale production of gypsum binder with the widespread use of structural monolithic composite gypsum concretes in low-rise housing construction systems based on the creation of flexible automated production of low-rise residential buildings with the use of information modeling technologies and construction robotics. Automation and implementation of these technologies will make it possible to reduce the need for quantitative growth of builders attracted at the level of working specialties. Such flexible automated technologies of low-rise housing construction, in essence, are a reflection of the new industrial technological way of domestic low-rise housing construction. It is proposed to create flexible automated technologies and a new technological order of industrial low-rise housing construction by organizing regional production clusters for housing production. Clusters should function in accordance with the interests of all participants in the public-private partnership.
Yu.G. LOSEV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
K.Yu. LOSEV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Technologies Institute of Stary Oskol (a division of NUST MISIS) (42, district Makarenko, Belgorod Region, Stary Oskol, 309516, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)

1. Gips v maloetazhnom stroitel’stve [Gypsum in low-rise construction. Ed. by prof. Ferronskaya A.V.]. Moscow: ASV. 2008. 424 p.
2. Losev Yu.G., Losev K.Yu. About the inevitability of creating a new technological order of building low-rise residential construction using of composition gypsum concretes. In the collection of the 10th International Conference “Increasing the efficiency of production and use of gypsum materials and products”. Voronezh. 2021, pp. 76–81. (In Russian).
3. Stepanova P. Reduction of CO2 emissions during the production of gypsum building panels. In the collection of the 10th International Conference “Increasing the efficiency of production and use of gypsum materials and products”. Voronezh. 2021, pp. 125–129. (In Russian).
4. Losev Yu.G., Losev K.Yu. A gypsum concrete residential building performance indicators evaluation. In the collection of the 9th International Conference “Increasing the efficiency of production and use of gypsum materials and products”. Minsk. 2018, pp. 109–112. (In Russian).
5. Dubrov А.P. Ekologiya zhilisha i zdorovie cheloveka [Ecology of housing and human health]. Ufa. 1995. 96 p.
6. Losev Yu.G., Losev K.Yu. Construction systems of a sound house. Sovremennoe stroitel’stvo i arkhitektura. 2018. No. 4, pp. 18–22. DOI: https://doi.org/10.18454/mca.2018.12.1 (In Russian)
7. Goncharov Yu.A, Dubrovina G.G., Gubskaya A.G. Indoor radon protection. In the collection of the 9th International Conference “Increasing the efficiency of production and use of gypsum materials and products”. Minsk. 2018, pp. 59–64. (In Russian).
8. Zolotukhin S.I., Kukina O.B., Volkov V.V., Tsiplakova A.N. Environmental problems of the construction industry and solution ways. In the collection of the 10th International Conference “Increasing the efficiency of production and use of gypsum materials and products”. Voronezh. 2021, pp. 49–68. (In Russian).
9. Krivov A., Krupnov Yu. Dom v Rossii. Natsional’naya ideya [House in Russia. National idea]. Moscow: Olma-Press. 2004. 416 p.
10. Chereshnev I.V. Ekologicheskie aspekty formirovaniya maloetazhnykh zhilykh zdanii dlia gorodskoi zastroiki povyshennoy plotnosti [Environmental Aspects of the Formation of low-rise rsidential buildings for high density urban development. 2nd ed., rev.]. Saint Petersburg: Lan’. 2013. 256 p.
11. Asaul A.N., Kazakov Yu.N. et al. Maloetazhnoye zhilishnoye stroitel’stvo [Low rise residential construction]. Saint Petersburg: Gumanistika. 2005. 564 p.
12. Losev Yu.G., Losev K.Yu. Flexible automated production facilities - a perspective trend for construction development. Promyshlennoe i grazhdanskoe stroitel’stvo. 2005. No. 4, pp. 32–33. (In Russian).
13. Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44
14. Losev Yu.G., Losev K.Yu. Low rise residential construction as the basis of building industry innovative development. Vestnik Yevraziyskoy nauki. 2021. No. 2 (13). (In Russian)

For citation: Losev Yu.G., Losev K.Yu. Development of low-rise housing construction based on building systems using composite gypsum concretes. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 60–64. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-60-64

Sorption Properties of Modified Sosnovsky’s Hogweed

Number of journal: 10-2021
Autors:

Bruyako M.G.,
Bessonov I.V.,
Gorbunova E.A.,
Govryakov I.S.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-54-59
УДК: 666.914

 

AbstractAbout AuthorsReferences
Sorption properties of the modified Sosnovsky’s hogweed have been studied. The comparison of control samples and samples modified in a low-temperature non-equilibrium plasma is carried out. Samples of hogweed, after preliminary grinding, were dried to a constant mass in a drying cabinet, and then placed in weighing bottles. Open weighing bottles with lids were placed in desiccators with solutions of benzene and acetone. A similar test was carried out with a hogweed pretreated in a low-temperature non-equilibrium plasma. Desorption characteristics were determined in the reverse way. On the basis of obtained high sorption properties of the modified filler, it can be assumed, that composite materials based on binder, including gypsum, and Sosnovsky’s hogweed can be used for interior decoration since they contribute to the filtration and control of air humidity, thereby creating comfortable conditions for a person in the room. Processing with low-temperature non-equilibrium plasma makes it possible to obtain a more efficient material, reducing the cost, as well as energy costs for the production and processing of the filler and the product.
M.G. BRUYAKO1, Candidate Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. BESSONOV2, Candidate Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.A. GORBUNOVA1,2, Engineer, Master’s student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. GOVRYAKOV1,2, Engineer, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)
2 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Burlaka S.D., Bruyaka M.R. The use of natural and artificial sorbents for the treatment of oily wastewater. Nauchnie Trudy KubGTU. 2017. No. 7, pp. 71–77. (In Russian).
2. Burenina O.N., Savvinova M.E. Sources of mineral raw materials for the production of building materials of the republic of Sakha (Yakutia). AIP Conference Proceedings. 2017. Vol. 1915. Iss. 1. DOI: 10.1063/1.5017352
3. Musikhin P.V., Sigaev A.I. Investigation of the physical properties and chemical composition of Sosnovsky hogweed and obtaining a fibrous semi-finished product from it. Sovremennye tehnologii. 2006. No. 3, pp. 65–67. (In Russian).
4. Jakubska-Вusse A., Śliwiński М., Kobyłka М. Identification of bioactive components of essential oils in Heracleum sosnowskyi and Heracleum mantegazzia-num (Apiaceae) // Archives of Biological Sciences. 2013. Vol. 65 (3), pp. 877–883. DOI: 10.2298/ABS1303877J
5. Vlasov V.A., Volokitin G.G., Skripnikova N.K., Volokitin O.G. Plazmennye tehnologii sozdanija i obrabotki stroitel’nyh materialov [Plasma technologies for creating and processing building materials]. Tomsk: NTL. 2018. 513 p.
6. Bruyako M.G., Grigorieva L.S., Grigorieva A.I. Plasma-modified sorbents based on zeolite-containing rocks of the Khotynetsk deposit. Stroitel’stvo: nauka i obrazovanie. 2017. Vol. 7. No. 4 (25), p. 3. (In Russian).
7. Bruyako M., Grigoreva L. Effective sorbents based on plasma-modified aluminosilicate minerals. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. 032027. https://doi.org/10.1088/1757-899X/365/3/032027
8. Alanis A., Valdes J.H., Guadalupe N.-V.M., Lopez R., Mendoza R., Mathew A.P., de Leon R.D., Valencia L. Plasma surface-modification of cellulose nanocrystals: a green alternative towards mechanical reinforcement of ABS. RSC Advances. 2019. No. 9, pp. 17417–17424. https://doi.org/10.1039/C9RA02451D
9. Andreev A.I., Selyanina S.B., Bogdanovich N.I. Sorption properties of deciduous and coniferous sulfate lignins. Himija rastitel’nogo syr’ja. 2011. Vol. 2, pp. 33–39.
10. Linderoth O., Johansson P., Wadsö L. Development of pore structure, moisture sorption and transport properties in fly ash blended cement-based materials. Construction and Building Materials. 2020. Vol. 261, pp. 58–56. https://doi.org/10.1016/j.conbuildmat.2020.120007
11. Magnus Sören Åhs Sorption scanning curves for hardened cementitious materials. Construction and Building Materials. 2008. Vol. 22, pp. 12–34. https://doi.org/10.1016/j.conbuildmat.2007.08.009
12. Teptereva G.A., Pakhomov S.I., Chetvertneva I.A., Karimov E.Kh. Renewable natural raw materials, structure, properties, application prospects. Izvestija vysshih uchebnyh zavedenij. Himija i himicheskaja tehnologija. 2021. Vol. 64 (9), pp. 4–121. DOI: 10.6060/ivkkt.20216409/6465
13. Zhang Y., Yu Y., Lu Y., Yu W., Wang S. Effects of heat treatment on surface physicochemical properties and sorption behavior of bamboo (Phyllostachys edulis). Construction and Building Materials. 2021. Vol. 282, pp. 12–34. https://doi.org/10.1016/j.conbuildmat.2021.122683
14. Vares M.-L., Ruus A., Nutt N., Kubjas A., Raamets J. Determination of paper plaster hygrothermal performance: Influence of different types of paper on sorption and moisture buffering. Journal of Building Engineering. 2021. Vol. 33, pp. 36–51 https://doi.org/10.1016/j.jobe.2020.101830
15. Khubatkhuzin A.A., Abdullin I.Sh., Shaekhov M.F., Bashkirtsev A.A. Plasma-chemical processing of materials. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. Vol. 15, pp. 88–92.

For citation: Bruyako M.G., Bessonov I.V., Gorbunova E.A., Govryakov I.S. Sorption properties of modified Sosnovsky's hogweed. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 54–59. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-54-59

Structure and Properties of Gypsum Compositions with Mineral Dispersed Additives

Number of journal: 10-2021
Autors:

Batova M.D.,
Semenova Yu.A.,
Gordina A.F.,
Yakovlev G.I.,
Buryanov A.F.,
Stevens A.E.,
Begunova E.V.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-49-53
УДК: 666.914

 

AbstractAbout AuthorsReferences
A study of the effect on the properties of gypsum binders of a mineral modifier, as which diabase was used, is presented. It is established that with the combined introduction of an non-activated mineral additive and Portland cement into the gypsum binder, an increase in compressive strength of up to 23% is achieved. With the joint introduction of a mineral additive activated in an ultrasonic dispersant and Portland cement into the gypsum binder, an increase in the compressive strength of over 100% is achieved in comparison with the control composition. The complex additive helps to increase the physical and mechanical properties of the material in the early stages of hardening. This may be due to the formation of a denser structure due to an increase in the dispersion of the mineral additive acting as crystallization centers, as well as due to greater activity of chemical interaction with the alkaline component. In the structure of the modified composition, poorly soluble products based on calcium hydro-silicates are formed, which compact the matrix of gypsum stone.
M.D. BATOVA1, Master’s student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.A. SEMENOVA1, Master’s student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA1, Cand. tech. Sciences (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. BURYANOV2, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.E. STEVENS1, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. BEGUNOVA1, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Петропавловская В.Б. Бардов Н.П., Матвейчук В.В. Модификация свойств строительного гипса. Наукоемкие технологии и инновации: Электронный сборник докладов Международной научно-практической конференции, посвященной 65-летию БГТУ им. В.Г. Шухова. 2019. С. 325–329.
1. Petropavlovskaya V.B., Bardov N.P., Matveichuk V.V. Modification of the properties of stucco. Science-intensive technologies and innovations: Electronic collection of reports of the International Scientific and Practical Conference dedicated to the 65th anniversary of BSTU named after V.G. Shukhova. 2019, pp. 325–329. (In Russian).
2. Egorova A.D., Filippova K.E. Ultra-disperse modifying zeolite-based additive for gypsum concretes. IOP Conference Series Materials Science and Engineering. 2019. Vol. 687. 022030. DOI:10.1088/1757-899X/687/2/022030
3. Petropavlovskaya V., Zavadko M., Petropavlovskii K., Buryanov A. Role of basalt dust in the formation of the modified gypsum structure. E3S Web of Conferences: 22nd International Scientific Conference on Construction the Formation of Living Environment, FORM 2019. Tashkent, 18–21 April 2019. Vol. 97 (1). 02036. DOI: 10.1051/e3sconf/20199702036
4. Klimenko V.G. Influence of modifying composition of gypsum binders on the structure of composite materials. IOP Conf. Journal of Physics: Conference Series. Bristol. 2018. Vol. 1118. Iss. 1. 012019. DOI: 10.1088/1742-6596/1118/1/012019
5. Butakova M.D. Investigation of the effects of fuel slag on the properties of gypsum mixtures. IOP Conference Series: Materials Science and Engineering. Sochi. 2020. 022009. DOI: 10.1088/1757-899X/962/2/022009
6. Kretova V., Hezhev T., Mataev T. Gypsumcement-pozzolana composites with application volcanic ash. Procedia Engineering. 2015. Vol. 117, pp. 206–210. DOI: 10.1016/j.proeng.2015.08.142
7. Изотов В.С., Мухаметрахимов Р.Х., Галаутдимов А.Р. Исследование влияния активных минеральных добавок на реологические и физико-механические свойства гипсоцементно-пуццоланового вяжущего // Строительные материалы. 2015. № 5. С. 20–23.
7. Izotov V.S., Mukhametrakhimov R.Kh., Galautdimov A.R. Investigation of the influence of active mineral additives on the rheological and physical and mechanical properties of gypsum-cement-pozzolanic binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 20–23. (In Russian).
8. Сагдатуллин Д.Г. Высокопрочное гипсоцементно-пуццолановое вяжущее. Дис. … канд. тех. наук. Казань, 2010. 210 с.
8. Sagdatullin D.G. High-strength gypsum-cement-puzzolanic binder Dis ... Cand. of Sciences (Engineering). Kazan. 2010. 210 p. (In Russian).
9. Ратинов В.Б., Розенберг Т.И. Классификация добавок по механизму их действия. Сборник трудов «Механизм твердения вяжущих и гипсовые материалы». М., 1957. С. 49–79.
9. Ratinov V.B., Rosenberg T.I. Classification of additives by the mechanism of their action. Collection of works «The mechanism of hardening binders and gypsum materials». Moscow. 1957, pp. 49–79. (In Russian).
10. Коровяков В.Ф. Современные достижения в области создания водостойких гипсовых вяжущих. Сборник научных трудов. М.: ГУП «НИИМОССТРОЙ», 2006. 149 с.
10. Korovyakov V.F. Modern advances in the creation of waterproof gypsum binders. Collection of scientific papers. Moscow: State Unitary Enterprise «NIIMOSSTROY». 2006. 149 p. (In Russian).
11. Будников П.П. Гипс и его исследования. Л.: Издательство Академии наук СССР, 1933. 261 с.
11. Budnikov P.P. Leningrad: Izdatel’stvo akademii nauk SSSR [Gypsum and its research]. Leningrad: Publishing House of the Academy of Sciences of the USSR. 1933. 261 p.
12. Яковлев Г.И., Полянских И.С., Гордина А.Ф. Свойства гипсового вяжущего, модифицированного механоактивированным микрокремнеземом // Weimarer Gipstagung. 2017. С. 108–114.
12. Yakovlev G.I., Polyanskikh I.S., Gordina A.F. Properties of a gypsum binder modified with mechanically activated microsilica. Weimarer Gipstagung. 2017, pp. 108–114.
13. Чернышева Н.В. Использование техногенного сырья для повышения водостойкости композиционного гипсового вяжущего // Строительные материалы. 2014. № 8. С. 53–56.
13. Chernysheva N.V. The use of technogenic raw materials to improve the water resistance of a composite gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2014. No. 8, pp. 53–56. (In Russian).
14. Батова М.Д., Семёнова Ю.А., Гордина А.Ф., Яковлев Г.И., Эльрефаи А.Э.М.М., Саидова З.С., Хазеев Д.Р. Модификация материалов на основе сульфата кальция комплексными минеральными добавками // Строительные материалы. 2021. № 1–2. С. 13–21. DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-13-21
14. Batova М.D., Semenova Yu.А., Gordina А.F., Yakovlev G.I., Elrefai А.E.М.М., Saidova Z.S., Khazeev D.R. Сomplex mineral additives for the modification of calcium sulphate based materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 13–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-13-21
15. Fediuk R., Mochalov A., Timokhin R. Review of methods for activation of binder and concrete mixes. AIMS Materials Science. 2018. Vol. 5. No. 5, pp. 916–931. DOI: 10.3934/matersci.2018.5.916
16. Тринеева В.В., Королева М.Р., Першин Ю.В., Кодолов В.И. Метод получения активных тонкодисперсных суспензий металл/углеродных нанокомпозитов в различных дисперсионных средах. В сб.: Проблемы механики и материаловедения: Труды Института механики УрО РАН. Ижевск, 2016. С. 240–246.
16. Trineeva V.V., Koroleva M.R., Pershin Yu.V., Kodolov V.I. A method for preparing active finely dispersed suspensions of metal/carbon nanocomposites in various dispersion media. In the collection: Problems of mechanics and materials science. Proceedings of the Institute of Mechanics of the Ural Branch of the Russian Academy of Sciences. Izhevsk. 2016, pp. 240–246. (In Russian).

For citation: Batova M.D., Semenova Yu.A., Gordina A.F., Yakovlev G.I., Buryanov A.F., Stevens A.E., Begunova E.V. Structure and properties of gypsum compositions with mineral dispersed additives. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 49–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-49-53

Lightweight Gypsum Compounds with Porous Fillers

Number of journal: 10-2021
Autors:

Petropavlovskaya V.B.,
Zavad'ko M.Yu.,
Novichenkova T.B.,
Petropavlovskii K.S.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-37-43
УДК: 666.914

 

AbstractAbout AuthorsReferences
The work was carried out to study gypsum composites modified with porous ceramic fillers. The demand for the development of such a material is due to the growing interest in gypsum and products based on it, which ensure high manufacturability during manufacture and use, as well as increased comfort and safety during the entire period of operation. It is proposed to provide high strength and performance characteristics of a gypsum composite material by modifying its structure with porous fillers, primarily by reducing the weight of products without reducing strength, due to the high strength of the introduced foam-filled modifier. Such a composite material will significantly expand the range of manufactured gypsum products based on it. Microdispersed foamed ceramics were used as a filler. The introduction of an aluminosilicate modifier promotes the formation of a lightweight gypsum stone with a developed homogeneous porous structure of ceramic foam inclusions. It is shown that the modifier is involved in phase transformations, contributing to the strengthening of the contact at the modifier – gypsum phase interface. The performed microstructural analysis made it possible to confirm the participation of aluminosilicates in the process of structure formation of gypsum stone, which can be used in practice to create complex modified compositions based on gypsum binders.
V.B. PETROPAVLOVSKAYA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.Yu. ZAVAD'KO, Engineer (Assistant Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.B. NOVICHENKOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.S. PETROPAVLOVSKII, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Tver State Technical University (22, Afanasiy Nikitin Еmbankment, Tver, 170026, Russian Federation)

1. Pul’ga S.A., Kulikova E.S., Tkachenko A.Z. Porous fillers for lightweight concretes. New ideas of the new century: Materials of the international scientific conference FAD TOGO. 2018. Vol. 3, pp. 441–444. (In Russian).
2. Frankovskaya E.R. Prospects of light concrete development on porous aggregates. XI International Youth Forum «Education. Science. Production»: Forum materials. Belgorod. 2019, pp. 2527–2530. (In Russian).
3. Kharisova D.R. Development and application of light floor dry building mixtures. Alleya nauki. 2020. Vol. 1. No. 8 (47), pp. 130–137. (In Russian).
4. Davidyuk A.N., Davidyuk A.A. Deformative properties of light concrete on vitreous aggregates. Beton i Zhelezobeton [Concrete and reinforced concrete]. 2009. No. 1, pp. 10–12. (In Russian).
5. Haev T.Eh., Tkach E.V., Oreshkin D.V. Lightweight strengthened gypsum stone for restoration of architectural monuments. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 68–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-759-5-68-72
6. Serova R.F., Khaev T.E., Tkach E.V. The study of the properties of gypsum systems with hollow glass microspheres for restoration work. Fundamental’nye issledovaniya. 2017. No. 6, pp. 80–85. (In Russian).
7. Khaev T.E., Tkach E.V., Oreshkin D.V. Modified lightweight gypsum material with hollow glass microspheres for restoration works. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 45–50. (In Russian).
8. Mal’tseva O.N. Innovative glazing product. Tverdye bytovye otkhody. 2017. No. 12 (138), pp. 50. (In Russian).
9. Petropavlovskaya V.B., Novichenkova T.B., Petropavlovskii K.S., Sveiti Yu. Dry construction mixtures for finishing materials and production of internal works. Stroitel’stvo i rekonstruktsiya. 2020. No. 5 (91), pp. 106–115. (In Russian). DOI: 10.33979/2073-7416-2020-91-5-106-115
10. Petropavlovskaya V.B., Zavad’ko M.Yu. Prospects for the use of waste-based foam ceramics in the modification of gypsum binder. Stroitel’stvo i rekonstruktsiya. 2020. No. 2 (88), pp. 90–95. (In Russian). DOI: 10.33979/2073-7416-2020-88-2-90-95
11. Kozlov A.V., Balakhonkina S.Yu. Dry building mixtures of the warm series of the company “favorite” based on a light porous filler – kerwood® foam ceramics. Sukhie stroitel’nye smesi. 2018. No. 2, pp. 14–15. (In Russian).
12. Semenov V.S. Properties of dry masonry mixtures based on hollow ceramic microspheres. Construction – the formation of the life environment. Electronic resource: a collection of works of the XX International Inter-University Scientific and Practical Conference of students, undergraduates, graduate students and young scientists. Moscow. 2017, pp. 884–886. (In Russian).
13. Petropavlovskii K.S., Buryanov A.F., Petropavlovskaya V.В., Novichenkova T.B. Lightened self-reinforced gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 40–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-40-45
14. Orlov A.D., Nezhikov A.V. Foam glass-ceramics as an aggregate for high-technological lightweight concretes. Vestnik NITs “Stroitel’stvo”. 2017. No. 3 (14), pp. 163–171. (In Russian).
15. Akimochkina G.V., Rogovenko E.S., Fomenko E.V. Narrow fractions of volatile ash microspheres as the basis of lightweight high-strength composite materials. Chemistry and chemical technology: achievements and prospects: a collection of materials from the V All-Russian Conference. Kemerovo. 2020, pp. 12.1–12.5. (In Russian).
16. Rogovenko E.S., Kushnerova O.A., Fomenko E.V. Characteristics of the narrow fractions of fly ash microspheres as the basis of light-weight high-strength materials. Zhurnal Sibirskogo federal’nogo universiteta. Seriya: Khimiya. 2019. Vol. 12. No. 2, pp. 248–260. (In Russian). DOI: 10.17516/1998-2836-0123
17. Zimakova G.A., Solonina V.A., Zelig M.P. Ashy mechanoactivated microspheres as the component of highly efficient concrete. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal. 2016. No. 12–3 (54), pp. 90–94. (In Russian). DOI: 10.18454/IRJ.2016.54.083

For citation: Petropavlovskaya V.B., Zavad'ko M.Yu., Novichenkova T.B., Petropavlovskii K.S. Lightweight gypsum compounds with porous fillers. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 37–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-37-43

Studies of Gypsum Composites for Low-Rise Construction

Number of journal: 10-2021
Autors:

Makeev A.I.,
Chernyshov E.M.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-29-36
УДК: 666.914

 

AbstractAbout AuthorsReferences
The possibility of practical use of the results of exploratory experiments to study the dependence of the resistance of gypsum composites to destruction on the parameters of their macrostructure for the development of compositions of building products for low-rise construction is considered. The results of testing gypsum composites on fillers of granular, fibrous and lamellar-needle form, some of which relate to man-made (technogenic) waste (granite screening and wood chips), are presented. It is shown that the strength potential of the obtained composites makes it possible to consider them as a material for the manufacture of construction products intended for the construction of low-rise buildings. The direction of further research is indicated as the development of procedures for the design and synthesis of structures of new resource-efficient structural and structural-thermal insulation gypsum composites for low-rise construction.
A.I. MAKEEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.M. CHERNYSHOV , Doctor of Sciences (Engineering), Academician of RAACS

Voronezh State Technical University (84, 20-letiya Oktyabrya Street, 394006, Voronezh, Russian Federation)

1. Slavcheva G.S. 3D-build printing today: potential, challenges and prospects for implementation. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 28–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
2. Buryanov A.F. Gypsum, its research and application from P.P. Budnikov to the present day. Stroitel’nye Materialy [Construction Materials]. 2005. No. 9, pp. 46–48. (In Russian).
3. Ivaschenko Yu.G., Evstigneev S.A., Strakhov A.V. The role of fillers and modifiers in the formation of the structure and properties of composites based on gypsum binder. Reliability and durability of building materials, structures and foundations: Materials of the VI International Scientific and Technical Conference. Volgograd. 2011, pp. 159-162. (In Russian).
4. Belov V.V., Bur’yanov A.F., Yakovlev G.I. et al. Modifikatsiya struktury i svoystv stroitel’nykh kompozitov na osnove sul’fata kal’tsiya: monografiya [Modification of the structure and properties of building composites based on calcium sulfate: monograph / under total. ed. Buryanova A.F.] Moscow: De Nova. 2012. 195 p.
5. Babkov V.V., Latypov V.M., Lomakina L.N., Shigapov R.I. Modified gypsum binders of increased water resistance and gypsum-claydite-concrete wall blocks for low-rise housing construction based on them. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 4–8. (In Russian).
6. Petropavlovskii K.S., Buryanov A.F., Petropavlovskaya V.В., Novichenkova T.B. Lightened self-reinforced gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 40–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-40-45
7. Khozin V.G., Maysuradze N.V., Mustafina A.R., Kornyanen M.E. Influence of the chemical nature of plasticizers on the properties of gypsum paste and stone. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 35–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-35-39
8. Petropavlovskaya V.В., Zavad’ko M.Yu., Novichenkova T.B., Petropavlovskii K.S., Buryanov A.F. Gypsum modified compositions with the use of activated basalt filler. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-10-17
9. Bessonov I.V., Zhukov A.D., Gorbunova E.A. Researching of the water resistance of hydrophobized tongue-and-groove gypsum slabs. Stroitel’nye Materialy [Construction Materials]. 2021. No. 6, pp. 57–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-792-6-57-61
10. Makeev A.I. Resistance to fracture of conglomerate building composites on a gypsum binder. “Increasing the efficiency of production and use of gypsum materials and products”: collection of materials of the X International Scientific and Practical Conference. September 8–9, 2021. Voronezh, pp. 81–96. (In Russian).
11. Makeev A.I., Chernyshov E.M. Granite crushing screenings as a component factor of concrete structure formation. Part 1. Problem definition. Identification of screenings as a component factor of structure formation. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 56–60. DOI: https://doi.org/10.31659/0585-430X-2018-758-4-56-60 (In Russian).
12. Makeev A.I. Methodological foundations of the theory of design and synthesis of optimal structures of conglomerate building composites. Nauchnyy vestnik VGASU. Seriya: Fiziko-khimicheskiye problemy i vysokiye tekhnologii stroitel’nogo materialovedeniya. 2015. No. 1 (10), pp. 29–37. (In Russian).
13. Chernyshov E.M., Makeev A.I. On the problem of control of recipe-technological factors of concrete production in the problems of design and synthesis of their optimal structures. Academia. Arkhitektura i stroitel’stvo. 2018. No. 3, pp. 135–143. (In Russian).
14. Chernyshov E.M., Makeev A.I. Types of substructures in the integral polystructure of concrete and the regularities of the formation of stress field parameters in the composite (to the development of the theory of design and synthesis of structures of conglomerate building composites). Fundamental, exploratory and applied research of the RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2020: Collection of scientific works of RAASN. Moscow: ASV. 2021, pp. 304–314. (In Russian).
15. Chernyshov E.M., Makeev A.I. Destruction of conglomerate building materials: basic concepts, process mechanisms, principles and patterns of management. Stroitel’nye Materialy [Construction Materials]. 2007. No. 9, pp. 63–65. (In Russian).
16. Chernyshov E.M., Makeev A.I. Modeling the stress state of structurally inhomogeneous conglomerate composites in building structures Mezhdunarodnyy zhurnal po raschetu grazhdanskikh i stroitel’nykh konstruktsiy. 2015. Vol. 11. No. 2, pp. 160–170. (In Russian).
17. Dvorkin L.I., Dvorkin O.L. Stroitel’noye materialovedeniye [Building materials science]. Mosocw: Infra-Engineering. 2013. 832 p.
18. Korneeva I.G., Emelyanova N.A. On the question of optimal reinforcement of fine-grained concrete with basalt fibers. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2016. No. 4 (19), pp. 121–128. (In Russian).
19. Chernyshov E.M., Dyachenko E.I. Metodika otsenki vyazkosti razrusheniya silikatnykh avtoklavnykh materialov [Method for assessing the fracture toughness of silicate autoclave materials]. Voronezh. 1990. 32 p.
20. Lavlinskaya O.V., Sukhorukova S.S., Lazareva V.A., Strukova T.Yu., Melnikova E.I. Investigation of the influence of the type and size of wood filler on the properties of gypsum boards. Aktual’nyye napravleniya nauchnykh issledovaniy XXI veka: teoriya i praktika. 2014. Vol. 2. No. 2–1 (7–1), pp. 130–135.
21. Gipsovye materialy i izdeliya (proizvodstvo i primeneniye): Spravochnik [Gypsum materials and products (production and use): Handbook / Under total. ed. A.V. Ferronskaya]. Moscow: ASV. 2004. 485 p.

For citation: Makeev A.I., Chernyshov E.M. Studies of gypsum composites for low-rise construction. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 29–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-29-36

https://www.traditionrolex.com/10