Dynamics of Strength Gain of “Cold” Self-Compacting Fine-Grained Concretes during Winter Concreting of Joints

Number of journal: 10-2021
Autors:

Rumyantsev E.V.,
Bayburin A.Kh.,
Solov’ev V.G.,
Ahmed’yanov R.M.,
Bessonov S.V.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-12-20
УДК: 623.125

 

AbstractAbout AuthorsReferences
This work presented is a continuation of research of the structural and technological parameters of the quality of self-compacting fine-grained fresh concrete (SCFGFC) based on dry construction mixes (DCM) and concretes on their base (SCFGHC) during winter concreting of joints of precast reinforced concretes structures. Modification of the properties of cement concretes with the help of complex polyfunctional additives makes it possible to obtain the desired properties, including continuous hardening of concretes under negative temperatures. The use of such “cold” concretes for concreting joints makes it possible to ensure the continuity of the installation of large-panel buildings. The main parameters of the winter concreting technology with the use of “cold” concretes are high early strength and the design rate of growth of the in-situ concrete at negative temperatures. The carried out complex experimental study of the dynamics of strength gain of “cold” SCFGHC makes it possible to make up for the insufficient volume of research in this topics. For the study, SCFGHC based on dry mixes from three manufactures on cement binders, hardening at low temperatures are used. The assessment of the influence of early freezing on the compressive strength of concrete at an early age was carried out, the dependences of the strength set of “cold” concretes of 28 days of aging at the initial, average and minimal negative temperatures of laying the fresh concrete were obtained. The obtained results of the study significantly expand the field of application of “cold” concretes, can be used for the development of technological documentation for the use of “cold” SCFGHC based on cement dry mixes, as well as for the preparation of codes and technical documents on the technology of concreting joints of precast reinforced concrete structures at negative temperatures.
E.V. RUMYANTSEV1, Chief Designer of Product Department (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Kh. BAYBURIN2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. SOLOV’EV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.М. AHMED’YANOV4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. BESSONOV4, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 “PIK-Proekt” LLC (19, bldg. 1, Barrikadnaya Street, Moscow, 123242, Russian Federation)
2 National Research South Ural State University (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
4 «Ural Research Institute of Construction Materials» LLC (5/2, Stalevarov Street, Chelyabinsk, 454047, Russian Federation)

1. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
2. Golovnev S.G. Tekhnologiya zimnego betonirovaniya. Optimizatsiya parametrov i vybor metodov [The winter concreting technology. Optimization of parameters and choice of methods]. Chelyabinsk: Publishing House of SUSU. 1999. 156 p.
3. Bazhenov Yu.M., Alimov V.V., Voronin V.V. Nanomodificirovannye vysokokachestvennye betony [Nanomodified high-performance concrete]. Moscow: ASV. 2017. 198 p.
4. Batrakov V.G. Concrete modifiers: new possibilities and prospects. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 4–7. (In Russian).
5. Bikbau M.Ya., Nefedov A.S. Nanomodified cement and concrete based on it. ALITinform. 2020. No. 2 (59), pp. 2–13. (In Russian).
6. Kaprielov S.S., Travush V.I., Karpenko N.I., Scheinfeld A.V., Kardumyan G.S., Kiseleva Yu.A., Prigozhenko O.V. Modified concrete of a new generation in the structures of MMDC “Moscow-City “. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 13–17. (In Russian).
7. Krasnovsky B.M., Dolgopolov N.N., Zagrekov V.V., Sukhanov V.A., Lorettova R.N. Hardening of concrete at GNV at negative temperatures. Beton i zhelezobeton [Concrete and reinforced concrete]. 1991. No. 2, pp. 17–18. (In Russian).
8. Nesvetaev G.V. Effectiveness of superplasticizers application in concrete. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 23–25. (In Russian).
9. Sorokin Yu.V., Kalashnikov O.O., Falikman V.R. Construction and technical properties of especially high-strength fast-hardening concrete: 80th anniversary of the A.A. Gvozdev NIIZhB. Proceedings of scientific articles. Moscow. 2007, pp. 178–194. (In Russian).
10. Usherov-Marshak A.V. Additives in concrete: progress and problems. Stroitel’nye Materialy. [Construction materials]. 2006. No. 10 (622), pp. 8–12. (In Russian).
11. Falikman V.R. High performance concrete – “Smart concrete”. Materials of the conference ICCX. St. Petersburg. December 3–6, 2019, pp. 52–63. (In Russian).
12. Yuan Yu., Lin V., Pe T. Vysokokachestvenniy cementniy beton s uluchshennymi svoystvami [High-performance cement concrete with improved properties] Moscow: ASV. 2014. 448 p.
13. Han B., Ding D, Wang J., Ou J. Nano-engineered cementitious composites. principles and practices. Singapore: Springer Nature Singapore Pte Ltd. 2019. 731 p. DOI: 10.1007/978-981-13-7078-6
14. Mironov S.A., Lagoyda A.V. Betony, tverdeyushchie na moroze [Concrete, hardening in the cold]. Moscow. Stroyizdat. 1974. 264 p.
15. Tarakanov O.V., Belyakova E.A., Gorshkov V.I. Anti-frost additives based on superplasticizers, mineral and accelerating modifiers. Regional’naya arkhitektura i stroitel’stvo. 2014. No. 1, pp. 53–58. (In Russian).
16. Isotov V.S., Sokolova Yu.A. Khimicheskie dobavki dlya modifikatsii betona: monografiya [Chemical additives for modifying concrete: monograph]. Kazan: Paleotype Publishing House. 2006. 244 p.
17. Andreeva A.V., Burenina O.N., Davydova N.N., Davaasenge S.S., Savvinova M.E. Structural changes of fine-grained concrete hardening at negative ambient temperature. Privolzhskii nauchnyi vestnik. 2015. No. 12–1 (52), pp. 24–26. (In Russian).
18. Kononova O.V., Minakov Yu.A., Gryazina M.V., Ivanov N.A., Cherepov V.D. Study of the kinetics of hardening of concrete and solutions with anti-frost additives after exposure to negative temperatures. Fundamental’nye issledovaniya. 2014. No. 8, pp. 1309–1312. (In Russian).
19. Shatov A.N. Features of selection of concrete modifier for winter concreting conditions. Beton i zhelezobeton [Concrete and reinforced concrete]. 2016. No. 1, pp. 25–28. (In Russian).
20. Kothari A., Habermehl-Cwirzen K., Hedlunt H., Cwirzen A. A Review of the mechanical properties and durability of ecological concretes in a cold climate in comparison to standard ordinary Portland cement-based concrete. Materials. 2020. No. 13 (16). Vol. 3467, pp. 1–32. DOI: https://doi.org/10.3390/ma13163467
21. Dar A.R. Influence of cold temperature on performance of concrete in J&K. Comparison studies: IOP Conference Series: Materials Science and Engineering. 2019. Vol. 561. 012020. DOI: https://doi.org/10.1088/1757-899X/561/1/012020
22. Okamura M., Ouchi H. Self-compacting high performance concrete. Progress in Structural Engineering and Materials. 1998. Vol. 1. Iss. 4, pp. 378–383. DOI: https://doi.org/10.1002/pse.2260010406
23. Self-Compacting Concrete: Proceedings of the First International RILEM Symposium. Edited by A. Skarendahl and O. Petersson. RILEM Publication S.A.R.L., Stockholm, Sweden. 1999. 578 p.
24. Batudaeva A.V., Kardumyan G.S., Kaprielov S.S. High-strength modified concrete from self-compacting mixtures. Beton i zhelezobeton [Concrete and reinforced concrete]. 2005. No. 4, pp. 14–18. (In Russian).
25. Nesvetaev G.V. Technology of self-compacting concrete. Stroitel’nye Materialy [Construction materials]. 2008. No. 3, pp. 24–28. (In Russian).
26. Mozgalev K.M., Golovnev S.G. The self-compacting concrete: possibilities of application and properties. Akademicheskij vestnik UralNIIProekt RAASN. 2011. No. 4, pp. 70–74. (In Russian).
27. Rumyantsev E.V. Features of the technology for the use of fine-grained concrete based on dry construction mixtures in-situ joints of large-panel buildings: Materials of the ICCX Russia conference. St. Petersburg. December 1–4, 2020, pp. 55–57. (In Russian).
28. Nehdy M., Elsayed M., Provost-Smith D. J. Investigation of grouted precast concrete wall connections at subfreezing conditions: Material of Conference “Resilient infrastructure”. London, GB. 2016, pp. 1–10. https://www.researchgate.net/publication/304115263_INVESTIGATION_OF_GROUTED_PRECAST_CONCRETE_WALL_CONNECTIONS_AT_SUBFREEZING_CONDITIONS#fullTextFileContent (Date of access 03.02.2021).
29. Mozgalev K.M., Golovnev S.G., Mozgaleva D.A. Efficiency of use of self-compacting concretes in the construction of monolithic buildings in winter conditions. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya “Stroitel’stvo i arhitektura”. 2014. Vol. 14. No. 1, pp. 33–37. (In Russian).
30. Minakov Yu.A., Kononova O.V., Anisimov S.N., Gryazina M.V. Management of concrete hardening kinetics at negative temperatures. Fundamental’nye issledovaniya. 2013. No. 4, pp. 307–311. (In Russian).
31. Mozgalev K.M., Golovnev S.G. Features of early freezing of self-compacting concrete. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta, Seriya “Stroitel’stvo i arhitektura”. 2012. Iss. 15. No. 38 (297), 2012, pp. 43–45. (In Russian).
32. Shelekhov I.Yu., Dorofeeva N.L., Kazakova A.Yu. Study of thermodynamic processes in a concrete mixture hardening in winter conditions. Izvestiya vuzov. Stroitel’stvo. Nedvizhimost’. 2021. Vol. 11. No. 1, pp. 126–133. DOI: http://dx.doi.org/10.21285/2227-2917-2021-1-126-133. (In Russian).
33. Rumyantsev E.V., Vidyakin A.A., Bayburin A.Kh. Temperature monitoring of monolithic joints of large-panel buildings during winter concreting. Beton i zhelezobeton [Concrete and reinforced concrete]. 2020. No. 1 (601), pp. 42–48. (In Russian).

For citation: Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Dynamics of strength gain of “cold” self-compacting fine-grained concretes during winter concreting of joints. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 12–20. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-12-20


Print   Email