Formation of the Structure of Composite Cement in the Grinding Process

Number of journal: 10-2021
Autors:

Garkavi M.S.,
Dergunov S.A.,
Serikov S.V.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68
УДК: 666.94

 

AbstractAbout AuthorsReferences
The production and application of composite cements based on man-made products is gaining increased importance due to their advantages not only from an economic point of view, but also from an environmental point of view. The basis for the creation of composite cements of a new generation is the fine grinding of their components and the use of mechano-chemical activation. Energy-stressed centrifugal impact mills meet these conditions to the greatest extent. Technogenic products that initially have an excess reserve of internal energy and are part of composite cements are crushed together with Portland cement clinker and gypsum. During grinding, mechano-composites are formed at the places of physical contact of the components, which affect the properties and hardening of composite cement. A mathematical model of the formation of mechano-composites has been developed depending on the particle size of the components and their ratio in the composition of cement. It is shown that the dispersion of the mineral additive should be higher than that of Portland cement clinker.
M.S. GARKAVI1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. DERGUNOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SERIKOV2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural-Omega ZAO (89, bldg. 7, Lenina Avenue, Magnitogorsk, 455037, Russian Federation)
2 Orenburg State University (13, Prospect Pobedy, Orenburg, 460018, Russian Federation)

1. Rickert J., Müller K. Efficient composite cements - a contribution to reducing CO2 emissions. ALITinform. 2011. No. 2, pp. 28–43. (In Russian).
2. Kerton F. Prospects for the market of slag cements in Europe. Tsement i ego primenenie. 2006. No. 5, pp. 12–17. (In Russian).
3. Zbigniew Giergiczny. Fly ash and slag. Cement and Concrete Research. 2019. Vol. 124. 105826. https://doi.org/10.1016/j.cemconres.2019.105826
4. Amit Rai, Prabakar J., Raju C.B., Morchalle R.K. Metallurgical slag as a component in blended cement. Construction and Building Materials. 2002. Vol. 16. Iss. 8, pp. 489–494. DOI: 10.1016/S0950-0618(02)00046-6
5. Garkavi M.S., Vorobiev V.V., Kushka V.N., Svitov V.S. Modern equipment for grinding and classification of materials. Vestnik of BSTU. 2003. No. 6, pp. 280–284. (In Russian).
6. Khripacheva I.S., Garkavi M.S., Artamonova A.V., Voronin K.M., Artamonova A.V. Cements of centrifugal impact grinding. Tsement i ego primenenie. 2013. No. 4, pp. 106–109. (In Russian).
7. Khripacheva I.S., Garkavi M.S. Mixed cements of centrifugal impact grinding based on blast-furnace dump slag. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 40–41. (In Russian).
8. Lapshin O.V., Smolyakov V.K. Dynamics of structural transformations during grinding of a binary mixture. Fizicheskaya mezomekhanika. 2011. Vol. 14. No. 2, pp. 77–84. (In Russian).
9. Lapshin O.V., Smolyakov V.K. Formation of a layered structure of mechanocomposites during grinding of a binary mixture. Khimicheskaya fizika i mezoskopiya. 2013. Vol. 15. No. 2, pp. 278–284. (In Russian).
10. Lapshin O.V., Smolyakov V.K. Dynamics of structural transformations during grinding of a binary mixture // Physical Mesomechanics. 2011. Vol. 14, No. 2, pp. 77–84.
11. Boldyrev V.V. and others. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii [Fundamental bases of mechanical activation, mechanosynthesis and mechanochemical technologies]. Novosibirsk: Publishing house of the SB RAS. 2009. 343 p.
12. Lapshin O.V., Smolyakov V.K., Boldyreva E.V., Boldyrev V.V. Dynamics of homogenization of binary powder mixtures. Zhurnal fizicheskoi khimii. 2018. Vol. 92. No. 1, pp. 76–80. (In Russian).
13. Greg S., Sing K. Adsorbtsiya, udel’naya poverkhnost’, poristost’ [Adsorption, specific surface, porosity]. Moscow: Mir. 1984. 306 p.
14. Entin Z.B., Yudovich B.E. Multicomponent cements. II International meeting on chemistry and technology of cements. Moscow. 2000. Vol. 1, pp. 94–109. (In Russian).
15. Kononova O.V., Dobshits L.M. Properties of cement stone with different dispersion of cement and filler. Tsement i ego primenenie. 2013. No. 3–4, pp. 124–128. (In Russian).
16. Maciej Zajac, Jan Skocek, Barbara Lothenbach, Mohsen Ben Haha. Late hydration kinetics: Indications from thermodynamic analysis of pore solution data // Cement and Concrete Research. 2020. Vol. 129. 105975. https://doi.org/10.1016/j.cemconres.2020.105975

For citation: Garkavi M.S., Dergunov S.A., Serikov S.V. Formation of the structure of composite cement in the grinding process. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 65–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68


Print   Email