Log in

Gypsum Building Materials Market in Russia: How Long Will the Growth Last?

Number of journal: 10-2021
Autors:

Botka E.N.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-25-27
УДК: 666.914.4

 

AbstractAbout AuthorsReferences
A study of the markets of gypsum building materials of the three largest groups: gypsum dry mixes (GDM), gypsum board (GB), groove-ridge slabs (GRS) was carried out, the volumes and dynamics of their production and consumption in 2019–2021 are analyzed, the forecast for 2021–2023 is formulated. In 2019, there was an increase in all three markets under consideration. The impact of the pandemic on the gypsum materials market turned out to be moderate: the GDM market showed a slight increase, GB and GRS markets – moderate decline. According to the results of 9 months of 2021, the consumption of GB has significantly increased, to an even greater extent – DGM, the market of plates showed zero dynamics. The results of the full year will also be positive. In the near future, the growth of the markets under consideration is expected to continue, but at a slower pace.
E.N. BOTKA, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

“Stroitelnaya Informatzia” Co. (73, office 320, Ligovskiy Prospect, Saint-Petersburg, 191040, Russian Federation)

For citation: Botka E.N. Gypsum building materials market in Russia: how long will the growth last?. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 25–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-25-27

Research in the Properties of Slag-Alkaline Binders and Concretes Based on Them

Number of journal: 10-2021
Autors:

Petrovskaya A.A.,
Kaptyushina A.G.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-21-24
УДК: 666.943

 

AbstractAbout AuthorsReferences
The disposal of waste from blast furnace steelmaking has been and remains an urgent problem. There is a possibility of using this type of waste when producing concretes for industrial and civil construction in order to save the initial components. The results of studies of a slag-alkaline binder and concrete based on it using ground blast furnace slag and experimental data on the development of a binder on different types of slag are presented. Experimental experiences were carried out at different densities of the alkaline solution. As an alkaline component, a soda ash fusion cake is used. Recommendations for the preparation of an alkaline solution are presented. The properties of the slag-alkaline binder, such as the setting time and strength, are considered. The properties of concrete based on this type of binder, such as mobility, density of the concrete mixture and strength, water resistance of concrete, are studied. In the course of the conducted studies, the optimal compositions of the binder and slag-alkaline concrete, strength class B20 and water resistance class W6 were selected. The results of the research can be used in the production of building structures for industrial and civil construction, as well as for further research and modification of the composition.
A.A. PETROVSKAYA, Head of Laboratory (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.G. KAPTYUSHINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Cherepovets State University (5, Lunacharskogo Prospect, Cherepovets, 162600, Russian Federation)

1. Gryzlov V.S. Izbrannye Trudy [Selected works]. Cherepovets: ChGU. 2013. 350 p.
2. Glukhovsky V.D., Krivenko P.V., Romanina G.V., Gerasimchuk V.L. Proizvodstvo betonov i konstruktsii na osnove shlakoshchelochnykh vyazhushchikh [Production of concrete and structures based on slag-alkaline binders]. Kiev: Budivelnik. 1988. 144 p.
3. Krivenko P.V., Pushkareva K.K. Dolgovechnost’ shlakoshchelochnogo betona. [Durability of slag alkali concrete]. Kiev: Budivelnik. 1993. 224 р.
4. Glukhovskiy V.D., Pakhomov V.A. Shlakoshchelochnye tsementy i betony [Slag-alkali cements and concretes]. Kiev: Budivelnik. 1978. 184 р.
5. Shchelochnye i shchelochnozemel’nye gidravlicheskie vyazhushchie i betony [Alkaline and alkaline earth hydraulic binders and concrete. Edited by V.D. Glu khovsky]. Kiev: Vishcha shkola. 1979. 232 р.
6. Runova R.F. Research of autoclave alkaline-alkaline earth materials. Cand. Diss. (Engineering). Kiev. 1972. 164 p. (In Russian).
7. Raksha V.A. Investigation of the influence of the chemical composition of slags on the properties of slag-alkaline binders and concretes. Cand. Diss. (Engineering). Kiev. 1975. 174 p. (In Russian).
8. Rumanina G.V. Investigation of the influence of clay minerals on the properties of SHSHB. Cand. Diss. (Engineering). Kiev. 1984. 272 p. (In Russian).
9. Gelevera A.G. Fast-hardening and especially fast-hardening high-strength slag-alkaline binders and concretes based on them. Cand. Diss. (Engineering). Kiev. 1986. 207 p. (In Russian).
10. Salamanova M.Sh., Murtazaev S.-A.Yu. Cements of alkaline activation the possibility of reducing the energy intensity of building composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
11. Khudovekova V.A., Garkavi M.S. Formation of nanosystems in the process of hydration of a slag-alkaline binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 10–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-722-2-10-14
12. Kuznetsova N.V., Dubrovin A.I., Ezerskiy V.A. Investigation of the effect of water-cement ratio on the strength of fine-grained concrete with aggregate from granulated blast-furnace slag. Stroitel’nye Materialy [Construction Materials]. 2018. No. 6, pp. 20–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-760-6-20-23
13. Fomina E.V., Kudeyarova N.P., Tyukavkina V.V. Activation of hydration of a composite binder based on technogenic raw materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 61–64. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-732-12-61-64
14. Komokhov P.G., Gryzlov V.S. Strukturnaya mekhanika i teplofizika legkogo betona [Structural mechanics and thermophysics of light concrete]. Vologda: Vologda Scientific Center, 1992. 321 p.
15. Chernyavsky V. L. Adaptatsiya betona [Adaptation of concrete]. Dnepropetrovsk: Novaya Ideologiya. 2002. 116 p.

For citation: Petrovskaya A.A., Kaptyushina A.G. Research in the properties of slag-alkaline binders and concretes based on them. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 21–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-21-24

Dynamics of Strength Gain of “Cold” Self-Compacting Fine-Grained Concretes during Winter Concreting of Joints

Number of journal: 10-2021
Autors:

Rumyantsev E.V.,
Bayburin A.Kh.,
Solov’ev V.G.,
Ahmed’yanov R.M.,
Bessonov S.V.

DOI: https://doi.org/10.31659/0585-430X-2021-796-10-12-20
УДК: 623.125

 

AbstractAbout AuthorsReferences
This work presented is a continuation of research of the structural and technological parameters of the quality of self-compacting fine-grained fresh concrete (SCFGFC) based on dry construction mixes (DCM) and concretes on their base (SCFGHC) during winter concreting of joints of precast reinforced concretes structures. Modification of the properties of cement concretes with the help of complex polyfunctional additives makes it possible to obtain the desired properties, including continuous hardening of concretes under negative temperatures. The use of such “cold” concretes for concreting joints makes it possible to ensure the continuity of the installation of large-panel buildings. The main parameters of the winter concreting technology with the use of “cold” concretes are high early strength and the design rate of growth of the in-situ concrete at negative temperatures. The carried out complex experimental study of the dynamics of strength gain of “cold” SCFGHC makes it possible to make up for the insufficient volume of research in this topics. For the study, SCFGHC based on dry mixes from three manufactures on cement binders, hardening at low temperatures are used. The assessment of the influence of early freezing on the compressive strength of concrete at an early age was carried out, the dependences of the strength set of “cold” concretes of 28 days of aging at the initial, average and minimal negative temperatures of laying the fresh concrete were obtained. The obtained results of the study significantly expand the field of application of “cold” concretes, can be used for the development of technological documentation for the use of “cold” SCFGHC based on cement dry mixes, as well as for the preparation of codes and technical documents on the technology of concreting joints of precast reinforced concrete structures at negative temperatures.
E.V. RUMYANTSEV1, Chief Designer of Product Department (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Kh. BAYBURIN2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. SOLOV’EV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.М. AHMED’YANOV4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. BESSONOV4, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 “PIK-Proekt” LLC (19, bldg. 1, Barrikadnaya Street, Moscow, 123242, Russian Federation)
2 National Research South Ural State University (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
4 «Ural Research Institute of Construction Materials» LLC (5/2, Stalevarov Street, Chelyabinsk, 454047, Russian Federation)

1. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
2. Golovnev S.G. Tekhnologiya zimnego betonirovaniya. Optimizatsiya parametrov i vybor metodov [The winter concreting technology. Optimization of parameters and choice of methods]. Chelyabinsk: Publishing House of SUSU. 1999. 156 p.
3. Bazhenov Yu.M., Alimov V.V., Voronin V.V. Nanomodificirovannye vysokokachestvennye betony [Nanomodified high-performance concrete]. Moscow: ASV. 2017. 198 p.
4. Batrakov V.G. Concrete modifiers: new possibilities and prospects. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 4–7. (In Russian).
5. Bikbau M.Ya., Nefedov A.S. Nanomodified cement and concrete based on it. ALITinform. 2020. No. 2 (59), pp. 2–13. (In Russian).
6. Kaprielov S.S., Travush V.I., Karpenko N.I., Scheinfeld A.V., Kardumyan G.S., Kiseleva Yu.A., Prigozhenko O.V. Modified concrete of a new generation in the structures of MMDC “Moscow-City “. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 13–17. (In Russian).
7. Krasnovsky B.M., Dolgopolov N.N., Zagrekov V.V., Sukhanov V.A., Lorettova R.N. Hardening of concrete at GNV at negative temperatures. Beton i zhelezobeton [Concrete and reinforced concrete]. 1991. No. 2, pp. 17–18. (In Russian).
8. Nesvetaev G.V. Effectiveness of superplasticizers application in concrete. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 23–25. (In Russian).
9. Sorokin Yu.V., Kalashnikov O.O., Falikman V.R. Construction and technical properties of especially high-strength fast-hardening concrete: 80th anniversary of the A.A. Gvozdev NIIZhB. Proceedings of scientific articles. Moscow. 2007, pp. 178–194. (In Russian).
10. Usherov-Marshak A.V. Additives in concrete: progress and problems. Stroitel’nye Materialy. [Construction materials]. 2006. No. 10 (622), pp. 8–12. (In Russian).
11. Falikman V.R. High performance concrete – “Smart concrete”. Materials of the conference ICCX. St. Petersburg. December 3–6, 2019, pp. 52–63. (In Russian).
12. Yuan Yu., Lin V., Pe T. Vysokokachestvenniy cementniy beton s uluchshennymi svoystvami [High-performance cement concrete with improved properties] Moscow: ASV. 2014. 448 p.
13. Han B., Ding D, Wang J., Ou J. Nano-engineered cementitious composites. principles and practices. Singapore: Springer Nature Singapore Pte Ltd. 2019. 731 p. DOI: 10.1007/978-981-13-7078-6
14. Mironov S.A., Lagoyda A.V. Betony, tverdeyushchie na moroze [Concrete, hardening in the cold]. Moscow. Stroyizdat. 1974. 264 p.
15. Tarakanov O.V., Belyakova E.A., Gorshkov V.I. Anti-frost additives based on superplasticizers, mineral and accelerating modifiers. Regional’naya arkhitektura i stroitel’stvo. 2014. No. 1, pp. 53–58. (In Russian).
16. Isotov V.S., Sokolova Yu.A. Khimicheskie dobavki dlya modifikatsii betona: monografiya [Chemical additives for modifying concrete: monograph]. Kazan: Paleotype Publishing House. 2006. 244 p.
17. Andreeva A.V., Burenina O.N., Davydova N.N., Davaasenge S.S., Savvinova M.E. Structural changes of fine-grained concrete hardening at negative ambient temperature. Privolzhskii nauchnyi vestnik. 2015. No. 12–1 (52), pp. 24–26. (In Russian).
18. Kononova O.V., Minakov Yu.A., Gryazina M.V., Ivanov N.A., Cherepov V.D. Study of the kinetics of hardening of concrete and solutions with anti-frost additives after exposure to negative temperatures. Fundamental’nye issledovaniya. 2014. No. 8, pp. 1309–1312. (In Russian).
19. Shatov A.N. Features of selection of concrete modifier for winter concreting conditions. Beton i zhelezobeton [Concrete and reinforced concrete]. 2016. No. 1, pp. 25–28. (In Russian).
20. Kothari A., Habermehl-Cwirzen K., Hedlunt H., Cwirzen A. A Review of the mechanical properties and durability of ecological concretes in a cold climate in comparison to standard ordinary Portland cement-based concrete. Materials. 2020. No. 13 (16). Vol. 3467, pp. 1–32. DOI: https://doi.org/10.3390/ma13163467
21. Dar A.R. Influence of cold temperature on performance of concrete in J&K. Comparison studies: IOP Conference Series: Materials Science and Engineering. 2019. Vol. 561. 012020. DOI: https://doi.org/10.1088/1757-899X/561/1/012020
22. Okamura M., Ouchi H. Self-compacting high performance concrete. Progress in Structural Engineering and Materials. 1998. Vol. 1. Iss. 4, pp. 378–383. DOI: https://doi.org/10.1002/pse.2260010406
23. Self-Compacting Concrete: Proceedings of the First International RILEM Symposium. Edited by A. Skarendahl and O. Petersson. RILEM Publication S.A.R.L., Stockholm, Sweden. 1999. 578 p.
24. Batudaeva A.V., Kardumyan G.S., Kaprielov S.S. High-strength modified concrete from self-compacting mixtures. Beton i zhelezobeton [Concrete and reinforced concrete]. 2005. No. 4, pp. 14–18. (In Russian).
25. Nesvetaev G.V. Technology of self-compacting concrete. Stroitel’nye Materialy [Construction materials]. 2008. No. 3, pp. 24–28. (In Russian).
26. Mozgalev K.M., Golovnev S.G. The self-compacting concrete: possibilities of application and properties. Akademicheskij vestnik UralNIIProekt RAASN. 2011. No. 4, pp. 70–74. (In Russian).
27. Rumyantsev E.V. Features of the technology for the use of fine-grained concrete based on dry construction mixtures in-situ joints of large-panel buildings: Materials of the ICCX Russia conference. St. Petersburg. December 1–4, 2020, pp. 55–57. (In Russian).
28. Nehdy M., Elsayed M., Provost-Smith D. J. Investigation of grouted precast concrete wall connections at subfreezing conditions: Material of Conference “Resilient infrastructure”. London, GB. 2016, pp. 1–10. https://www.researchgate.net/publication/304115263_INVESTIGATION_OF_GROUTED_PRECAST_CONCRETE_WALL_CONNECTIONS_AT_SUBFREEZING_CONDITIONS#fullTextFileContent (Date of access 03.02.2021).
29. Mozgalev K.M., Golovnev S.G., Mozgaleva D.A. Efficiency of use of self-compacting concretes in the construction of monolithic buildings in winter conditions. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya “Stroitel’stvo i arhitektura”. 2014. Vol. 14. No. 1, pp. 33–37. (In Russian).
30. Minakov Yu.A., Kononova O.V., Anisimov S.N., Gryazina M.V. Management of concrete hardening kinetics at negative temperatures. Fundamental’nye issledovaniya. 2013. No. 4, pp. 307–311. (In Russian).
31. Mozgalev K.M., Golovnev S.G. Features of early freezing of self-compacting concrete. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta, Seriya “Stroitel’stvo i arhitektura”. 2012. Iss. 15. No. 38 (297), 2012, pp. 43–45. (In Russian).
32. Shelekhov I.Yu., Dorofeeva N.L., Kazakova A.Yu. Study of thermodynamic processes in a concrete mixture hardening in winter conditions. Izvestiya vuzov. Stroitel’stvo. Nedvizhimost’. 2021. Vol. 11. No. 1, pp. 126–133. DOI: http://dx.doi.org/10.21285/2227-2917-2021-1-126-133. (In Russian).
33. Rumyantsev E.V., Vidyakin A.A., Bayburin A.Kh. Temperature monitoring of monolithic joints of large-panel buildings during winter concreting. Beton i zhelezobeton [Concrete and reinforced concrete]. 2020. No. 1 (601), pp. 42–48. (In Russian).

For citation: Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Dynamics of strength gain of “cold” self-compacting fine-grained concretes during winter concreting of joints. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 12–20. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-12-20

Fire Hazard of Composite Materials

Number of journal: 9-2021
Autors:

Gravit M.V.,
Lazarev Y.G.,
Vasyutkin E.S.,
Malcheva A.V.,
Semenov M.A.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-54-63
УДК: 614.841.34

 

AbstractAbout AuthorsReferences
The most promising field of application of composite materials is construction, namely, their use as load-bearing and enclosing structures, thereby replacing traditional steel and reinforced concrete, as well as wood, the main disadvantage of which is an increased fire hazard. Modern production of polymer composite materials (PCM) makes it possible to produce elements of various sizes, sections and structures. In the presented work, the relevance of the use of composite materials with a polymer matrix (composites) in construction is justified. The advantages and disadvantages of polymeric materials in comparison with traditional materials are considered, as well as publications reflecting the features of creating structures from polymeric composite materials from the point of view of ensuring the required level of their fire safety are analyzed. On the example of a composite bendable fire protection means containing a polymer matrix on fiberglass, experimental data on fire-technical characteristics were obtained. It is established that most of composites have the following indicators of fire-technical characteristics according to the Russian classification: weak and moderately flammable, hardly and moderately flammable: smoke generation coefficient, toxicity-low and moderate hazardous.
M.V. GRAVIT1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Y.G. LAZAREV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.S. VASYUTKIN2, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. MALCHEVA1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. SEMENOV1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Peter the Great St. Petersburg Polytechnic University (29, Polytechnicheskaya Street, St. Petersburg, 195251, Russian Federation)
2 Composite Technologies and Equipment LLC (513, room, 2A, Keramicheskaya Street, Balashikha, 143983, Moscow Region, Russian Federation)

1. Flerov A.V. Materialovedeniye i tekhnologiya khudozhestvennoy obrabotki metallov [Material Science and technology of artistic metal processing]. Moscow: Vysshaya shkola. 1981. 288 p.
2. Ivliev A.A., Kalgin A.A., Skok O.M. Otdelochnyye stroitel’nyye materialy [Finishing building materials]. Moscow: Academia. 2008. 487 p.
3. Omarov Zh.M., Zholdybaev Sh.S., Zhandalinova K.A. The use of composite materials in the construction industry. Nauka i tekhnika Kazakhstana. 2019. No. 4, pp. 7–16. (In Russian).
4. Sovremennyye stroitel’nyye materialy i tovary: Spravochnik. [Modern building materials and goods. Reference book]. Moscow: Eksmo. 2006. 576 p.
5. Lysenko E.I., Kotlyarova L.V., Tkachenko G.A., Trishchenko I.V., Yundin A.N. Sovremennyye otdelochnyye materialy / pod obshch. red. prof. A.N. Yudina [Modern finishing materials / under total. ed. prof. A.N. Yudin]. Rostov-on-Don: Phoenix, 2003. 448 p.
6. Stroitel’noye materialovedeniye / Pod obshch. red. V.A. Nevskogo [Building materials science / Under total. ed. V.A. Nevsky]. Rostov-on-Don: Phoenix. 2007. 571 p.
7. Bayer V.E. Materialovedeniye dlya arkhitektorov: Uchebnoye posobiye [Material science for architects: A textbook]. Moscow: Astrel, AST, Tranzitkniga. 2005. 254 p.
8. Leikin A.E., Rodin B.I. Materials Science. Moscow: Vysshaya shkola. 1971. 416 p.
9. Ayrapetov D.P. Arkhitekturnoye materialovedeniye [Architectural materials science]. Moscow: Stroyizdat. 1986. 310 p.
10. Gravit M.V., Serdyuk D.O., Bardin A.V., Prussakov V.A., Buka-Vaivade K. Methods for determining the fire resistance of wooden frame structures. Magazine of Civil Engineering. 2019. No. 1 (85), pp. 92–106. DOI: 10.18720/MCE.85.8.
11. Garashchenko A.N., Berlin A.A., Kulkov A.A. Methods and means of ensuring the required fire safety indicators of structures made of polymer composites (overview). Pozharovzryvobezopasnost’. 2019. Vol. 28. No. 2, pp. 9–30. (In Russian). https://doi.org/10.18322/PVB.2019.28.02.9-30
12. Salatov E.K., Chursina A.M. Prospects for the use of carbon fiber composite materials in industrial and civil construction. Vestnik MITU-MASI. 2018. No. 4, pp. 29–35. (In Russian).
13. Strakhov V.L., Garashchenko A.N., Rudzinsky V.P. Program complexes for calculations of heat and mass transfer in building structures with fire protection taking into account thermal decomposition, swelling – shrinkage and evaporation–condensation. Pozharovzryvobezopasnost’. 2001. Vol. 10. No. 4, pp. 9–11. (In Russian).
14. Garashchenko N.A., Garashchenko A.N., Rudzinsky V.P. Thermal calculations of fire resistance of wood-glued structures with fire protection. Montazhnyye i spetsial’nyye raboty v stroitel’stve. 2006. No. 10, pp. 14–18. (In Russian).
15. Garashchenko A.N., Strakhov V.L., Rudzinsky V.P. Methodology for calculating the thickness of fire-resistant coatings based on mineral binders for building structures made of metal (on the example of the Soterm-1M coating). Pozharovzryvobezopasnost’. 2005. Vol. 14. No. 4, pp. 17–22. (In Russian).
16. Garashchenko A.N., Strakhov V.L., Rudzinsky V.P. Experimental and theoretical studies of the features of heat and mass transfer of intumescent fire protection on the example of the coating “Proterm Steel”. Proceedings of the third Russian national conference on heat transfer. 2002. Vol. 6, pp. 254–257.
17. Nazarenko V.A., Garashchenko A.N. Results of research and prospects for the use of the SGK-2 vspuchivayushchego coating for fire protection of structures and equipment for various purposes. Pozharovzryvobezopasnost’. 2005. Vol. 14. No. 6, pp. 17–22.
18. Dyachkova A.A., Kuznetsov V.D. Calculation of reinforcement of reinforced concrete slabs with carbon composite materials. Magazine of Civil Engineering. 2009. No. 3, pp. 25–28.
19. Cruz J.S., Barros J. Modeling of bond between near-surface mounted CFRP laminate strips and concrete. Computer and Structures. 2006. No. 82, pp. 1513–1521. https://doi.org/10.1016/j.compstruc.2004.03.047
20. FIB. Bulletin 14. Externally bonded FRP reinforcement for RC structures. Sprint-Digital-Druck Stuttgart, 2001.
21. Garashchenko A.N., Sukhanov A.V., Garashchenko N.A., Smirnov N.V., Konstantinova N.I., Merkulov A.A. Reducing the fire hazard of polymer composite materials when using intumescent fire retardant coatings. Pozharnaya bezopasnost’. 2012. No. 4, pp. 61–67.
22. Garashchenko A.N., Strakhov V.L., Razin A.F., Kanina E.P., Rudzinsky V.P. Development of heat and fire protection of the propeller shaft bearing structure made of composite materials. Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1992. Iss. 1 (109), pp. 12–15. (In Russian).
23. Strakhov V.L., Garashchenko A.N., Rudzinsky V.P. Calculation of non-stationary heating of multilayer fireproof structures. Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1994. Iss. 1 (109)–2 (110), pp. 30–36. (In Russian).
24. Zverev V.G., Nazarenko V.A., Tsimbalyuk A.F. Heart and fire protection of multilayer structures based on the use of foaming coatings. Issledovaniya teploperedachi. 2005. Vol. 36. Iss. 7, pp. 543–556. (In Russian).
25. Teploukhov A.V. Investigation of the behavior of multilayer structures under the influence of external heat flows. Trudy MIT. 2008. Vol. 9. Part 1, pp. 231–238. (In Russian).
26. Zverev V.G., Nazarenko V.A., Tsimbalyuk A.F. Thermal protection of multilayer containers from the effects of fires. Teplofizika vysokikh temperatur. 2008. Vol. 46. No. 2, pp. 283–289. DOI: 10.1134/s10740-008-2015-9 (In Russian).
27. Garashchenko A.N., Vasin V.P., Natrusov V.I. Increasing the fire safety of ammunition containers made of polymer composite materials using fire protection Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 2012. Iss. 1 (164)–2 (165), pp. 44–50. (In Russian).
28. Plotnikov V.I., Kulkov A.A., Slitkov M.N., Plotnikov R.V., Garashchenko A.N. Development of structures and investigation of the thermal state of closures made of polymer composite materials under fire conditions. Fundamental foundations of ballistic design: collection of works of the 5th All-Russian scientific and technical conference. St. Petersburg. 2016, pp. 193–196. (In Russian).
29. Korolchenko A. Ya., Garashchenko A. N., Garashchenko P. A., Rudzinsky V. 77. Calculations of fire protection thicknesses that provide the required fire hazard indicators of wood-glued structures. Pozharovzryvobezopasnost’. 2008. Vol. 17. No. 3, pp. 49–56. (In Russian).
30. Almenbaev M.M., Artsybasheva O.V., Aseeva R.M., Makishev Zh.K., Moskalev V.A., Serkov B.B., Sivenkov A.B. Investigation of the rate of charring of wooden structures with a long service life. Izvestiya YuFU. Tekhnicheskiye nauki. 2014. No. 9 (158), pp. 246–254. (In Russian).
31. Almenbaev M.M. Efficiency of various methods of increasing the fire protection of wood with paint and varnish materials. Tekhnologii tekhnosfernoy bezopasnosti. 2015. No. 2 (60), pp. 56–60. (In Russian).
32. Anokhin E.A., Polishchuk E.Yu., Sivenkov A.B. The use of flame-retardant impregnating compositions to reduce the fire hazard of wooden structures with different service life. Pozharovzryvobezopasnost’. 2017. Vol. 26. No. 2, pp. 22–35. (In Russian).
33. Anokhin E. A., Polishchuk E. Yu., Sivenkov A. B. Application of fire-resistant impregnating compositions for increasing the fire hazard class of wooden structures for a long service life. Roitman readings: materials of the 5th International Scientific and Practical conference. Moscow. 2017, pp. 10–14. (In Russian).
34. Patent RU 2711076 C1 Fire-resistant intumescent roll coating. Gravit M.V., Prusakov V.A. Published 15.01.2020. (In Russian).
35. Gravit M.V., Prussakov V.A., Korotin I.G., Timofeev N.V., Simonenko Ya.B. And tumescent structural flexible fire protection for building structures and cable lines. Pozharovzryvobezopasnost’. 2020. Vol. 29 (3), pp. 18–32. (In Russian).
36. Semenov V.V., Butorov I.A. Problems of using polymer composite materials in industrial and civil construction. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2016. No. 4, pp. 129–137. (In Russian).
37. Gravit M.V., Nedryshkin O.V., Vaititsky A.A., Shpakova A.M., Nigmatullina D.G. Fire-technical characteristics of building materials in European and Russian regulatory documents. Problems of harmonization of research methods and classification. Pozharovzryvobezopasnost’. 2016. Vol. 25 (10), pp. 16–29. (In Russian).

For citation: Gravit M.V., Lazarev Y.G., Vasyutkin E.S., Malcheva A.V., Semenov M.A. Fire hazard of composite materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 54–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-54-63

Modern Approaches to Obtaining Clinker-Free Binders of Alkaline Activation

Number of journal: 9-2021
Autors:

Salamanova M.Sh.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-48-53
УДК: 691.32

 

AbstractAbout AuthorsReferences
Issues related to the search for new less energy- and material-intensive binders have long been on the agenda of many world environmental forums. The technology of production of Portland cement is inextricably linked with the emissions into the atmosphere of a large amount of CO2, soot, heavy metal ions, various caustic gases and other dangerous substances. By their weight, these emissions are comparable to the weight of cement produced, which makes this industry one of the largest sources of greenhouse gas emissions. This leads to severe pollution of the surrounding atmosphere and habitat, and the price of cement is unreasonably rising. Therefore, alkaline cements are able to contribute to the development of the construction industry in the direction of obtaining clinker-free binders of alkaline activation. Within the framework of this work, the results confirming the effectiveness of the development of a clinker-free technology for the production of alkali-mixing binders and composites based on them using alumo-silicate additives, both of natural and man-made origin, are obtained. Filling the binding system of alkaline mixing based on heat-treated gaize with mineral fine powders leads to a decrease in the concentration of the activity of the ligament, slowing down the beginning and end of setting, and the need for an alkaline solution decreases.
M.Sh. SALAMANOVA1,2, Candidate of Sciences (Engineering), Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Grozny State Oil Technical University named after Academician M.D. Millionshikov (100, Avenue Isaev, Grozny, 364021, Russian Federation)
2 Complex Research Institute named after Kh.I. Ibragimov, Russian Academy of Sciences (21, Staropromyslovskoe Highway, Grozny, 364051, Russian Federation)

1. Щелочные и щелочно-земельные гидравлические вяжущие и бетоны / Под ред. В.Д. Глуховского. Киев: Вища школа, 1979. 232 с.
1. Shchelochnye i shchelochnozemel’nye gidravlicheskie vyazhushchie i betony. Pod redaktsiey V.D. Glukhovskogo [Alkaline and alkaline earth hydraulic binders and concrete]. Kiev: Vishcha shkola. 1979. 232 р.
2. Глуховский В.Д., Пахомов В.А. Шлакощелочные цементы и бетоны. Киев: Будивельник. 1978. 184 с.
2. Glukhovskiy V.D., Pakhomov V.A. Shlakoshchelochnye tsementy i betony [Slag-alkali cements and concretes]. Kiev: Budivel’nik. 1978. 184 р.
3. Кривенко П.В., Пушкарева К.К. Долговечность шлакощелочного бетона. Киев: Будивельник, 1993. 224 с.
3. Krivenko P.V., Pushkareva K.K. Dolgovechnost’ shlakoshchelochnogo betona. [Durability of slagalkali concrete]. Kiev: Budivel’nik. 1993. 224 р.
4. Davidovits J. Geopolymer Chemistry and applications. Saint-Quentin: Institute Geopolymer. 2008. 592 p.
5. Duxson P., Fernández-Jiménez A., Provis J., Lukey G., Palomo A., Van Deventer J. Geopolymer technology: the current state of the art. Journal of Materials Science. 2007. Vol. 42, pp. 2917–2933. DOI: 10.1007/s10853-006-0637
6. Bataev D.K-S., Murtazaev S-A.Yu., Salamanova M.Sh.Fine-grained concretes on non-clinker binders with highly disperse mineral components. Materials Science Forum. 2018. Vol. 931, pp. 552–557. DOI: https://doi.org/10.4028/www.scientific.net/MSF.931.552
7. Саламанова М.Ш., Муртазаев С.-А.Ю. Цементы щелочной активации: возможность снижения энергоемкости получения строительных композитов // Строительные материалы. 2019. № 7. С. 32–40. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
7. Salamanova M.Sh., Murtazaev S.-A.Yu. Cements of alkaline activation the possibility of reducing the energy intensity of building composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
8. Муртазаев С.-А.Ю., Саламанова М.Ш. Перспективы использования термоактивированного сырья алюмосиликатной природы // Приволжский научный журнал. 2018. Т. 46. № 2. С. 65–70.
8. Murtazayev S.-A.Yu., Salamanova M.Sh. Prospects of the use of thermoactivated raw material of alumosilicate nature. Privolzhskii nauchnyi zhurnal. 2018. Vol. 46. No. 2, pp. 65–70. (In Russian).
9. Никифоров Е.А., Логанина В.И., Симонов Е.Е. Влияние щелочной активации на структуру и свойства диатомита // Вестник БГТУ им. В.Г. Шухова. 2011. № 2. С. 30–32.
9. Nikiforov E.A., Loganina V.I., Simonov E.E. The effect of alkaline activation on the structure and properties of diatomite. Vestnik BGTU im. V.G. Shukhova. 2011. No. 2, pp. 65–70. (In Russian).
10. Nesvetaev G., Koryanova Y., Zhilnikova T. Оn effect of superplasticizers and mineral additives on shrinkage of hardened cement paste and concrete. MATEC Web of Conferences. 27th Russian-Polish-Slovak Seminar, theoretical foundation of civil engineering (27RSP), TFOCE. Rostov-on-Don. 17–21 September 2018. 04018.
11. Stelmakh S.A., Nazhuev M.P., Shcherban E.M., Yanovskaya A.V., Cherpakov A.V. Selection of the composition for centrifuged concrete, types of centrifuges and compaction modes of concrete mixtures. Physics and Mechanics of New Materials and Their Applications (PHENMA 2018). Abstracts&Schedule. Busan, Republic of Korea. 9–11 August 2018, p. 337.
12. Shuisky A., Stelmakh S., Shcherban E., Torlina E. Recipe-technological aspects of improving the properties of non-autoclaved aerated concrete. MATEC Web Conference. Vol. 129. International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2017). 2017. 05011. https://doi.org/10.1051/matecconf/201712905011
13. Солдатов А.А., Сариев И.В., Жаров М.А., Абдураимова М.А. Строительные материалы на основе жидкого стекла. Актуальные проблемы строительства, транспорта, машиностроения и техносферной безопасности: Материалы IV Ежегодной научно-практической конференции Северо-Кавказского федерального университета. Ставрополь, 2016. С. 192–195.
13. Soldatov A.A., Sariev I.V., Zharov M.A., Abduraimova M.A. Building materials based on liquid glass. Actual problems of construction, transport, mechanical engineering and technosphere safety: Materials of the IV annual scientific and practical conference of the North Caucasus Federal University. Stavropol. 2016, pp. 192–195. (In Russian).
14. Martschuk V., Stark T. Untersuchungen zurn frost-tausalz-widerstaud von mochleistungsbetonen. Thesis: Wiss. Z. Bauhaus-Univ. Weimar. 1998. Vol. 44. No. 1–2, pp. 92–103.
15. Larbi J.A., Bijen J.M. Effect of water-cement ratio, quantity and fineness of sand on the evolution of lime in set Portland cement systems. Cement and Concreate Research. 1990. Vol. 20. No. 5, pp. 783–794.
16. Саламанова М.Ш., Алиев С.А., Муртазаева Р.С.-А.Структура и свойства вяжущих щелочной активации с использованием цементной пыли // Вестник Дагестанского государственного технического университета. Технические науки. 2019. Т. 46. № 2. С. 148–158.
16. Salamanova M.Sh., Aliyev S.A., Murtazayev R. S-A. The structure and properties of binders alkaline activation using cement dust. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2019. Vol. 46. No. 2, pp. 148–158. (In Russian).
17. Kozhukhova N.I., Chizhov R.V., Zhernovsky I.V., Strokova V.V. Structure formation of geopolymer perlite binder vs. Type of alkali activating agent. ARPN Journal of Engineering and Applied Sciences. 2016. Vol. 11. Iss. 20, pp. 12275–12281.
18. Удодов С.А., Гиш М.Р. Влияние дозировки редиспергируемого порошка на локализацию полимера и деформационные свойства раствора // Научные труды Кубанского государственного технологического университета. 2015. № 9. С. 164–174.
18. Udodov S.A., Gish M.R. The effect of dosage of redispersible powder on the localization of the polymer and the deformation properties of the solution. Nauchnye trudy Kubanskogo gosudarstvennogo tekhnologicheskogo universiteta. 2015. No. 9, рp. 164–174. (In Russian).
19. Murtazaev S.-A.Yu., Salamanova M.Sh., Ismailova Z.Kh.The Use of highly active additives for the рroduction of clinkerless binders. Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” (ISEES 2018). https://doi.org/10.2991/isees-18.2018.68
20. Salamanova M.Sh., Murtazayev S. Yu. Clinker-free binders based on finely dispersed mineral components. 20 Internationale Baustofftagung, Tagungsbericht. 12–14 September 2018, Bauhaus-Universität Weimar. Band 1 und 2. Weimar: 2018. В. 2, pp. 707–714.
21. Zhang Z., Provis J.L., Zou J., Reid A., Wang H. Toward an indexing approach to evaluate fly ashes for geopolymer manufacture. Cement and Concrete Research. 2016. Vol. 85, pp. 163–173. https://doi.org/10.1016/j.cemconres.2016.04.007
22. Alex T.C., Nath S.K., Kumar S., Kalinkin A.M., Gurevich B.I., Kalinkina E.V., Tyukavkina V.V. Utilization of zinc slag through geopolymerization: influence of milling atmosphere. International Journal of Mineral Processing. 2013. Vol. 216, pp. 102 –107.
23. Lopez F.J., Sugita S., Tagaya M., Kobayashi T. Metakaolin-based geopolymers for targeted adsorbents to heavy metal ion separation. Journal of Materials Science and Chemical Engineering. 2014. No. 2, pp. 16–27.
24. Chen L., Wang Z., Wang Y. and Feng J. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials (Basel). 2016. Vol. 9, pp. 767. DOI: 10.3390/ma9090767
25. Murtazayev S.-A. Yu., Salamanova M.Sh., Alashanov A., Ismailova Z. Features of production of fine concretes based on clinkerless binders of alkaline mixing. 14th International Congress for Applied Mineralogy (ICAM 2019) Belgorod State Technological University named after V.G. Shukhov, 23–27 September 2019. Belgorod: 2019. рр. 385–388.
26. Murtazayev S.-A. Yu., Salamanova M.Sh., Mintsaev M.Sh., Bisultanov R.G Fine-grained concretes with clinker-free binders on an alkali gauging. Proceedings of the International Symposium «Engineering and Earth Sciences: Applied and Fundamental Research» dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019). Atlantis Highlights in Material Sciences and Technology (AHMST). 2019. Vol. 1, pp. 325–328. https://doi.org/10.2991/isees-19.2019.98

For citation: Salamanova M.Sh. Modern approaches to obtaining clinker-free binders of alkaline activation. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 48–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-48-53

Critical Stress Intensity Coefficient at Transverse Shear for Nanofibrobeton

Number of journal: 9-2021
Autors:

Sadovskaya E.A.,
Polonina E.N.,
Leonovich S.N.,
Zhdanok S.A.,
Potapov V.V.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-41-46
УДК: 666.97

 

AbstractAbout AuthorsReferences
Concrete refers to materials with brittle fracture. Dispersed-reinforced nanobetons, in which obstacles in the form of fibers hinder the propagation of cracks, acquire the properties of viscous destruction. Under the influence of the load, the development of a crack is inevitable, but additional energy is spent on overcoming each obstacle in the form of a fiber, so the process of crack opening can gradually fade. The results of testing of nanofibre concrete samples for transverse shear are presented. The tests were carried out according to the author’s method on the samples-plates with incisions, which makes it possible to obtain the value of the critical stress intensity coefficient for transverse shear (КIIc). This indicator is determined for load conditions under which the crack edges shift in the crack plane normally relative to the crack propagation front. As a result of the tests, the values of КIIc were obtained for different dispersed-reinforced nanocrete, differing in the compressive strength of the nanocrete matrix and various poly-reinforcement with dispersed fiber at different structural levels. As a result of the tests, КIIc values were obtained for different dispersed-reinforced nanobetons distinguished by a nanobetone matrix in compressive strength and various poly-reinforcement with dispersed fiber. It is established that dispersed reinforcement has a significant effect on increasing the crack resistance of the material. The increase in the КIIc value relative to non-reinforced nanocrete ranged from 74 to 150% with steel wire fiber, from 29 to 129% with steel fiber from sheet, from 14 to 131% with polymer fiber, from 22 to 124% in a poly-reinforced composition.
E.A. SADOVSKAYA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.N. POLONINA1, Engineer;
S.N. LEONOVICH1,2, Doctor of Sciences (Engineering), Foreign Academic of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. ZHDANOK3, Doctor of Sciences (Physics and Mathematics);
V.V. POTAPOV4, Doctor of Sciences (Engineering), Professor

1 Belarusian National Technical University (65, Nezavisimosty Avenue, Minsk, 220013, Belarus)
2 Qingdao University of Technology (266033, China, 11 Fushun Rd, Qingdao)
3 OOO “Advanced Research and Technologies” (room 16, 1, Sovkhoznaya Street, Leskovka, Minsk District, 223058, Republic of Belarus)
4 Research Geotechnological Center, Petropavlovsk-Kamchatsky (30, P.O.Box 56, North-Eastern highway, Petropavlovsk-Kamchatsky, 683002, Russian Federation)

1. Saraykina K.A., Golubev V.A., Yakovlev G.I., Fedorova G.D., Aleksandrov G.N., Plekhanova T.A., Dulesova I.G. Modification of dasaltfiberconcrete by nanodispersed system. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 64–69. (In Russian).
2. Lkhasaranov S.A., Urkhanova L.A., Buiantuev S.L. Research of the phase composition of cement stone with carbon nanomaterials. Stroitel’nye Materialy [Construction materials]. 2018. No. 1–2, pp. 23–25. DOI: 10.31659/0585-430X-2018-756-1-2-23-25 (In Russian).
3. Yakovlev G.I., Drochytka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina А.F., Shaybadullina A.V., Pudov I.A., Elrefai A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10 (In Russian).
4. Koleda E.A., Leonovich S.N., Zhdanok S.A. Results of tensile tests of nanofibre concrete with complex fiber reinforcement. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Materialy. Konstruktsii. Tekhnologii. 2018. No. 2, pp. 16–23. (In Russian).
5. Kazakov I.A., Krasnovsky A.N. Influence of functionalized multi-walled carbon nanotubes on the manufacturability of the process of manufacturing composite fiberglass reinforcement. Zhurnal prikladnoy khimii. 2016. Vol. 89. No. 8, pp. 1062–1070. (In Russian).
6. Ivanov L.A., Muminova S.R. New technical solutions in the field of nanotechnology. Part 1. Nanotekhnologii v stroitel’stve: scientific online journal. 2016. Vol. 8. No. 2, pp. 52–81. (In Russian).
7. Grishina A.N., Korolev E.V. Effectivness of cement composite nanomodification with nanoscale barium hydrosilicates. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 72–76. DOI: https://doi.org/10.31659/0585-430X-2015-722-2-72-76
8. Zhdanok S.A. Fifth ISTC Scientific Advisory Committee Seminar “Nanotechnologies in the Area of Physics, Chemistry and Biotechnology”. St. Petersburg, Russia, 27–29 May, 2002.
9. Eberhardsteiner J., Leonovich S.N., Zaitsev Yu.V. Prochnost’ i treshchinostoykost’ konstruktsionnykh stroitel’nykh materialov pri slozhnom napryazhennom sostoyanii [Strength and crack resistance of structural building materials under complex stress state]. Minsk: BNTU. 2013.522 p.
10. Leonovich S.N. Prochnost’, treshchinostoykost’ i dolgovechnost’ konstruktsionnogo betona pri temperaturnykh i korrozionnykh vozdeystviyakh [Strength, crack resistance and durability of structural concrete under thermal and corrosive effects]. Minsk: BNTU. 2016. 390 p.
11. Patent RU 2621618. Sposob opredeleniya kriticheskogo koeffitsienta intensivnosti napryazheniya vysokoprochnogo betona [Method for determining the critical stress intensity factor of high-strength concrete]. Leonovich S.N., Litvinovskii D.A., Kim L.V. Publ. 06.06.2017. (In Russian).
12. Sadovskaya E.A., Leonovich S.N., Budrevich N.A. A multi-parametric method for evaluating the quality indicators of nano-fiber concrete for a construction site. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2021. No. 4 (606), pp. 20–28. (In Russian).
13. Khrustalev B.M., Leonovich S.N., Eberhardsteiner J., Yakovlev G.I., Pervushin G.N. Influence of multilayer nanotubes on tensile strength. Nauka i tekhnika. 2012. No. 4, pp. 52–57. (In Russian).
14. Zhdanok S.A., Polonina E.N., Leonovich S.N., Khrustalev B.M., Koleda E.A. Influence of a plasticizing additive based on nanostructured carbon in a self-compacting concrete mixture on its technological properties. Inzhenerno-fizicheskiy zhurnal. 2019. Vol. 92. No. 2, pp. 391–396. (In Russian).
15. Zhdanok S.A., Polonina E.N., Leonovich S.N., Khrustalev B.M., Koleda E.A. Influence of a plasticizing additive containing carbon nanomaterial on the properties of self-compacting concrete. Vestnik grazhdanskikh inzhenerov. 2018. No. 6 (71), pp. 76–85. (In Russian).

For citation: Sadovskaya E.A., Polonina E.N., Leonovich S.N., Zhdanok S.A., Potapov V.V. Critical stress intensity coefficient at transverse shear for nanofibrobeton. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-41-46

Improving the Operational Characteristics of Protective Composites

Number of journal: 9-2021
Autors:

Lesovik V.S.,
Fediuk R.S.,
Gridchin A.M.,
Murali G.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-32-40
УДК: 666.971.4

 

AbstractAbout AuthorsReferences
The creation of an eco-friendly building material for the protection of the human habitat can be carried out only from the position of a transdisciplinary approach, taking into account modern achievements of geonics (geomimetics) and micromechanics of composite media. A wide range of basalt fiber concreteы based on composite binders has been developed, which have improvedphysical and mechanical properties (Rcompr>48 MPa, Rtens>12 MPa) and operational characteristics (water resistance grade-W18, frost resistance grade-F300, high temperature resistance in the temperature range of 700–1100oC). The nature of the influence of the composition and manufacturing technology of cement composites on its pore structure is established, which has a positive effect on the characteristics of gas, water and vapor permeability. It was found that the water absorption of the samples of modified concrete is lower than in the control sample, which is explained by a decrease in the pore structure index λ by 28.4 times, and the average pore diameter by 3.05 times. The total pore volume of the modified concrete was lower, and decreased with an increase in the dose of nano-silicon. High early strength was obtained, which makes it possible to use materials for operative repair and construction in emergency situations.
Keywords: cement composite, calcium hydro-silicates, packing density, nanostructure, micromechanics.
V.S. LESOVIK1,2, Doctor of Sciences (Engineering), Corresponding Member of RAACS;
R.S. FEDIUK3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. GRIDCHIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
G. MURALI4, PhD (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Central Research and Design Institute of the Ministry of Construction and Housing and Utilities of the Russian Federation (29, Vernadskogo Avenue, Moscow, 119331, Russian Federation)
3 Far Eastern Federal University (10, Ajax, Russky Island, Vladivostok, 690922, Russian Federation)
4 Sastra Deemed University (Tirumalaisamudram, Thanjavur – 613401, Tamilnadu, India)

1. Ramakrishnan K., Depak S.R., Hariharan K.R., Abid S.R., Murali G., Cecchin D., Fediuk R., Mugahed Amran Y.H., Abdelgader H.S., Khatib J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Construction and Building Materials. 2021. Vol. 298. 153857. https://doi.org/10.1016/j.conbuildmat.2021.123857
2. Лесовик В.С. Cтроительные материалы. Настоящее и будущее // Вестник МГСУ. 2017. № 1. С. 9–16.
2. Lesovik V.S. Construction Materials. Present and future. Vestnik MGSU. 2017. No. 1, pp. 9–16. (In Russian).
3. Лесовик В.С., Фомина Е.В., Айзенштадт А.М. Некоторые аспекты техногенного метасоматоза в строительном материаловедении // Строительные материалы. 2019. № 1–2. С. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106
3. Lesovik V.S., Fomina E.V., Ayzenshtadt A.M. Some aspects of technogenic metasomatosis in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106 (In Russian).
4. Лесовик В.С. Геоника (геомиметика). Примеры реализации в строительном материаловедении. Белгород: Изд-во БГТУ им. В.Г. Шухова, 2016. 287 с.
4. Lesovik V.S. Geonika (geomimetika). Primery realizacii v stroitel’nom materialovedenii [Geonics (geomimetics). Examples of implementation in building materials science]. Belgorod: Publishing house of BSTU named after V.G. Shukhov. 2016. 287 p.
5. Баженов Ю.М., Прошин А.П., Еремкин А.И., Королев Е.В. Сверхтяжелый бетон для защиты от радиации // Строительные материалы. 2005. № 8. С. 6–8.
5. Bazhenov Yu.M., Proshin A.P., Yeremkin A.I., Korolev Ye.V. Extra Heavy Concrete for Radiation Protection. Stroitel’nye Materialy [Construction Materials]. 2005. No. 8, pp. 6–8. (In Russian).
6. Королев Е.В., Очкина Н.А., Баженов Ю.М., Прошин А.П. Радиационно-защитные свойства особотяжелых растворов на основе высокоглиноземистого цемента // Строительные материалы. 2006. № 4. С. 54–56.
6. Korolev E.V., Ochkina N.A., Bazhenov Yu.M., Proshin A.P. Radiation-protective properties of very heavy mortars based on high-alumina cement. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 54–56 (In Russian).
7. Страхов В.Л., Гаращенко А.Н. Огнезащита строительных конструкций: современные средства и методы оптимального проектирования // Строительные материалы. 2002. № 6. C. 2–5.
7. Strakhov V.L., Garashchenko A.N. Fire protection of building structures: modern means and methods of optimal design. Stroitel’nye Materialy [Construction Materials]. 2002. No. 6, pp. 2–5 (In Russian).
8. Каприелов С.С., Травуш В.И., Карпенко Н.И., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Модифицированные высокопрочные бетоны классов В80 и В90 в монолитных конструкциях. Ч. II // Строительные материалы. 2008. № 3. С. 9–13.
8. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheinfeld A.V., Kardumyan G.S., Kiseleva Yu.A., Prigozhenko O.V. Modified high-strength concretes of B80 and B90 classes in monolithic structures. Part II. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 9–13 (In Russian).
9. Constantinides G., Ulm F.-J., Van Vliet K.J. On the use of nanoindentation for cementitious materials. Materials and Structures. 2003. Vol. 36, pp. 191–196. DOI: 10.1617/14020
10. Constantinides G., Ulm F.-J. The effect of two types of C–S–H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research. 2004. Vol. 34. Iss. 1, pp. 67–80. https://doi.org/10.1016/S0008-8846(03)00230-8
11. Cheng Y.T. Cheng C.M. Scaling relationships in conical indentation of elastic perfectly plastic solids. International Journal of Solids Structures. 1999. Vol. 36. Iss. 8, pp. 1231–1243. https://doi.org/10.1016/S0020-7683(97)00349-1
12. Ganneau F.P., Constantinides, G., Ulm F.-J. Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. International Journal of Solids Structures. 2006. Vol. 43. Iss. 6, pp. 1727–1745. https://doi.org/10.1016/j.ijsolstr.2005.03.035
13. Donev A. Cisse I., Sachs D., Variano E.A., Stillinger F.H., Connely R., Torquato S., Chaikin P.M. Improving the density of jammed disordered packings using ellipsoids. Science. 2004. Vol. 303. Iss. 5660, pp. 990–993. DOI: 10.1126/science.1093010
14. Sloane. N.J.A. Kepler’s conjecture confirmed. Nature. 1998. Vol. 395, pp. 435–436.
15. Oliver W.C. Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992. Vol. 7 (6), pp. 1564–1583. DOI: https://doi.org/10.1557/JMR.1992.1564
16. Ulm F-J., Constantinides G., Heukamp F.H. Is concrete a poromechanics material? A multiscale investigation of poroelastic properties. Materials and Structures. 2004. Vol. 37 (265), pp. 43–58. https://doi.org/10.1007/BF02481626
17. Ulm F.-J., Vandamme M., Bobko C., Ortega J.A., Tai K., Ortiz C. Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. Journal of American Ceramic Society. 2007. Vol. 90 (9), pp. 2677–2692. https://doi.org/10.1111/j.1551-2916.2007.02012.x
18. Cariou S., Ulm F.-J., Dormieux L. Hardness-packing density scaling relations for cohesive-frictional porous materials. Journal of Mechanics Physic Solids. 2008. Vol. 56, pp. 924–952. https://doi.org/10.1016/j.jmps.2007.06.011
19. Bobko C.P., Gathier B., Ortega J.A., Ulm F.-J., Borges L., Abousleiman Y.N. The nanogranular origin of friction and cohesion in shale – A strength homogenization approach to interpretation of nanoindentation results. International Journal of Numerical Analysis Methods Geomechanics. 2011. Vol. 35, pp. 1854–1876. https://doi.org/10.1002/nag.984
20. Vandamme M., Ulm F.-J., Fonollosa P. Nanogranular packing of C–S–H at substochiometric conditions. Cement and Concrete Research. 2010. Vol. 40. Iss. 1, pp. 14–26. https://doi.org/10.1016/j.cemconres.2009.09.017
21. Chen J.J., Sorelli L., Vandamme M., Ulm F.-J., Chanvillard G. A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: Evidence for C–S–H/Ca(OH)2 nanocomposites. Journal of American Ceramic Society. 2010. Vol. 93, pp. 1484–1493. https://doi.org/10.1111/j.1551-2916.2009.03599.x
22. Salemi N., Behfarnia K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Construction and Building Materials. 2013. Vol. 48, pp. 934–941. https://doi.org/10.1016/j.conbuildmat.2013.07.037
23. Adetukasi A.O. Fadugba O.G., Adebakin A.O., Adetukasi I.H., Omokungbe O. Strength characteristics of fibre-reinforced concrete containing nano-silica. Materials Today: Proceedings. 2021. Vol. 38. Part 2, pp. 584–589. https://doi.org/10.1016/j.matpr.2020.03.123
24. Konkol J., Prokopski G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Construction and Building Materials. 2016. Vol. 123, pp. 638–648. https://doi.org/10.1016/j.conbuildmat.2016.07.025
25. De Jong M.J., Ulm F.-J. The nanogranular behavior of C–S–H at elevated temperatures (up to 700 degrees C). Cement and Concrete Research. 2007. Vol. 37, pp. 1–12. DOI:10.1016/j.cemconres.2006.09.006
26. Zhu W., Hughes J.J., Bicanic N., Pearce C.J. Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Materials Characterization. 2007. Vol. 58, pp. 1189–1198. https://doi.org/10.1016/j.matchar.2007.05.018
27. Hou P., Wang, K., Qian, J., Kawashima S., Kong D., Shah S.P. Effects of colloidal nano-SiO2 on fly ash hydration. Cement and Concrete Composites. 2012. Vol. 34. Iss. 10, pp. 1095–1103 https://doi.org/10.1016/j.cemconcomp.2012.06.013
28. Hou P.K., Kawashima S., Wang K.J., Corr D.J., Qian J.S., Shah S.P. Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar. Cement and Concrete Composites. 2013. Vol. 35. Iss. 1, pp. 12–22 https://doi.org/10.1016/j.cemconcomp.2012.08.027
29. Sharma U., Singh L.P., Ali D., Poon C.S. Effect of particle size of silica nanoparticles on hydration reactivity and microstructure of C–S–H gel. Advanced Civil Engineering Materials. 2019. Vol. 8 (3). 20190007. https://doi.org/10.1520/ACEM20190007
30. Singh L.P., Zhu W., Howind T., Sharma U. Quantification and characterization of C-S-H in silica nanoparticles incorporated cementitious system. Cement and Concrete Composites. 2017. Vol. 79, pp. 106–116 https://doi.org/10.1016/j.cemconcomp.2017.02.004
31. John E., Matschei T., Stephan D. Nucleation seeding with calcium silicate hydrate – A review. Cement and Concrete Research. 2018. Vol. 113, pp. 74–85. https://doi.org/10.1016/j.cemconres.2018.07.003
32. Abdolhosseini Qomi, M.J. Combinatorial molecular optimization of cement hydrates. Nature Communications. 2014. Vol. 5 (4960), pp. 1–10. https://doi.org/10.1038/ncomms5960
33. Cong X., Kirkpatrick R.J. 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrates. Advanced Cement Based Materials. 1996. Vol. 3, pp. 133–143.
34. Lee, S.Y., Hyder, L.K., Alley P.D. Microstructural and mineralogical characterization of selected shales in support of nuclear waste respository studies. In: Bennet, R.H., Bryant, W.R., Hulbert, M.H. (Eds.), Microstructure of Fine-Grained Sediments, from Mud to Shale. Springer-Verlag, New York. 1991, pp. 545–560.
35. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research. 2004. Vol. 19 (1), pp. 3–20. https://doi.org/10.1557/jmr.2004.19.1.3
36. Anstis G.R., Hantikul P., Lawn B.R., Marshall D.B. A Critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. Journal of the American Ceramic Society. 1981. Vol. 64. No. 9, pp. 533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
37. Potapov V., Efimenko Yu., Fediuk R., Gorev D., Kozin A., Liseitsev Yu. Modification of cement composites with hydrothermal nano-SiO2. Journal of Materials in Civil Engineering. 2021. DOI: 10.1061/(ASCE)MT.1943-5533.0003964
38. Zhdanok S.A., Potapov V.V., Polonina E.N., Leonovich S.N. Modification of cement concrete by admixtures containing nanosized materials. Journal of Engineering Physics and Thermophy. 2020. Vol. 93, pp. 648–652. https://doi.org/10.1007/s10891-020-02163-y
39. Ткачев А.Г., Золотухин И.В. Аппаратура и методы синтеза твердотельных наноструктур. М.: Маши-ностроение, 2007. 316 с.
39. Tkachev A.G., Zolotuhin I.V. Apparatura i metody sinteza tverdotel’nyh nanostruktur [Apparatus and methods for the synthesis of solid-state nanostructures]. M.: Mashinostroenie. 2007. 316 p.
40. Potapov V., Efimenko Y., Fediuk R., Gorev D. Effect of hydrothermal nanosilica on the performances of cement concrete. Construction and Building Materials. 2021. 269. 121307. https://doi.org/10.1016/j.conbuildmat.2020.121307

For citation: Lesovik V.S., Fediuk R.S., Gridchin A.M., Murali G. Improving the operational characteristics of protective composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-32-40

Chemical Method for Activation of Carbonate-Containing Raw Materials in the Technology of Production of Ceramic Bricks by Semi-Dry Pressing

Number of journal: 9-2021
Autors:

Gur’eva V.A.,
Dubinetckiy V.V.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-28-31
УДК: 691.42

 

AbstractAbout AuthorsReferences
It is justified that in order to expand the raw material base of brick factories in the Orenburg Region, it is advisable to use multi-tonnage drilling waste accumulated in the region. The technology of chemical treatment of the mineral part of the carbonate-containing drilling waste with a 6% hydrochloric acid solution has been developed. As a result of chemical destruction of the structure of calcium-containing minerals, safe release of carbon dioxide, water and formation of CaCl2 occurs directly on the barn sites, which melts in the range t=772–782oC, increasing the amount of liquid phase, intensifying the processes of phase and structure formation of ceramic stone This leads to an improvement in the appearance of products and their physical and mechanical properties. The scheme of industrial decarbonization of drilling waste is given.
V.A. GUR’EVA1, Doctor of Sciences (Engineerig) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. DUBINETCKIY2, Engineer

1 Orenburg State University (13, Pobedy Avenu, Orenburg, 460018, Russian Federation)
2 Buzuluk Humanitarian and Technological Institute (35, Rabochaya Street, Buzuluk, 461040, Russian Federation)

1. Semenov A.A. The state of the Russian market of ceramic wall materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 8, pp. 9–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-740-8-9-15
2. Kolyada S.V. Prospects for the development of production of building materials in Russia until 2020. Stroitel’nye Materialy [Construction Materials]. 2008. No. 7, pp. 4–8. (In Russian).
3. Turchaninov V.I. Construction materials from industrial waste and local raw materials of the Orenburg region. Orenburg: OSU, 2006. 150 p.
4. Dubinetsky V.V., Guryeva V.A., Vdovin K.M. Drilling mud in the production of construction ceramics products. Stroitel’nye Materialy [Construction Materials]. 2015. No. 4, pp. 75–76. (In Russian).
5. Guryeva V.A., Dubinetsky V.V., Vdovin K.M., Butrimova N.V. Wall ceramic on the basis of highly calcined raw materials of Orenburzhye. Stroitel’nye Materialy [Construction Materials]. 2016. No. 12, pp. 55–59. (In Russian).
6. Salakhov A.M. Increasing the strength of building ceramic products: from theory to practice. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. No. 5, pp. 18–21. (In Russian).
7. Yatsenko N.D., Zubekhin A.P. Scientific bases of innovative technologies of ceramic bricks and management of its properties depending on the chemical and mineralogical composition of raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 28–31.
8. Pavlov V.F. Investigation of reactions occurring during the firing of masses based on kaolinite clays with the addition of calcium, sodium, and potassium carbonates. Tr. Instituta NIIstroikeramiki, 1981. Iss. 46, pp. 53–75. (In Russian).
9. Patent for invention No. 2750796 of the Russian Federation. A method for obtaining construction ceramics products. GuryevaV.A., DubinetskyV.V. Applicant and patent holder of the OSU. State Register of Inventions of the Russian Federation on September 21, 2020.

For citation: Gur’eva V.A., Dubinetckiy V.V. Chemical method for activation of carbonate-containing raw materials in the technology of production of ceramic bricks by semi-dry pressing. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 28–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-28-31

Research of Raw Materials of Western Siberia for the Production of Ceramic Facing Materials

Number of journal: 9-2021
Autors:

Storozhenko G.I.,
Shoeva T.E.,
Pshennikova V.V.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-23-27
УДК: 666.32

 

AbstractAbout AuthorsReferences
Currently, there is a need in the Russian Federation to build new scientific and industrial centers in Siberia. In the future, they should become poles of attraction for both residents of Russia and abroad. Such centers will give a powerful impetus to the development of the Siberian region and, ultimately, to the sustainable development of the Russian economy. However, new construction presupposes the presence of a developed base of the construction industry, including the industry of modern building materials. The presented paper presents the results of the study of clays, feldspar sands of Western Siberia. The general characteristics of raw materials, chemical and mineral compositions, technological and ceramic properties are presented. It is established that all the studied indicators make it possible to use these materials in the production of ceramic finishing materials, which in the future may contribute to the formation of the Siberian production of porcelain stoneware, which is currently underdeveloped in the region.
G.I. STOROZHENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.E. SHOEVA, Candidate of Sciences (Engineering),
V.V. PSHENNIKOVA, Master student

Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (113, Leningradskaya Street, Novosibirsk-8, 630008, Russian Federation)

1. Sergei Shoigu – about new cities in Siberia. Full version. URL: https://www.rbc.ru/politics/06/09/2021/6131fab69a79471a71a0b412 (2021). Text: electronic. (In Russian).
2. Khrustalev B.B., Loganina V.I., Uchaeva T.V. Formation of an organizational and economic mechanism for managing the potential of competitiveness of enterprises in the building materials industry. Regional’naya arkhitektura i stroitel’stvo. 2013. No. 1, pp. 142–145. (In Russian).
3. Rudychev A.A., Zelensky A.A. Increasing the competitiveness of enterprises in the building materials industry. Vestnik Belgorodskogo universiteta potrebitel’skoy kooperatsii. 2006. No. 3 (18), pp. 19–21.
4. Berdin A.Yu. The specifics of the strategy of the distribution policy of enterprises in the building materials industry. Vestnik Gomel’skogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo. 2011. No. 3 (46), pp. 104–111. (In Russian).
5. Rudychev A.A., Kuznetsova I.A., Mukhin A.N. Upravleniye zatratami na predpriyatiyakh promyshlennosti stroitel’nykh materialov: teoriya, metodologiya, praktika: monografiya [Cost management at enterprises of the building materials industry: theory, methodology, practice: monograph]. Belgorod. 2009. 125 p.
6. Poluyanova N.V. Assessment of the competitive potential of an enterprise in the building materials industry. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2013. No. 5, pp. 115–118. (In Russian).
7. Development strategy of the construction industry and housing and communal services of the Russian Federation for the period up to 2030 https://strategy24.ru/rf/projects/strategiya-razvitiya-stroitelnoy-otrasli-i-zhilishchnokommunalnogo-khozyaystva-rossiyskoy-federatsii-na -period-do-2030-goda. Text: electronic. (In Russian).
8. Russian Union of Builders. All-Russian intersectoral association of employers: URL: https://omorrss.ru/. Text: electronic. (In Russian).
9. Ministry of Construction and Housing and Utilities of Russia: official site. Moscow. URL: https://minstroyrf.gov.ru/. Text: electronic. (In Russian).
10. Federal State Statistics Service: official website. Moscow. URL: https://gks.ru/. Text: electronic. (In Russian).
11. BankDOM. RF: official site. URL: https: //xn-dlaqf.xn-plai. Text: electronic. (In Russian).
12. All-Russian Public Opinion Research Center: official site. URL: https://wciom.ru/ Text: electronic. (In Russian).
13. Rozhina M.D., Povarenko D.D., Lyubomirsky A.V. Porcelain stoneware as a finishing material for hinged facades. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2019. No. 5 (80), pp. 7–13. (In Russian).
14. Khudova M.D., Lutsenko V.S., Dementyev S.Yu., Antonova E.A., Nasukhin M.N. Analysis of the ceramic tile market in the Siberian Federal District. Ekonomika i predprinimatel’stvo. 2020. No. 10 (123), pp. 1352–1357. (In Russian).

For citation: Storozhenko G.I., Shoeva T.E., Pshennikova V.V. Research of raw materials of Western Siberia for the production of ceramic facing materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 23–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-23-27

Clays of the Maloarkhangelskoye Deposit are Promising Raw Materials for Ceramic Materials

Number of journal: 9-2021
Autors:

Kotlyar V.D.,
Terekhina Yu.V.,
Almazov S.M.,
Kotlyar A.V.,
Yashenko R.A.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-8-13
УДК: 691.421

 

AbstractAbout AuthorsReferences
The results of the study of light- and dark-burning refractory clays of the Maloarkhangelsk deposit in the Oryol region for the production of ceramic materials are presented. The chemical, mineral and granulometric compositions have been studied, the pre-firing and firing properties of the raw materials have been determined, the change in the color of the shard is given depending on the firing temperature in an oxidizing environment for two types of clays. The logistical advantages of the «Orlovskaya Keramika» deposit for brick factories in the European part of Russia are considered. Studies have shown that the clays of the Maloarkhangelsky deposit are very promising as the main raw material and an additional component for the production of facing ceramic bricks of various shades, wall and road clinker, hand-molded bricks, ordinary solid bricks, and ceramic blocks. The quality indicators of raw materials make it possible to use it as the main component of the charge, as well as an additive to improve the drying and roasting properties of products.
V.D. KOTLYAR1, Doctor of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.V. TEREKHINA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.M. ALMAZOV2, Commercial Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. KOTLYAR1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.A. YASHENKO1, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Don State Technical University, (1, Gagarina Square, Rostov-on-Don 344003, Russian Federation)
2 OOO «Orlovskaya keramika» (Maloarhangelsk, Oryol Region, 303370, Russian Federation)

1. Avgustinnik A.I. Кeramika [Ceramics]. Leningrad: Stroyizdat. 1975. 592 p.
2. Lopatnikov M.I. Mineral raw materials base of the ceramic industry of Russia. Stroitel’nye Materialy. [Construction Materials]. 2004. No. 2, pp. 36–38. (In Russian)
3. Talpa B.V., Kotlyar A.V. Mineral raw material base of lithium clay rocks of the South of Russia for the production of construction ceramics. Stroitel’nye Materialy [Construction Materials]. 2004. No. 2, pp. 31–33. (In Russian).
4. Goncharov Yu.I. Syr’evye materialy silikatnoi promyshlennosti [Silicate raw materials]. Moscow: ASV. 2009. 124 p.
5. Fomenko A.I., Kaptyushina A.G., Gryzlov V.S. Expansion of raw material base for construction ceramics. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 25–27. (In Russian).
6. Krainov A.V., Dmitriev D.A. Mineral and raw material base of refractory and refractory clays of the central chernozem region and its development prospects. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geologiya. 2017. No. 4, pp. 79–85. (In Russian).
7. Terekhina Yu.V., Talpa B.V., Kotlyar A.V. Mineral and technological features of lithium clay rocks and prospects of their use for production of construction ceramics. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 8–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-747-4-8-10
8. Kotlyar A.V., Nebezhko Yu.I., Bozhko Yu.A., Yashchenko R.A., Nebezhko N.I., Kotlyar V.D. Clinker brick based on sandstone crushing screenings of the Rostov region. Stroitel’nye Materialy [Construction Materials]. 2020. No. 8, pp. 9–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-783-8-9-15
9. Kotlyar V.D., Lapunova K.A. Technological features of ops as raw materials for wall ceramics. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2009. No. 11–12 (611–612), pp. 25–31. (In Russian).
10. Yavruyan Kh.S., Kotlyar V.D., Gaishun E.S. Complex processing of coal dumps of east Donbass for production of construction ceramics. Naukoemkie tekhnologii razrabotki i ispol’zovaniya mineral’nykh resursov. 2019. No. 5, pp. 489–494. (In Russian).
11. Bondaryuk A.G., Kotlyar V.D. Wall ceramics based on opaque silicon-carbonate rocks and artificial silicon-carbonate compositions. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2010. No. 7 (619), pp. 18–24. (In Russian).
12. State balance of mineral reserves of the Russian Federation. Refractory clays. Moscow. 2016. (In Russian).
13. Savko A.D., Kholmovoi G.V., Shirshov S.A. Non-metallic minerals of the Black Earth Region. Trudy nauchno-issledovatel’skogo instituta geologii Voronezhskogo gosudarstvennogo universiteta. 2005. Iss. 32. 314 p. (In Russian).

For citation: Kotlyar V.D., Terekhina Yu.V., Almazov S.M., Kotlyar A.V., Yashenko R.A. Clays of the Maloarkhangelskoye deposit are promising raw materials for ceramic materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 8–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-8-13

Prospects for the Development of the Kuzbass Construction Materials Industry on the Basis of the Barzas Group of Fields

Number of journal: 9-2021
Autors:

Storozhenko G.I.,
Goneev V.V.,
Beskrovny N.Ya.,
Kuznetcova A.S.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-4-7
УДК: 624.148:622.237

 

AbstractAbout AuthorsReferences
The review of non-metallic minerals of the Barzas group of Kuzbass deposits is presented, their properties, the results of practical research and industrial approbation are described. The prospect of their use for the implementation of the Decree of the Government of the Russian Federation No. 868-r, which approved the Strategy for the development of the construction materials industry for the period up to 2020 and the further perspective up to 2030 in terms of the development of territories and the construction materials industry of the region, is shown. In particular, at the complex development of the Barzas group of Kuzbass deposits, the production of construction and fine ceramics, refractory materials, finishing stone, crushed stone, sand and gravel mixtures can be established.
G.I. STOROZHENKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. GONEEV2, Engineer;
N.Ya. BESKROVNY3, Engineer;
A.S. KUZNETCOVA4, Engineer

1 Novosibirsk State University of Architecture and Civil Engineering (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)
2 “Barzasskaya Ekspeditsiya” LLC (41/1, Moskovskij Avenue, Kemerovo, 650065, Kemerovo Region, Russian Federation)
3 “GEOS-T” LLC (33, Vodnaya Street, Novokuznetsk, 654066, Kemerovo Region, Russian Federation)
4 Siberian State Industrial University (42, Kirov Street, Novokuznetsk, 654007, Kemerovo Region, Russian Federation)

1. We are developing a strategy for the development of the construction industry until 2030 Russian Union of Builders. All-Russian intersectoral association of employers: website. Moscow. URL: https://omorrss.ru/ (2020). Text: electronic. (In Russian).
2. Russian Union of Builders. All-Russian intersectoral association of employers: URL: https://omorrss.ru/. Text: electronic. (In Russian).
3. Federal State Statistics Service: official website. Moscow. URL: https://gks.ru/ (date of access: 2016). Text: electronic. (In Russian).
4. Ministry of Construction and Housing and Utilities of Russia: official site. Moscow. URL: https://minstroyrf.gov.ru/. Text: electronic. (In Russian).
5. Shaklein S.V., Pisarenko M.V. The concept of development of the raw material base of the Kuznetsk coal basin. FTPRPI. 2014. No. 3, pp. 118–125. (In Russian).
6. Pisarenko M.V., Patrakov Yu.F. Complex development of the Barzassky geological and economic region. Gornaya promyshlennost’. 2017. No. 2 (132), pp. 31–35. (In Russian).
7. Pantry Kuzbass in the service of the region. Kontinent Sibir’ Online: website. URL: https://ksonline.ru/nomer/ks/-/id/2930/. Text: electronic (In Russian).
8. Patrakov Yu.F., Shaklein S.V., Pisarenko M.V. Prospects for the development of the Barzas geological and economic region. Gornaya promyshlennost’. 2014. No. 5 (117), pp. 24–27. (In Russian).

For citation: Storozhenko G.I., Goneev V.V., Beskrovny N.Ya., Kuznetcova A.S. Prospects for the development of the Kuzbass construction materials industry on the basis of the Barzas group of fields. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 4–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-4-7

Microporosity of Cellular Concrete and its Effect on Thermal Conductivity

Number of journal: 8-2021
Autors:

Vylegzhanin V.P.,
Pinsker V.A.,
Petrova T.M.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-67-71
УДК: 666.973.6

 

AbstractAbout AuthorsReferences
A model of the porous structure of cellular concrete, which makes it possible to represent it in the form of macropores surrounded by a microporous cement stone (MCS) consisting of micropores and cement-silicate stone (CSS), is proposed. This model made it possible to establish in cellular concrete the dependence between the density coefficients, porosity, diameters of macro – and micropores and the distance between them, as well as to determine the dependence of the thermal conductivity coefficient of cellular concrete on the coefficients of its density, porosity of cement-silicate stone. It is shown that with a constant density of aerated concrete, its calculated coefficient of thermal conductivity decreases with a decrease in the density of MCS, due to the formation of micropores in it. Formulas are given, from which it follows that the distance between the pores is in direct proportional dependence on the size of the diameters of the macropores and the smaller their diameter, the smaller the distance between the pores and the lower the coefficient of thermal conductivity of cellular concrete.
V.P. VYLEGZHANIN1, Candidate of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. PINSKER1, Candidate of Sciences (Engineering)
T.M. PETROVA2, Doctor of Sciences (Engineering), Head of the Chair of Building Materials and Technologies

1 Aerated Concrete Center (1/3, Zodchego Rossi Street, Saint-Petersburg, 191023, Russian Federation)
2 Emperor Alexander I St. Petersburg State Transport University (9, Moskovsky Prospect, Saint Petersburg, 190031, Russian Federation)

1. Vylegzhanin V.P., Pinsker V.A. Influence of porosity of autoclaved gas concrete on its thermal conductivity and ways of its change due to improvement in selection of raw components. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 36–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-36-38
2. Makridin N.I., Maksimova I.N. Struktura i mekhanicheskiye svoystva tsementnykh dispersnykh sistem. [Structure and mechanical properties of cement dispersed systems]. Penza: PGAUS. 2013. 340 p.
3. Pinsker V.A., Vylegzhanin V.P. The theory of strength and selection of the composition of aerated concrete. “Collection of articles Aerated concrete in modern construction”. 2nd International Scientific and Practical Conference. St. Petersburg. 2005. (In Russian).
4. STO 501-52-01–2007 Design and construction of enclosing structures for residential and public buildings using aerated concrete in the Russian Federation. Moscow. 2008. (In Russian).
5. Fedorov E.S. Nachalo ucheniya o figurakh [The beginning of the study of figures]. Moscow: Publishing house of the Academy of Sciences, USSR. 1953. 420 p.
6. Vylegzhanin V.P., Romanov V.P. The structure of fiber-reinforced concrete reinforcement and its influence on the ultimate values of breaking loads. LenZNIIEP. Collection of scientific papers “Calculation and design of spatial structures of civil buildings and structures”. Leningrad. 1975. (In Russian).
7. Pinsker V.A. Some questions of the physics of cellular concrete. Collection of articles “Dwelling houses from aerated concrete”. Moscow: Gosstroyizdat. 1963. (In Russian).
8. STO 00044807-001–2006. Thermal properties of enclosing structures. M.: Standartinform, 2006. (In Russian).
9. Avdeev E. What determines the coefficient of thermal conductivity of concrete: influence of density and aggregates, classification of concretes, construction. https://masterabetona.ru/svojstva/610-koefficient-teploprovodnosti-betona. 2015. (In Russian).
10. Vylegzhanin V.P., Petrova Т.M., Pinsker V.A. Peculiarities of the porous structure and their influence on thermal conductivity. AAC Worldwide. 2021. No. 3, pp. 30–36.

For citation: Vylegzhanin V.P., Pinsker V.A., Petrova T.M. Microporosity of cellular concrete and its effect on thermal conductivity. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-67-71

https://www.traditionrolex.com/10