Critical Stress Intensity Coefficient at Transverse Shear for Nanofibrobeton

Number of journal: 9-2021
Autors:

Sadovskaya E.A.,
Polonina E.N.,
Leonovich S.N.,
Zhdanok S.A.,
Potapov V.V.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-41-46
УДК: 666.97

 

AbstractAbout AuthorsReferences
Concrete refers to materials with brittle fracture. Dispersed-reinforced nanobetons, in which obstacles in the form of fibers hinder the propagation of cracks, acquire the properties of viscous destruction. Under the influence of the load, the development of a crack is inevitable, but additional energy is spent on overcoming each obstacle in the form of a fiber, so the process of crack opening can gradually fade. The results of testing of nanofibre concrete samples for transverse shear are presented. The tests were carried out according to the author’s method on the samples-plates with incisions, which makes it possible to obtain the value of the critical stress intensity coefficient for transverse shear (КIIc). This indicator is determined for load conditions under which the crack edges shift in the crack plane normally relative to the crack propagation front. As a result of the tests, the values of КIIc were obtained for different dispersed-reinforced nanocrete, differing in the compressive strength of the nanocrete matrix and various poly-reinforcement with dispersed fiber at different structural levels. As a result of the tests, КIIc values were obtained for different dispersed-reinforced nanobetons distinguished by a nanobetone matrix in compressive strength and various poly-reinforcement with dispersed fiber. It is established that dispersed reinforcement has a significant effect on increasing the crack resistance of the material. The increase in the КIIc value relative to non-reinforced nanocrete ranged from 74 to 150% with steel wire fiber, from 29 to 129% with steel fiber from sheet, from 14 to 131% with polymer fiber, from 22 to 124% in a poly-reinforced composition.
E.A. SADOVSKAYA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.N. POLONINA1, Engineer;
S.N. LEONOVICH1,2, Doctor of Sciences (Engineering), Foreign Academic of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. ZHDANOK3, Doctor of Sciences (Physics and Mathematics);
V.V. POTAPOV4, Doctor of Sciences (Engineering), Professor

1 Belarusian National Technical University (65, Nezavisimosty Avenue, Minsk, 220013, Belarus)
2 Qingdao University of Technology (266033, China, 11 Fushun Rd, Qingdao)
3 OOO “Advanced Research and Technologies” (room 16, 1, Sovkhoznaya Street, Leskovka, Minsk District, 223058, Republic of Belarus)
4 Research Geotechnological Center, Petropavlovsk-Kamchatsky (30, P.O.Box 56, North-Eastern highway, Petropavlovsk-Kamchatsky, 683002, Russian Federation)

1. Saraykina K.A., Golubev V.A., Yakovlev G.I., Fedorova G.D., Aleksandrov G.N., Plekhanova T.A., Dulesova I.G. Modification of dasaltfiberconcrete by nanodispersed system. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 64–69. (In Russian).
2. Lkhasaranov S.A., Urkhanova L.A., Buiantuev S.L. Research of the phase composition of cement stone with carbon nanomaterials. Stroitel’nye Materialy [Construction materials]. 2018. No. 1–2, pp. 23–25. DOI: 10.31659/0585-430X-2018-756-1-2-23-25 (In Russian).
3. Yakovlev G.I., Drochytka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina А.F., Shaybadullina A.V., Pudov I.A., Elrefai A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10 (In Russian).
4. Koleda E.A., Leonovich S.N., Zhdanok S.A. Results of tensile tests of nanofibre concrete with complex fiber reinforcement. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Materialy. Konstruktsii. Tekhnologii. 2018. No. 2, pp. 16–23. (In Russian).
5. Kazakov I.A., Krasnovsky A.N. Influence of functionalized multi-walled carbon nanotubes on the manufacturability of the process of manufacturing composite fiberglass reinforcement. Zhurnal prikladnoy khimii. 2016. Vol. 89. No. 8, pp. 1062–1070. (In Russian).
6. Ivanov L.A., Muminova S.R. New technical solutions in the field of nanotechnology. Part 1. Nanotekhnologii v stroitel’stve: scientific online journal. 2016. Vol. 8. No. 2, pp. 52–81. (In Russian).
7. Grishina A.N., Korolev E.V. Effectivness of cement composite nanomodification with nanoscale barium hydrosilicates. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 72–76. DOI: https://doi.org/10.31659/0585-430X-2015-722-2-72-76
8. Zhdanok S.A. Fifth ISTC Scientific Advisory Committee Seminar “Nanotechnologies in the Area of Physics, Chemistry and Biotechnology”. St. Petersburg, Russia, 27–29 May, 2002.
9. Eberhardsteiner J., Leonovich S.N., Zaitsev Yu.V. Prochnost’ i treshchinostoykost’ konstruktsionnykh stroitel’nykh materialov pri slozhnom napryazhennom sostoyanii [Strength and crack resistance of structural building materials under complex stress state]. Minsk: BNTU. 2013.522 p.
10. Leonovich S.N. Prochnost’, treshchinostoykost’ i dolgovechnost’ konstruktsionnogo betona pri temperaturnykh i korrozionnykh vozdeystviyakh [Strength, crack resistance and durability of structural concrete under thermal and corrosive effects]. Minsk: BNTU. 2016. 390 p.
11. Patent RU 2621618. Sposob opredeleniya kriticheskogo koeffitsienta intensivnosti napryazheniya vysokoprochnogo betona [Method for determining the critical stress intensity factor of high-strength concrete]. Leonovich S.N., Litvinovskii D.A., Kim L.V. Publ. 06.06.2017. (In Russian).
12. Sadovskaya E.A., Leonovich S.N., Budrevich N.A. A multi-parametric method for evaluating the quality indicators of nano-fiber concrete for a construction site. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2021. No. 4 (606), pp. 20–28. (In Russian).
13. Khrustalev B.M., Leonovich S.N., Eberhardsteiner J., Yakovlev G.I., Pervushin G.N. Influence of multilayer nanotubes on tensile strength. Nauka i tekhnika. 2012. No. 4, pp. 52–57. (In Russian).
14. Zhdanok S.A., Polonina E.N., Leonovich S.N., Khrustalev B.M., Koleda E.A. Influence of a plasticizing additive based on nanostructured carbon in a self-compacting concrete mixture on its technological properties. Inzhenerno-fizicheskiy zhurnal. 2019. Vol. 92. No. 2, pp. 391–396. (In Russian).
15. Zhdanok S.A., Polonina E.N., Leonovich S.N., Khrustalev B.M., Koleda E.A. Influence of a plasticizing additive containing carbon nanomaterial on the properties of self-compacting concrete. Vestnik grazhdanskikh inzhenerov. 2018. No. 6 (71), pp. 76–85. (In Russian).

For citation: Sadovskaya E.A., Polonina E.N., Leonovich S.N., Zhdanok S.A., Potapov V.V. Critical stress intensity coefficient at transverse shear for nanofibrobeton. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-41-46


Print   Email