Improving the Operational Characteristics of Protective Composites

Number of journal: 9-2021
Autors:

Lesovik V.S.,
Fediuk R.S.,
Gridchin A.M.,
Murali G.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-32-40
УДК: 666.971.4

 

AbstractAbout AuthorsReferences
The creation of an eco-friendly building material for the protection of the human habitat can be carried out only from the position of a transdisciplinary approach, taking into account modern achievements of geonics (geomimetics) and micromechanics of composite media. A wide range of basalt fiber concreteы based on composite binders has been developed, which have improvedphysical and mechanical properties (Rcompr>48 MPa, Rtens>12 MPa) and operational characteristics (water resistance grade-W18, frost resistance grade-F300, high temperature resistance in the temperature range of 700–1100oC). The nature of the influence of the composition and manufacturing technology of cement composites on its pore structure is established, which has a positive effect on the characteristics of gas, water and vapor permeability. It was found that the water absorption of the samples of modified concrete is lower than in the control sample, which is explained by a decrease in the pore structure index λ by 28.4 times, and the average pore diameter by 3.05 times. The total pore volume of the modified concrete was lower, and decreased with an increase in the dose of nano-silicon. High early strength was obtained, which makes it possible to use materials for operative repair and construction in emergency situations.
Keywords: cement composite, calcium hydro-silicates, packing density, nanostructure, micromechanics.
V.S. LESOVIK1,2, Doctor of Sciences (Engineering), Corresponding Member of RAACS;
R.S. FEDIUK3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. GRIDCHIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
G. MURALI4, PhD (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Central Research and Design Institute of the Ministry of Construction and Housing and Utilities of the Russian Federation (29, Vernadskogo Avenue, Moscow, 119331, Russian Federation)
3 Far Eastern Federal University (10, Ajax, Russky Island, Vladivostok, 690922, Russian Federation)
4 Sastra Deemed University (Tirumalaisamudram, Thanjavur – 613401, Tamilnadu, India)

1. Ramakrishnan K., Depak S.R., Hariharan K.R., Abid S.R., Murali G., Cecchin D., Fediuk R., Mugahed Amran Y.H., Abdelgader H.S., Khatib J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Construction and Building Materials. 2021. Vol. 298. 153857. https://doi.org/10.1016/j.conbuildmat.2021.123857
2. Лесовик В.С. Cтроительные материалы. Настоящее и будущее // Вестник МГСУ. 2017. № 1. С. 9–16.
2. Lesovik V.S. Construction Materials. Present and future. Vestnik MGSU. 2017. No. 1, pp. 9–16. (In Russian).
3. Лесовик В.С., Фомина Е.В., Айзенштадт А.М. Некоторые аспекты техногенного метасоматоза в строительном материаловедении // Строительные материалы. 2019. № 1–2. С. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106
3. Lesovik V.S., Fomina E.V., Ayzenshtadt A.M. Some aspects of technogenic metasomatosis in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106 (In Russian).
4. Лесовик В.С. Геоника (геомиметика). Примеры реализации в строительном материаловедении. Белгород: Изд-во БГТУ им. В.Г. Шухова, 2016. 287 с.
4. Lesovik V.S. Geonika (geomimetika). Primery realizacii v stroitel’nom materialovedenii [Geonics (geomimetics). Examples of implementation in building materials science]. Belgorod: Publishing house of BSTU named after V.G. Shukhov. 2016. 287 p.
5. Баженов Ю.М., Прошин А.П., Еремкин А.И., Королев Е.В. Сверхтяжелый бетон для защиты от радиации // Строительные материалы. 2005. № 8. С. 6–8.
5. Bazhenov Yu.M., Proshin A.P., Yeremkin A.I., Korolev Ye.V. Extra Heavy Concrete for Radiation Protection. Stroitel’nye Materialy [Construction Materials]. 2005. No. 8, pp. 6–8. (In Russian).
6. Королев Е.В., Очкина Н.А., Баженов Ю.М., Прошин А.П. Радиационно-защитные свойства особотяжелых растворов на основе высокоглиноземистого цемента // Строительные материалы. 2006. № 4. С. 54–56.
6. Korolev E.V., Ochkina N.A., Bazhenov Yu.M., Proshin A.P. Radiation-protective properties of very heavy mortars based on high-alumina cement. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 54–56 (In Russian).
7. Страхов В.Л., Гаращенко А.Н. Огнезащита строительных конструкций: современные средства и методы оптимального проектирования // Строительные материалы. 2002. № 6. C. 2–5.
7. Strakhov V.L., Garashchenko A.N. Fire protection of building structures: modern means and methods of optimal design. Stroitel’nye Materialy [Construction Materials]. 2002. No. 6, pp. 2–5 (In Russian).
8. Каприелов С.С., Травуш В.И., Карпенко Н.И., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Модифицированные высокопрочные бетоны классов В80 и В90 в монолитных конструкциях. Ч. II // Строительные материалы. 2008. № 3. С. 9–13.
8. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheinfeld A.V., Kardumyan G.S., Kiseleva Yu.A., Prigozhenko O.V. Modified high-strength concretes of B80 and B90 classes in monolithic structures. Part II. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 9–13 (In Russian).
9. Constantinides G., Ulm F.-J., Van Vliet K.J. On the use of nanoindentation for cementitious materials. Materials and Structures. 2003. Vol. 36, pp. 191–196. DOI: 10.1617/14020
10. Constantinides G., Ulm F.-J. The effect of two types of C–S–H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research. 2004. Vol. 34. Iss. 1, pp. 67–80. https://doi.org/10.1016/S0008-8846(03)00230-8
11. Cheng Y.T. Cheng C.M. Scaling relationships in conical indentation of elastic perfectly plastic solids. International Journal of Solids Structures. 1999. Vol. 36. Iss. 8, pp. 1231–1243. https://doi.org/10.1016/S0020-7683(97)00349-1
12. Ganneau F.P., Constantinides, G., Ulm F.-J. Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. International Journal of Solids Structures. 2006. Vol. 43. Iss. 6, pp. 1727–1745. https://doi.org/10.1016/j.ijsolstr.2005.03.035
13. Donev A. Cisse I., Sachs D., Variano E.A., Stillinger F.H., Connely R., Torquato S., Chaikin P.M. Improving the density of jammed disordered packings using ellipsoids. Science. 2004. Vol. 303. Iss. 5660, pp. 990–993. DOI: 10.1126/science.1093010
14. Sloane. N.J.A. Kepler’s conjecture confirmed. Nature. 1998. Vol. 395, pp. 435–436.
15. Oliver W.C. Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992. Vol. 7 (6), pp. 1564–1583. DOI: https://doi.org/10.1557/JMR.1992.1564
16. Ulm F-J., Constantinides G., Heukamp F.H. Is concrete a poromechanics material? A multiscale investigation of poroelastic properties. Materials and Structures. 2004. Vol. 37 (265), pp. 43–58. https://doi.org/10.1007/BF02481626
17. Ulm F.-J., Vandamme M., Bobko C., Ortega J.A., Tai K., Ortiz C. Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. Journal of American Ceramic Society. 2007. Vol. 90 (9), pp. 2677–2692. https://doi.org/10.1111/j.1551-2916.2007.02012.x
18. Cariou S., Ulm F.-J., Dormieux L. Hardness-packing density scaling relations for cohesive-frictional porous materials. Journal of Mechanics Physic Solids. 2008. Vol. 56, pp. 924–952. https://doi.org/10.1016/j.jmps.2007.06.011
19. Bobko C.P., Gathier B., Ortega J.A., Ulm F.-J., Borges L., Abousleiman Y.N. The nanogranular origin of friction and cohesion in shale – A strength homogenization approach to interpretation of nanoindentation results. International Journal of Numerical Analysis Methods Geomechanics. 2011. Vol. 35, pp. 1854–1876. https://doi.org/10.1002/nag.984
20. Vandamme M., Ulm F.-J., Fonollosa P. Nanogranular packing of C–S–H at substochiometric conditions. Cement and Concrete Research. 2010. Vol. 40. Iss. 1, pp. 14–26. https://doi.org/10.1016/j.cemconres.2009.09.017
21. Chen J.J., Sorelli L., Vandamme M., Ulm F.-J., Chanvillard G. A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: Evidence for C–S–H/Ca(OH)2 nanocomposites. Journal of American Ceramic Society. 2010. Vol. 93, pp. 1484–1493. https://doi.org/10.1111/j.1551-2916.2009.03599.x
22. Salemi N., Behfarnia K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Construction and Building Materials. 2013. Vol. 48, pp. 934–941. https://doi.org/10.1016/j.conbuildmat.2013.07.037
23. Adetukasi A.O. Fadugba O.G., Adebakin A.O., Adetukasi I.H., Omokungbe O. Strength characteristics of fibre-reinforced concrete containing nano-silica. Materials Today: Proceedings. 2021. Vol. 38. Part 2, pp. 584–589. https://doi.org/10.1016/j.matpr.2020.03.123
24. Konkol J., Prokopski G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Construction and Building Materials. 2016. Vol. 123, pp. 638–648. https://doi.org/10.1016/j.conbuildmat.2016.07.025
25. De Jong M.J., Ulm F.-J. The nanogranular behavior of C–S–H at elevated temperatures (up to 700 degrees C). Cement and Concrete Research. 2007. Vol. 37, pp. 1–12. DOI:10.1016/j.cemconres.2006.09.006
26. Zhu W., Hughes J.J., Bicanic N., Pearce C.J. Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Materials Characterization. 2007. Vol. 58, pp. 1189–1198. https://doi.org/10.1016/j.matchar.2007.05.018
27. Hou P., Wang, K., Qian, J., Kawashima S., Kong D., Shah S.P. Effects of colloidal nano-SiO2 on fly ash hydration. Cement and Concrete Composites. 2012. Vol. 34. Iss. 10, pp. 1095–1103 https://doi.org/10.1016/j.cemconcomp.2012.06.013
28. Hou P.K., Kawashima S., Wang K.J., Corr D.J., Qian J.S., Shah S.P. Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar. Cement and Concrete Composites. 2013. Vol. 35. Iss. 1, pp. 12–22 https://doi.org/10.1016/j.cemconcomp.2012.08.027
29. Sharma U., Singh L.P., Ali D., Poon C.S. Effect of particle size of silica nanoparticles on hydration reactivity and microstructure of C–S–H gel. Advanced Civil Engineering Materials. 2019. Vol. 8 (3). 20190007. https://doi.org/10.1520/ACEM20190007
30. Singh L.P., Zhu W., Howind T., Sharma U. Quantification and characterization of C-S-H in silica nanoparticles incorporated cementitious system. Cement and Concrete Composites. 2017. Vol. 79, pp. 106–116 https://doi.org/10.1016/j.cemconcomp.2017.02.004
31. John E., Matschei T., Stephan D. Nucleation seeding with calcium silicate hydrate – A review. Cement and Concrete Research. 2018. Vol. 113, pp. 74–85. https://doi.org/10.1016/j.cemconres.2018.07.003
32. Abdolhosseini Qomi, M.J. Combinatorial molecular optimization of cement hydrates. Nature Communications. 2014. Vol. 5 (4960), pp. 1–10. https://doi.org/10.1038/ncomms5960
33. Cong X., Kirkpatrick R.J. 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrates. Advanced Cement Based Materials. 1996. Vol. 3, pp. 133–143.
34. Lee, S.Y., Hyder, L.K., Alley P.D. Microstructural and mineralogical characterization of selected shales in support of nuclear waste respository studies. In: Bennet, R.H., Bryant, W.R., Hulbert, M.H. (Eds.), Microstructure of Fine-Grained Sediments, from Mud to Shale. Springer-Verlag, New York. 1991, pp. 545–560.
35. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research. 2004. Vol. 19 (1), pp. 3–20. https://doi.org/10.1557/jmr.2004.19.1.3
36. Anstis G.R., Hantikul P., Lawn B.R., Marshall D.B. A Critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. Journal of the American Ceramic Society. 1981. Vol. 64. No. 9, pp. 533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
37. Potapov V., Efimenko Yu., Fediuk R., Gorev D., Kozin A., Liseitsev Yu. Modification of cement composites with hydrothermal nano-SiO2. Journal of Materials in Civil Engineering. 2021. DOI: 10.1061/(ASCE)MT.1943-5533.0003964
38. Zhdanok S.A., Potapov V.V., Polonina E.N., Leonovich S.N. Modification of cement concrete by admixtures containing nanosized materials. Journal of Engineering Physics and Thermophy. 2020. Vol. 93, pp. 648–652. https://doi.org/10.1007/s10891-020-02163-y
39. Ткачев А.Г., Золотухин И.В. Аппаратура и методы синтеза твердотельных наноструктур. М.: Маши-ностроение, 2007. 316 с.
39. Tkachev A.G., Zolotuhin I.V. Apparatura i metody sinteza tverdotel’nyh nanostruktur [Apparatus and methods for the synthesis of solid-state nanostructures]. M.: Mashinostroenie. 2007. 316 p.
40. Potapov V., Efimenko Y., Fediuk R., Gorev D. Effect of hydrothermal nanosilica on the performances of cement concrete. Construction and Building Materials. 2021. 269. 121307. https://doi.org/10.1016/j.conbuildmat.2020.121307

For citation: Lesovik V.S., Fediuk R.S., Gridchin A.M., Murali G. Improving the operational characteristics of protective composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-32-40


Print   Email