Modification of Fluoroanhydrite Composition for Flooring with Carbon-Containing Additives

Number of journal: 8-2021
Autors:

Kalabina D.A.,
Yakovlev G.I.,
Vasilchenko Yu.M.,
Kuzmina N.V.,
Gordina A.F.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-27-31
УДК: 691.311:692.53

 

AbstractAbout AuthorsReferences
The electrical conductive properties of the plasticized fluoroanhydrite composition for flooring have been investigated, the effect of three additives on its electrical conductivity has been studied: crushed graphite waste grade EGSP, thermally expanded graphite based on it, and metal/carbon nanocomposite. The technology of obtaining thermally expanded graphite from the waste of electrodes for arc furnaces is described. It is shown that the introduction of micro-sized particles of graphite leads to a decrease in the strength of the material by 28.7%, but does not affect its electrical resistance. Modification of the plasticized hydrite fluoride composition with a metal/carbon nanocomposite reduces the electrical resistance of the material by a factor of 3, while the compressive strength of the samples decreases by a factor of 4. The introduction of thermally expanded graphite in an amount of 7% of the mass of fluoroanhydrite shows its effectiveness in reducing the electrical resistance of the material by 11 times with a drop in strength on the 7th day from 34.9 to 29.8 MPa (15%).
D.A. KALABINA, Engineer (Postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.M. VASILCHENKO, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KUZMINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)

1. Sirenko O.G., Makhno S.M., Lisova O.M., et al. Electrophysical properties of composites based on the epoxy resin and expanded graphite. Chemistry, Physics and Technology of Surface. 2018. Vol. 9. No. 4, pp. 442–446. DOI:  10.15407/hftp09.04.442
2. Cao J., Chung D.D.L. Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding. Cement and Concrete Research. 2003. Vol. 33. Iss. 11, pp. 1737–1740. doi.org/10.1016/S0008-8846(03)00152-2
3. Kaur R., Kothiyal N.C. Comparative effects of sterically stabilized functionalized carbon nanotubes and graphene oxide as reinforcing agent on physico-mechanical properties and electrical resistivity of cement nanocomposites. Construction and Building Materials. 2019. Vol. 202, pp. 121–138. https://doi.org/10.1016/j.conbuildmat.2018.12.220
4. Авдушева М.А., Невзоров А.Л. Влияние магнетита на электропроводность растворной смеси // Строительные материалы. 2017. № 11. С. 55–58.
4. Avdusheva M.A., Nevzorov A.L. Effect of magnetite on the electrical conductivity of the solution mixture. Stroitel’nye Materialy [Construction Materials]. 2017. No. 11, pp. 55–58. (In Russian).
5. Mar Barbero-Barrera M., Flores Medina N., Guardia-Martín C. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes. Construction and Building Materials. 2017. Vol. 149, pp. 599–611; https://doi.org/10.1016/j.conbuildmat.2017.05.156
6. Герасимова А.В., Меметов Н.Р., Ткачев А.Г., Ягубов В.С. Электропроводящие композиты на основе эпоксидной смолы, модифицированной графеном // Вектор науки Тольяттинского государственного университета. 2020. № 3 (53). С. 19–25. DOI: 10.18323/2073-5073-2020-3-19-25
6. Gerasimova A.V., Memetov N.R., Tkachev A.G., Yagubov V.S. Electrically conductive composites based on epoxy resin modified with graphene. Vektor nauki Tol’yattinskogo gosudarstvennogo universiteta. 2020. No. 3 (53), pp. 19–25. (In Russian). DOI: 10.18323/2073-5073-2020-3-19-25
7. Flores Medina N., Mar Barbero-Barrer M., Bustamante R. Improvement of the properties of gypsum-based composites with recycled isostatic graphite powder from the milling production of molds for Electrical Discharge Machining (EDM) used as a new filler. Construction and Building Materials. 2016. Vol. 107, pp. 17–27. https://doi.org/10.1016/j.conbuildmat.2015.12.194
8. Flores Medina N., Mar Barbero-Barrer M., Jové-Sandoval F. Improvement of the mechanical and physical properties of cement pastes and mortars through the addition isostatic graphite. Construction and Building Materials. 2018. Vol. 189, pp. 898–905. https://doi.org/10.1016/j.conbuildmat.2018.09.055
9. Лемешев М.С. Электропроводные металлонасыщенные бетоны полифункционального назначения // Актуальные проблемы архитектуры, строительства, энергоэффективности и экологии: Сборник материалов международной научно-практической конференции. Тюмень. 27–29 апреля 2016 г. С. 242–247.
9. Lemeshev M.S.Conductive metal-saturated concretes for polyfunctional purposes. Actual problems of architecture, construction, energy efficiency and ecology. 2016: Collection of materials of the international scientific and practical conference. Tumen. 2016 April 27–29, pp. 242–247. (In Russian).
10. Yakovlev G., Pervushin G., Smirnova O., Begunova E., Saidova Z. The electrical conductivity of fluoroanhydrite compositions modified at the nanoscale level with carbon black. Environmental and Climate Technologies. 2020. Vol. 24 (1), pp. 706–717. https://doi.org/10.2478/rtuect-2020-0044
11. Yakovlev G.I., Begunova E.V., Drochytka R., Melichar J., Pudov I.A., Saidova Z.S. The influence of activated dispersed additives on electrical conductivity of anhydrite compositions. Solid State Phenomena. 2021. Vol. 321, pp. 51–57. https://doi.org/10.4028/www.scientific.net/ssp.321.51
12. Патент на изобретение 2723788 C1. 17.06.2020. Высокопрочное фторангидритовое вяжущее, способ получения высокопрочного фторангидритового вяжущего и композиции на его основе (варианты) / Грахов В.П., Первушин Г.Н., Кала-бина Д.А. [и др.]. Заявка № 2019109289 от 29.03.2019.
12. Invention patent 2723788 C1, 17.06.2020. High-strength fluoroanhydrite binder, a method of obtaining high-strength fluoroanhydrite binder and compositions based on it (options). Grakhov V.P., Pervushin G.N., Kalabina D.A. Application № 2019109289 29.03.2019. (In Russian).
13. Калабина Д.А., Яковлев Г.И., Кузьмина Н.В. Безусадочные фторангидритовые композиции для устройства полов // Известия КГАСУ. 2021. № 1 (55). С. 24–38. DOI: 10.52409/20731523_2021_1_24
13. Kalabina D.A., Yakovlev G.I., Kuzmina N.V. Shrinkage-free fluoroanhydrite compositions for flooring. Izvestia KGASU. 2021. No. 1 (55), pp. 24–38. (In Russian). DOI: 10.52409/20731523_2021_1_24
14. Патент 2075438 РФ МПК С01В 31/04, Н05В 6/64. Способ получения расширенного графита / Смирнов А.В., Смирнова В.А. 1997.
14. Patent 2075438 RF MPK С01В 31/04, Н05В 6/64 Expanded graphite production method. Smirnov A.V., Smirnova V.A. 1997. (In Russian).
15. Патент 2715655 РФ МПК C2. Способ получения металл/углеродных нанокомпозитов / Кодолов В.И., Тринеева В.В., Мустакимов Р.В. и др. 2020. Бюл. № 7.
15. Patent 2715655 RF IPC C2. Method of obtaining metal / carbon nanocomposites. Kodolov V.I., Trineeva V.V., Mustakimov R.V. and other. 2020. Bull. No. 7. (In Russian).

For citation: Kalabina D.A., Yakovlev G.I., Vasilchenko Yu.M., Kuzmina N.V., Gordina A.F. Modification of fluoroanhydrite composition for flooring with carbon-containing additives. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 27–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-27-31


Print   Email