Features of the Use of Easily Dumped Window Structures in Gasified Residential Buildings

Number of journal: 5-2021
Autors:

Konstantinov A.P.,
Korolchenko A.D.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-37-43
УДК: 692.827

 

AbstractAbout AuthorsReferences
The existing negative statistics of household gas explosions in residential buildings on the territory of the Russian Federation has led to the appearance of regulatory documents prescribing the use of easily dumped window structures in similar types of buildings. The paper analyzes the current state of the issue of the use of easily dumped window structures in gasified residential buildings. For this purpose, the existing design solutions of easily dumped windows were considered, as well as the requirements of the current regulatory and technical documentation for such structures in the case of their use in gasified residential buildings. The analysis has shown that at present a sufficiently large number of easily dumped window structures with insulated glass units have been developed and patented. However, so far their design solution does not allow to ensure the fulfillment of the entire complex of requirements that are imposed on conventional window structures of residential buildings. It is established that there are a number of contradictions in the current domestic regulatory and technical documentation regulating the device of easily dumped structures with insulated glass units and their use in residential buildings, as well as requirements that cannot be implemented in practice. In the existing construction practice, it is not yet possible to massively apply approaches to the design of residential buildings, taking into account their explosion resistance, which is due to the insufficient number of studies on the subject under consideration.
A.P. KONSTANTINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.D. KOROLCHENKO, Engineer (Postgraduate Student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Mishuev A.V., Kazennov V.V., Komarov A.A., Gromov N.V., Lukyanov I.V., Prozorovskij D.V. Features of emergency explosions inside residential gasified buildings and industrial facilities. Pozharovzryvobezopasnost’. 2012. Vol. 21. No. 3, pp. 49–56. (In Russian).
2. Polandov Yu.Kh., Korolchenko D.A., Evich A.A. Conditions of occurrence of fire in the room with a gas explosion. Experimental data. Pozharovzryvo-bezopasnost’. 2020. Vol. 29. No. 1, pp. 9–21. (In Russian). DOI: 10.18322/PVB.2020.29.01.9-21
3. Vedyakov I.I., Eremeev P.G., Odesskiy P.D., Popov N.A., Solovyev D.V. Regulatory requirements for the design of building structures for progressive collapse. Promyshlennoe i grazhdanskoe stroitel’stvo. 2019. No. 4, pp. 16–24. (In Russian). DOI: 10.33622/0869-7019.2019.04.16-24
4. Sushko E.A., Zajcev A.M., Kashnikova A.A., Chernyx D.S. About the explosions of natural gas and their consequences in high-rise residential sector. Vestnik of the Voronezh institute GPS MCHS Rossii. 2013. No. 3 (8), pp. 20–23. (In Russian).
5. Telichenko V.I., Roitman V.M. A cause-and-consequence analysis of serious emergencies with the aim of providing integrated safety of buildings and installations. Vestnik MGSU. 2020. No. 15 (1), pp. 72–84. (In Russian). DOI: 10.22227/1997-0935.2020.1.72-84
6. Nikolaev S.V. Renovation of housing stock of the country on the basis of large-panel housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 3–7. (In Russian).
7. Savin V.K., Savina N.V. The shaping of buildings. beauty or benefit? Academia. Architecture and construction. 2016. No. 2, pp. 119–123. (In Russian).
8. Sheina S.G., Umnyakova N.P., Panasenko M.V. Method of selection of complex development territory for construction of multistory residential building with introduction of eco-friendly standard. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 7, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-7-41-46
9. Orlov G.G., Korolchenko D.A., Lyapin A.V. Optimization of requirements to constructive and space-planning decisions when designing buildings and constructions for explosive productions. Pozharovzryvobezopasnost’. 2014. Vol. 23. No. 11, pp. 67–74. (In Russian).
10. Orlov G.G., Korolchenko A.D. Loadings which destroy building structures in consiquence of emergency explosions. Pozharovzryvobezopasnost’. 2016. Vol. 25. No. 3, pp. 45–56. (In Russian). DOI: 10.18322/PVB.2016.25.03.45-56
11. Komarov A.A., Kazennov V.V., Gusev A.A., Gromov N.V. Criterion for quasi-static conditions for confined blast pressure of a gas-air mixture in premises. Pozharovzryvobezopasnost’. 2015. Vol. 24. No. 8, pp. 56–61. (In Russian). DOI: 10.18322/PVB.2015.24.08.56-61
12. Polandov Yu.Kh., Dobrikov S.A., Kukin D.A. Results of tests pressure-relief panels. Pozharovzryvobezopasnost’. 2017. Vol. 26. No. 8, pp. 5–14 (In Russian). DOI: 10.18322/PVB.2017.26.08.5-14
13. Komarov A.A., Korolchenko D.A., Phan T.A. Features of determination of the dynamic amplification factor under impulse loads. Pozharovzryvobezopasnost’. 2018. Vol. 27. No. 2–3, pp. 37–43 (In Russian). DOI: 10.18322/PVB.2018.27.02-03.37-43
14. Pidhoretsky Yu. Research of the actuation reliability of blast relieve systems with honeycomb polycarbonate sheets. The Scientific Heritage. 2020. Vol. 1. No. 57, pp. 45–50. DOI: 10.24412/9215-0365-2020-57-1-45-50
15. Komarov A., Gromov N. Experimental observation of visible flame propagation rate in accidental deflagration explosions and explosive load reduction. MATEC Web of Conferences. 2018. Vol. 251. 02024. doi:10.1051/matecconf/201825102024
16. Tikhomirov A., Konstantinov A., Kurushkina K., Lambias M. Conception of a complex window design method. E3S Web of Conferences. 2019. Vol. 91. 05018. DOI: 10.1051/e3sconf/20199105018
17. Phuong N.T.Kh., Solovyev A.K., Tamrazyan A.G. Integrated approach to determining sizes of light openings in buildings taking into account safety requirements. Promyshlennoye i grazhdanskoye stroitel’stvo. 2019. No. 5, pp. 20–25. (In Russian). DOI: 10.33622/0869-7019.2019.05.20-25
18. Mishuev A., Kazennov V., Gromov N., Lukyanov I., Prozorovsky D., Bazhina E.. Design of glassing for buildings to meet the requires for resistance to explosion and explosion safety. Vestnik MGSU. 2010. No. 4–2, pp. 51–55. (In Russian).
19. Gorev V.A., Molkov V.V. On the dependence of internal explosion parameters on the installation of safety structures in the apertures of the protecting walls of industrial and residential buildings. Pozharovzryvobezopasnost’. 2018. Vol. 27. No. 10, pp. 6–25 (In Russian). DOI: 10.18322/PVB.2018.27.10.6-25
20. Pepelyaev A.A., Kashevarova G.G. Given the characteristics of structures easily discharged when modeling domestic gas explosion in a residential building. Bulletin of the Perm National Research Polytechnic University. Construction and architecture. 2012. No. 1, pp. 147–153. (In Russian).
21. Doronin F.L., Trukhanova L.N., Fomina M.V. The reaction of the building structure with window unit to the explosive impact on the basis of dynamic equation solution. Vestnik MGSU. 2014. No. 1, pp. 33–40. (In Russian).
22. Polandov Yu.K., Dobrikov S.A. Effect of distance between ignition location and window on indoor gas explosion development. Pozharovzryvobezopasnost’. 2019. No. 28 (3), pp. 14–35. (In Russian). https://doi.org/10.18322/PVB.2019.28.03.14-35
23. Konstantinov A.P., Verkhovsky A.A. Influence of negative temperatures on the thermal characteristics of PVC windows. Stroitel’stvo i rekonstruktsiya. 2018. Vol. 83. No. 3, pp. 72–82. (In Russian). DOI: https://doi.org/10.33979/2073-7416-2019-83-3-72-82
24. Konstantinov A., Verkhovsky A. Assessment of the negative temperatures influence on the PVC windows air permeability. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 753. 022092. doi:10.1088/1757-899X/753/2/022092
25. Konstantinov A.P., Krutov A.A., Tikhomirov A.M. Assessment of the PVC windows thermal characteristics in winter. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
26. Konstantinov A.P., Ibragimov A.M. Complex approach to the calculation and design of translucent structures. Zhilishchnoe Stroitel’stvo. 2019. No. 1–2, pp. 14–17. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-1-2-14-17
27. Savin V.K., Rybkin V.K. Energy efficient design of the window unit with the ventilator. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 1–2, pp. 15–18.
28. Orlov G.G., Korolchenko A.D. Structural design of attachment fittings of protecting (light removable) structures for the exposure of special load combination. Nauchnoye obozreniye. 2016. No. 20, pp. 25–29. (In Russian).

For citation: Konstantinov A.P., Korolchenko A.D. Features of the use of easily dumped window structures in gasified residential buildings. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 37–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-37-43


Print   Email