Technological Parameters of the Quality of Self-Compacting Fine-Grained Fresh Concrete for Winter Concreting

Number of journal: 5-2021
Autors:

Rumyantsev E.V.,
Bayburin A.Kh.,
Solov’ev V.G.,
Ahmed’yanov R.M.,
Bessonov S.V.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
УДК: 666.972.53

 

AbstractAbout AuthorsReferences
The use of self-compacting fine-grained fresh concrete (SCFGFC) based on dry construction mixes (DCM) allows to ensure the quality of advance joint connection of the precast reinforcement concrete structures, including in the winter conditions. The carried out comprehensive experimental study of the technological parameters of the quality of (SCFGFC) makes it possible to make up the insufficient volume of research in this area. For the study, we used SCFGFC based on DCM from three manufacturers on cement binders, hardening at low temperatures. The substantiated test methods are proposed and a comparative assessment of the technological characteristics of SCFGFC is carried out: workability, viability, segregation resistance and the compaction coefficient. The influence of the temperature factor and the water-solid ratio on the studied characteristics of the fresh concrete has been evaluated. The obtained research results can be used for the development of technological documentation for the use of «cold» SCFGFC based on cement dry mixes, as well as for the preparation of codes on the technology of joint connection of the precast reinforcement concrete structures, including at negative temperatures.
E.V. RUMYANTSEV1, Chief Designer of Product Department (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Kh. BAYBURIN2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. SOLOV’EV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.М. AHMED’YANOV4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. BESSONOV4, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 PIK-Proekt LLC (19, bldg. 1, Barrikadnaya Street, Moscow, 123242, Russian Federation)
2 National Research South Ural State University (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)
3 National Research Moscow State University Of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
4 «Ural Research Institute of Construction Materials» LLC (5/2, Stalevarov Street, Chelyabinsk, 454047, Russian Federation)

1. Мухамедиев Т.А., Кудинов О.В. Увеличение этажности сборных крупнопанельных зданий // Бетон и железобетон. 2006. № 3. С. 7–9.
1. Mukhamediev T.A., Kudinov O.V. Increase in the number of floors of prefabricated large-panel buildings. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2006. No. 3, pp. 7–9. (In Russian).
2. Alfred A. Yee, Hon. D. Structural and economic benefits of precast/prestressed concrete construc-tion. PCI Journal. 2001. Vol. 46. No. 4, pp. 34–42. DOI: https://doi.org/10.15554/pcij.07012001.34.42
3. Smith R.E. Prefab architecture: a guide to modular design and construction. Hoboken, New Jersey, USA: Published by John Wiley & Sons, Inc. 2010. 366 p.
4. Фаликман В.Р. Бетоны заданной функциональности – «Умные бетоны»: Материалы конференции ICCX Россия. СПб. 3–6 декабря 2019. С. 52–63.
4. Falikman V.R. High performance concrete – «Smart concretes». Materials of the conference ICCX Russia. St. Petersburg. December 3–6, 2019, pp. 52–63. (In Russian).
5. Singhal S., Chourasia A., Chellappa S., Parashar J. Precast reinforced concrete shear walls: State of the art review. Structural Concrete. 2019. Vol. 20. Iss. 3, pp. 886–898. DOI: https://doi.org/10.1002/suco.201800129
6. Xiao J., Liu L., Ding T., Xie Q. Experimental study on mechanical behavior of thermally damaged grouted sleeve splice under cyclic loading. Structural Concrete. 2020. Vol. 21. Iss. 6, pp. 2494–2514. DOI: https://doi.org/10.1002/suco.202000092
7. Sorensen J.H., Hoang L.C., Olesen J.F., Fischer G. Tensile capacity of loop connections grouted with concrete or mortar. Magazine of Concrete Research. 2017. Vol. 69. Iss. 17, pp. 892–904. DOI: https://doi.org/10.1680/jmacr.16.00466
8. FIB, bulletin No. 43. Structural connections for precast concrete buildings. Guide to good practice. The International Federation for Structural Concrete (fib). Lausanne, Switzerland. 2014. 370 p.
9. FIB, bulletin No. 74. Planning and design handbook on precast building structures. Manual/Textbook. The International Federation for Structural Concrete (fib). Lausanne, Switzerland. 2014. 313 p.
10. Румянцев Е.В. Особенности технологии применения мелкозернистых бетонов на основе сухих строительных смесей в монолитных стыках крупнопанельных зданий. Материалы конференции ICCX Россия. СПб. 1–4 декабря 2020. С. 55–57.
10. Rumyantsev E.V. Features of the technology for the use of fine-grained concrete based on dry construction mixtures in-situ joints of large-panel buildings. Materials of the ICCX Russia conference. St. Petersburg. December 1–4, 2020, pp. 55–57. (In Russian).
11. Nehdy M., Elsayed M., Provost-Smith D.J. Investigation of grouted precast concrete wall connections at subfreezing conditions. Material of Conference “Resilient infrastructure”. London, GB. 2016. pp. 1–10. https://www.researchgate.net/publication/304115263_INVESTIGATION_OF_GROUTED_PRECAST_CONCRETE_WALL_CONNECTIONS_AT_SUBFREEZING_CONDITIONS#fullTextFileContent (Date of access 03.02.2021).
12. Румянцев Е.В., Видякин А.А., Байбурин А.Х. Тем-пературный мониторинг монолитных стыков крупнопанельных зданий при зимнем бетонировании // Бетон и железобетон. 2020. № 1 (601). С. 42–48.
12. Rumyantsev E.V., Vidyakin A.A., Bayburin A.Kh. Temperature monitoring of monolithic joints of large-panel buildings during winter concreting. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2020. No. 1 (601), pp. 42–48. (In Russian).
13. Кокки П., Мякеля Х. Строительство в зимних условиях: Теплозащита и экономия энергии / Пер. с фин. В.П. Калинина; Под ред. С.А. Миронова. М.: Стройиздат, 1986. 84 с.
13. Kokki P., Myakel H. Stroitel’stvo v zimnih usloviyah: Teplozashchita i ekonomiya energii [Construction in winter conditions: Heat protection and energy saving. Trans. from Fin. V.P. Kalinina, Edited by S.A. Mironov]. Moscow: Stroyizdat. 1986. 84 p.
14. Okamura M., Ouchi H. Self-compacting high performance concrete. Progress in Structural Engineering and Materials. 1998. Vol. 1. Iss. 4, pp. 378–383. DOI: https://doi.org/10.1002/pse.2260010406
15. Self-compacting concrete. Procedings of the First International RILEM Symposium. Editied by A. Skarendahl and O. Petersson. RELEM Publication S.A.R.L., Stockholm, Sweden. 1999. 578 p.
16. Khayat K.H. Workability, testing, and performance of self-consolidating concrete. ACI Materials Journal. 1999. Vol. 96. No. 3, pp. 346–353.
17. Батудаева А.В., Кардумян Г.С., Каприелов С.С. Высокопрочные модифицированные бетоны из самовыравнивающихся смесей // Бетон и железобетон. 2005. № 4. С. 14–18.
17. Batudaeva A.V., Kardumyan G.S., Kaprielov S.S. High-strength modified concrete from self-compacting mixtures. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2005. No. 4, pp. 14–18. (In Russian).
18. Мозгалев К.М., Головнев С.Г., Мозгалева Д.А. Эффективность применения самоуплотняющихся бетонов при возведении монолитных зданий в зимних условиях // Вестник Южно-Уральского государственного университета. Сер. Строительство и архитектура. 2014. Т. 14. № 1. С. 33–37.
18. Mozgalev K.M., Golovnev S.G., Mozgaleva D.A. Efficiency of use of self-compacting concretes in the construction of monolithic buildings in winter conditions. Vestnik YUzhno-Ural’skogo gosudarstvennogo universiteta, Seriya «Stroitel’stvo i arhitektura». 2014. Vol. 14. No. 1, pp. 33–37. (In Russian).
19. Минаков Ю.А., Кононова О.В., Анисимов С.Н., Грязина М.В. Управление кинетикой твердения бетона при отрицательных температурах // Фундаментальные исследования. 2013. № 4. С. 307–311.
19. Minakov Yu.A., Kononova O.V., Anisimov S.N., Gryazina M.V. Management of concrete hardening kinetics at negative temperatures. Fundamental’nye issledovaniya. 2013. No. 4, pp. 307–311. (In Russian).
20. Баженов Ю.М., Демьянова В.С., Калашников В.И. Модифицированные высококачественные бетоны. М.: АСВ, 2006. 368 с.
20. Bazhenov Yu.M., Demyanova V.S., Kalashnikov V.I. Modificirovannye vysokokachestvennye betony [Modified high-quality concrete]. Moscow: ASV. 2006. 368 p.
21. Юань Ю., Лин В., Пе Т. Высококачественный цементный бетон с улучшенными свойствами. М.: АСВ, 2014. 448 с.
21. Yuan Yu., Lin V., Pe T. Vysokokachestvennyj cementnyj beton s uluchshennymi svojstvami [High-performance cement concrete with improved properties] Moscow: ASV. 2014. 448 p.
22. Banfill P.F.G. Rheology of fresh cement and concrete. Rheology Reviews 2006. London, British Society of Rheology. 2006, pp. 61–130.
23. Hanehara S., Yamada K. Rheology and early age properties of cement systems. Cement and Concrete Research. 2008. Vol. 38. Iss. 2, pp. 175–195. DOI: https://doi.org/10.1016/j.cemconres.2007.09.006
24. Мозгалев К.М., Головнев С.Г. Самоуплотняющиеся бетоны: возможности применения и свойства // Академический вестник УралНИИПроект РААСН. 2011. № 4. С. 70–74.
24. Mozgalev K.M., Golovnev S.G. The self-compacting concrete: possibilities of application and properties. Akademicheskij vestnik UralNIIProekt RAASN. 2011. No. 4, pp. 70–74. (In Russian).
25. Баженов Ю.М., Алимов В.В., Воронин В.В. Наномодифицированные высококачественные бетоны. М.: АСВ, 2017. 198 с.
25. Bazhenov, Yu.M., Alimov V.V., Voronin V.V. Nanomodificirovannye vysokokachestvennye betony [Nanomodified high-performance concrete]. Moscow: ASV. 2017. 198 p.
26. Hocevar A., Kavcic F., Bokan-Bosiljkov V. Rheological parameters of fresh concrete – comparison of rheometers. GRADEVINAR 65. 2013. No. 2, pp. 99–109.
27. Ken W.D., Aldred J., Hudson B. Concrete mix design, quality control and specification. N.Y.: CRC Press. 2017. 349 p.
28. Roussel N. Rheology of fresh concrete: from measurements to predictions of casting processes. Materials and Structures. 2007. Vol. 40. Iss. 10, pp. 1001–1012. DOI: https://doi.org/10.1617/s11527-007-9313-2
29. Ghafoori N., Diawara H. Influence of temperature on fresh performance of self-consolidating concrete. Construction and Building Materials. 2010. Vol. 24. Iss. 6, pp. 946–955. DOI: https://doi.org/10.1016/j.cemconres.2011.01.009
30. Petit J.-Y., Wirquin E., Khayat K.H. Effect of temperature on the rheology of flowable mortars concrete. Cement & Concrete Composites. Vol. 32. Iss. 1. Jenuary 2010, pp. 43–53. DOI: https://doi.org/10.1016/j.cemconcomp.2009.10.003
31. Schmidt W., Brouwers H.J.H., Kuhne H.C., Meng B. Influences of superplasticizer modification and mixture composition on the performance of self-compacting concrete at varied ambient temperatures. Cement & Concrete Composites. Vol. 49. May 2014, pp. 111–126. DOI: https://doi.org/10.1016/j.cemconcomp.2013.12.004
32. Fernandez-Altable V., Casanova I. Influence of mixing sequence and superplasticiser dosage on the rheological response of cement pastes at different temperatures. Cement and Concrete Research. Vol. 36. Iss. 7. July 2006, pp. 1222–1230. DOI: https://doi.org/10.1016/j.cemconres.2006.02.016
33. Mohd Z., Lai F.C. Sustainable high performance Self-compacting concrete by using new Antifreeze superplasticiser for the cold & Hot weather concreting. Proceedings of ICACS 2003, 17–19 September 2003, Xuzhou, China, pp. 985–989.
34. Benaicha M., Roguiez X., Jalbaud O., Burtschell Y., Alaoui A.H. Influence of silica fume and viscosity modifying agent on the mechanical and rheological behavior of self compacting concrete. Construction and Building Materials. Vol. 84. Iss. 1. June 2015, pp. 103–110. DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.061
35. Benaicha M., Roguiez X., Jalbaud O., Burtschell Y., Alaoui A.H. New approach to determine the plastic viscosity of self-compacting concrete. Frontiers of Structural and Civil Engineering. Vol. 10. Iss. 2. June 2016, pp. 198–208. DOI: https://doi.org/10.1007/s11709-015-0327-5
36. Иванов Д.А., Молодин В.В. Влияние миграции влаги на прочность бетона при его укладке на мерзлое бетонное основание. Актуальные проблемы и перспективы развития строительства, теплогазоснабжения и энергообеспечения: Материалы VII очной Международной научно-практической конференции / Под ред. Ф.К. Абдразакова. Саратов: ФГБОУ ВО Саратовский ГАУ, 2018. С. 129–140.
36. Ivanov D.A., Molodin V.V. The effect of moisture migration on the strength of concrete when it is laid on a frozen concrete base. Current problems and prospects for the development of construction, heat and gas supply and energy supply. Materials of the VII full-time International Scientific and Practical Conference. Edited by F.K. Abdrazakov. Saratov: Saratov GAU. 2018, pp. 129–140. (In Russian).
37. Плотников В.В. Химия вяжущих материалов и бетонов: Справочник: Учебное пособие. М.: АСВ, 2015. 400 с.
37. Plotnikov V.V. Himiya vyazhushchih materialov i betonov. [Chemistry of binding materials and concretes]. Reference: Tutorial. Moscow: Publishing House of the Association of Construction Universities. 2015. 400 p.

For citation: Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14


Print   Email