Log in

Sorption of Water Vapor Materials of Mineral Wool Products of Modern Manufacture

Number of journal: 6-2019
Autors:

Gagarin V.G.
Pastushkov P.P.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-40-43
УДК: 699.86

 

AbstractAbout AuthorsReferences
The article is devoted to the study of water vapor sorption by materials of mineral wool products of modern production. The definition of the concept of sorption is given, the possibilities of practical application of sorption isotherms in building thermophysics and in the analysis of the porous structure of materials are described. The known methods for determining the sorption of water vapor are given. Separately described exicator method, which is standardized. The results of experimental studies of sorption isotrem by the method of GOST 24816 of 6 different brands of mineral wool products of modern production of two types of fibers – glass and stone, using traditional and alternative types of binder are presented. According to the analysis of the obtained results, the conclusions were made: mineral wool products made of glass fiber have, in general, greater sorption capacity than products made of stone fiber, while products of the same type of fiber with a similar density may have several times different sorption humidity; the grades under study generally have approximately the same specific surface area, but the volumes of meso- and micropores differing several times; sorption of water vapor materials of mineral wool products of modern production is lower than that of mineral wool products, produced more than 10 years ago. These findings should be verified by additional studies, the results of which will be described in the continuation of this article.
V.G. GAGARIN1,3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
P.P. PASTUShKOV1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 Institute of Mechanics Lomonosov Moscow State University (1, Michurinsky Avenue, Moscow, 119192, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Gagarin V.G. Sorption and desorption of water vapor of the building envelope materials. In the book. «Russian Architectural and Construction Encyclopedia». Vol. 2. M.: Ministry of Construction of the Russian Federation. 1995, pp. 425–427. (In Russian).
2. Gagarin V.G. Theory of state and moisture transfer in building materials and heat-shielding properties of enclosing structures of buildings. Doctor diss. (Engineering). Moscow. 2000. 396 p. (In Russian).
3. Pastushkov P.P. On the problems of determining the thermal conductivity of building materials. Stroitel’nye materialy [Construction Materials]. 2019. No. 4, pp. 28–31. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-57-63 (In Russian).
4. Kupriyanov V.N., YUzmuhametov A.M., Safin I.SH. The effect of moisture on the thermal conductivity of wall materials. State of the matter. Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2017. No. 1 (39), pp. 102–110. (In Russian).
5. Kiselyov I.YA. Influence of the equilibrium sorption moisture of building materials on the heat transfer resistance of external building envelopes. Zhilishchnoye stroitel’stvo. 2013. No. 6, pp. 39–40. (In Russian).
6. Gagarin V.G., Pastushkov P.P. Determination of the calculated moisture content of building materials. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 8, pp. 28–33. (In Russian).
7. Gagarin V.G., Pastushkov P.P., Reutova N.A. On the question of the appointment of the calculated moisture of building materials for sorption isotherm. Stroitel’stvo i rekonstrukcija. 2015. No. 4 (60), pp. 152–155. (In Russian).
8. Gagarin V.G., Mekhnetsov I.A., Ivakina Yu.Yu. Water vapor sorption by materials of heat-insulating plates manufactured by URSA EURASIA. Stroitel’nye materialy [Construction Materials]. 2007. No. 10, pp. 41–50. (In Russian).
9. Kiselev I.YA. Improving the accuracy of determining the thermophysical properties of insulating building materials with regard to their structure and characteristics of operational impacts. Doctor diss. (Engineering). Moscow. 2006. 366 p. (In Russian).
10. Gagarin V.G. On the modification of the t-method for determining the specific surface of macro- and mesoporous adsorbents. Zhurnal fizicheskoy khimii. 1985. Vol. 59. No. 5, pp. 1838–1839. (In Russian).

For citation: Gagarin V.G., Pastushkov P.P. Sorption of water vapor materials of mineral wool products of modern manufacture. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 40–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-40-43

Determination of Salt Content in the Material of External Walls of the Building of an Industrial Enterprise

Number of journal: 6-2019
Autors:

Elchishcheva T.F.
Erofeev V.T.
Lobanov V.A.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-34-39
УДК: 692.231.2

 

AbstractAbout AuthorsReferences
External enclosing structures of buildings of all types often contain hygroscopic salts and their mixtures, which are introduced into the building materials from the feedstock, introduced as technological and antifreeze additives in concrete and mortars, fall from the soil, the surrounding air and production environment. The presence of salts increases the humidity of wall materials, changes their physical and chemical properties, reduces the strength properties. The paper presents the results of studies of salt and moisture content in the material of external enclosing structures of several buildings of an industrial enterprise with a salt production environment by the end of the drying period. The unsatisfactory state of the enclosing structures was established by the results of visual inspection – cracking and peeling of the surface layers, peeling and opening of the paint coating, the presence of surface areas covered with salt crystals. Overwetting of the inner layer of the outer walls of one object of study by 52% in comparison with the moisture content for the operating conditions of B was established. The chemical composition of salt efflorescence was established. The excess value of salt content hazardous for building materials by 2.2–28.6 times was identified. It is established that the rate of salt accumulation in the material of external enclosing structures is 0.04–0.25% by weight per year.
T.F. ELCHISHCHEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.T. EROFEEV2, Doctor of Sciences (Engineering), Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.); V.A. LOBANOV3, Engineer

1 Tambov State Technical University (106, Sovetskaya Street, Tambov, 392000, Russian Federation)
2 National Research Ogarev Mordovia State University (68, Bolshevist Street, Saransk, 430005, Russian Federation)
3 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Fischer К. Feuchtigkeit in Gebäuden und aufsteigende Feuchtigkeit. Bausubstanz. 1998. No. 7, pp. 34–42.
2. Elchishcheva T.F. Evaluation of the impact of air quality in the city of Tambov on the external building envelope. Biosfernaya sovmestimost’: chelovek, region, tekhnologii. 2014. No. 3 (7), pp. 43–49. (In Russian).
3. Elchishcheva T.F. Determination of humidity conditions in premises of buildings at presence of hygroscopic salts in wall material. Stroitel’nye Materialy [Construction Materials]. 2017. No. 6, pp. 14–18. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-749-6-14-18.
4. Gal’tseva N.A., Bur’yanov A.F., Buldyzhova E.N., Solov’ev V.G. Use of synthetic calcium sulphate anhydrite for preparation of filling mixtures. Stroitel’nye Materialy [Construction Materials]. 2016. No. 6, pp. 76–77. (In Russian).
5. Dvorkin L.I., Dvorkin OL. Osnovy betonovedeniya [Basics of concrete science]. St. Petersburg: Stroybeton. 2006. 691 p.
6. Tokarev Yu.V., Ginchitskii E.O., Yakovlev G.I., Bur’yanov A.F. Efficiency of modification of gypsum binder with carbon nanotubes and additives of various dispersity. Stroitel’nye Materialy. 2015. No. 6, pp. 84–87. (In Russian).
7. Cause and prevention of kiln and dry-house scum and of efflorescence on face-brick walls. Technologic Papers of the Bureau of Standards. No. 370. Vol. 22. 633 p. https://nvlpubs.nist.gov/nistpubs/nbstechnologic/nbstechnologicpaperT370.pdf (Date of access 25.04.2018).
8. Young D. Salt attack and rising damp. A guide to salt damp in historic and older buildings. Heritage Council of NSW, Heritage Victoria, South Australian Department for Environment and Heritage, Adelaide City Council. 79 p. http://www.getty.edu/conservation/publications_resources/pdf_publications/pdf/wall_paintings.pdf (Date of access 25.04.2018).
9. Bessonov I.V., Baranov V.S., Baranov V.V., Knyazeva V.P., El’chishcheva T.F. The causes of the appearance and ways to eliminate the highs on the brick walls of buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 7, pp. 39–43. (In Russian).
10. Elchishcheva T.F. Humidity regime of buildings with a production environment containing hygroscopic salts. Biosfernaya sovmestimost’: chelovek, region, tekhnologii. 2016. No. 4 (16), pp. 13–21. (In Russian).
11. Beregovoy A.M., Beregovoy V.A. Temperature-humidity state of external fences in conditions of phase transitions of moisture and aggressive environmental influences. Regional’naya arkhitektura i stroitel’stvo. 2017. No. 3, pp. 99–104. (In Russian).
12. The Conservation of Wall Paintings. Proceedings of a symposium organized by the Courtauld Institute of Art and the Getty Conservation Institute. Editor Sharon Cather. July 13–16, 1987. London. 148 p. http://www.environment.nsw.gov.au/resources/heritagebranch/heritage/HVC014SaltDamptechguideFAweb.pdf (Date of access 25.04.2018).
13. Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
14. Erofeev V.T., Elchishcheva T.F., Rodin A.I., Smirnov I.V., Merkulov D.A., Fedortsov V.A., Chuvatkin A.A. Study of the properties of concrete reinforced concrete structures used in the coastalzone of the Black Sea coast. Transportnyye sooruzheniya. 2018. No. 2. DOI: 10.15862/05SATS218. (In Russian).
15. Kogan V.B., Ogorodnikov S.K., Kafarov V.V. Spravochnik po rastvorimosti. Troinye i mnogokomponentnye sistemy, obrazovannye neorganicheskimi veshchestvami [Handbook of solubility. Triple and multicomponent systems formed by inorganic substances]. Vol. 3. Book 2. Leningrad: Nauka. 1969. 1170 p.
16. Erofeev V.T., Korotaev S.A., Elchishcheva T.F. Current issues of assessing the effect of salts and moisture on the operational properties of enclosing building structures. In the collection: Current Issues of Architecture and Construction Materials of the Fifteenth International Scientific and Technical Conference. Editorial Board: Erofeev V.T. (Ed.). Saransk: Mordovia University Press. 2017, pp. 159–167. (In Russian).

For citation: Elchishcheva T.F., Erofeev V.T., Lobanov V.A. Determination of salt content in the material of external walls of the building of an industrial enterprise. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 34–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-34-39

Preservation of Plastered Facades of Buildings

Number of journal: 6-2019
Autors:

Zheldakov D.Yu.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-29-33
УДК: 692.23

 

AbstractAbout AuthorsReferences
The facades and especially the socles of buildings are one of the most important constructions, as they take the load of the entire building. In this regard, the safety of the socle structure is an important task. However, in the process of exploitation, the socle of the building is constantly moistened by precipitation, in this connection the material of construction of the socle is in moisture saturation state. For the predominant number of buildings built in the past and earlier centuries, the basement of the building was made of brickwork. It is noted that when using the cement-sand plaster as a plaster layer under conditions of active humidification the destruction of both the material of plaster and brick material takes place, which leads to a weakening of the bearing capacity of the plinth of buildings. When using lime-sand plaster, only the plaster layer is destroyed, the brick is not destroyed. This phenomenon is explained by the author on the basis of the conditions of the process of chemical destruction at the boundary of materials. To eliminate the destruction process, the structural solution with the use of the so- called moisture cutout is proposed. Selection of materials for effective use of the moisture cutout and elimination of the destruction of the socle is recommended taking into account the permeability criterion. The use of a moisture cutout with the correct selection of materials of the plaster layer will not only preserve the strength of the structure of the socle, but also reduce the heat loss of the building through the enclosing structures due to reducing their humidity.
D.Yu. ZHELDAKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Building Physics Russian Academy of architecture and construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Ishchuk M.K. New in the design of exterior walls with a facing layer of brick masonry. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 1–2, рр. 8–13. DOI: https://doi.org/10.31659/0044-4472-2019-1-2-8-13 (In Russian).
2. Derkach V.N., Zhernosek V.N. Methods for assessing the strength of masonry in domestic and foreign practice of inspection of buildings and structures. Vestnik Belorussko-rossiiskogo universiteta. 2010. No. 3 (38). pp. 135–142. (In Russian).
3. Brinda L. Repair and investigation techniques for stone masonry walls. Constriction and Building Materials. 1997. No. 11, рр. 133–142.
4. Kabantsev O. Modeling Nonlinear Deformation and Destraction Masonry under Biaxial Stress. Part 2. Strength criteria and numerical experiment. Applied Mechanics and Materials. 2015. Vol. 725–726, рр. 808–819. https://doi.org/10.4028/www.scientific.net/AMM.725-726.808
5. Orlovich R.B., Derkach V.N. Estimation of masonry mortars strength during the examination of stone buildings. Inzhenerno-stroitel’nyi zhurnal. 2011. No. 7, рр. 3–10.
6. Gal’tseva N.A., Bur’yanov A.F., Buldyzhova E.N., Solov’ev V.G. The use of synthetic calcium sulfate anhydrite for production of filling mixtures. Stroitel’nye Materialy [Construction Materials]. 2015. No. 6, рр. 76–77.
7. Brook R.I. Principles for the production of ceramics with improved chemical characteristics. British Ceramic Society. 1982. No. 32.
8. Blazi V. Spravochnik proektirovshchika. Stroitel’naya fizika [Directory of the designer. Building physics]. Moscow: Tekhnosfera, 2012. 611 p.
9. Dobshits L.M. Physical-mathematical model of concretes destruction at alternate freezing and thawing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, рр. 30–36. (In Russian).
10. Zemlyanushnov D.Yu., Sokov V.N., Oreshkin D.V. The use of fine waste marble processing in the technology of facing ceramics. Nauchno-tekhnicheskii vestnik Povolzh’ya. 2014. No. 4, рр. 108–114. (In Russian).
11. Kislyakov K.A., Yakovlev G.I., Pervushin G.N. Properties of cement composition with addition of crushed clay brick and microsilica. Stroitel’nye Materialy [Construction materials]. 2017. No. 1–2, рр. 14–18. DOI: https://doi.org/10.31659/0585-430X-2017-745-1-2-14-18 (In Russian).
12. Zheldakov D.Yu. Chemical corrosion of a bricklaying. Problem definition. Stroitel’nye Materialy [Construction Materials]. 2018. No. 6, рр. 29–32. DOI: https://doi.org/10.31659/0585-430X-2018-760-6-29-32 (In Russian).
13. Gagarin V.G., Pastushkov P.P. Determination of the calculated moisture content of building materials. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 8, рр. 41–44. (In Russian).
14. Gagarin V.G., Zubarev K.P., Kozlov V.V. Definition of the zone of the greatest humidification in walls with front heat-insulating composite systems with external plaster layers. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2016. No. 1 (54), рр. 125–132. (In Russian).
15. Elchishcheva T.F. Determination of humidity conditions in premises of buildings at presence of hygroscopic salts in wall material. Stroitel’nye Materialy [Construction Materials]. 2017. No. 6, рр. 14–18. DOI: https://doi.org/10.31659/0585-430X-2017-749-6-14-18. (In Russian).

For citation: Zheldakov D.Yu. Preservation of plastered facades of buildings. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 29–33. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-29-33

Determination of the Nature of Humidification of Enclosing Structures by Experimental Method of Color Indication

Number of journal: 6-2019
Autors:

Petrov A.S.
Yuzmuhametov A.M.
Kupriyanov V.N.
Andreitseva K.S.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-24-28
УДК: 692.232

 

AbstractAbout AuthorsReferences
Thermo-physical qualities and durability of enclosing structures are interrelated with their temperature and humidity conditions of operation and humidity of the materials used. In particular, the coefficients of thermal conductivity (λ) and vapor permeability (µ) used in the current standards of the stationary and non-stationary methods for assessing the humidity state of structures will depend on the values of the calculated operational humidity of materials. The only reliable way to determine the operational humidity of the material layers of structures now – field studies. Analysis of the main standards regulating the testing of material layers on the moisture condition (GOST R 54853–2011, GOST 21718–84, GOST 23422–87, etc.) made it possible to identify common faults. The main disadvantage is the exceptional locality of measurement, which does not allow to get the picture of humidity distribution in the structure directly in the experiment. In this regard, an experimental method for determining the nature of humidification of enclosing structures by color indication is proposed. The proposed method based on the color indicator is not actually limited in area and changes its color depending on the moisture content. The results of an experimental study of the moisture state of the enclosing structure fragment tested under the laboratory conditions of the climatic chamber are presented.
A.S. PETROV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.M. YUZMUHAMETOV1, Engineer-Architect (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.N. KUPRIYANOV1, Doctor of Sciences (Engineering), Corresponding Member of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.)
K.S. ANDREITSEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, Republic of Tatarstan, 420043, Russian Federation)
2 Research Institute of Building Physics of RAACS (21, Lokomotivny Driveway, Moscow, 127238, Russian Federation)

1. Kupriyanov V.N., Yuzmukhametov A. M., Safin I.Sh. The effect of moisture on the thermal conductivity of wall materials. State of the issue. Izvestiya KGASU. 2017. No. 1 (39), pp. 102–110. (In Russian).
2. Vasil’ev B.F. Naturnye issledovaniya temperaturno-vlazhnostnogo rezhima krupnopanel’nykh zhilykh zdanii [Field studies of the temperature and humidity of large-panel residential buildings]. Moscow: Stroiizdat. 1968. 120 p.
3. Vasil’ev B.F. Naturnye issledovaniya temperaturno-vlazhnostnogo rezhima zhilykh zdanii [Field studies of the temperature and humidity of residential buildings] Moscow: Gosstroiizdat. 1957. 214 p.
4. Gagarin V.G., Pastushkov P.P., Reutova N.A. To the question of the appointment of the calculated moisture content of building materials on the sorption isotherm. Stroitel’stvo i rekonstruktsiya. 2015. No. 4 (60), pp. 152–154. (In Russian).
5. Korniyenko S.V., Vatin N.I., Gorshkov A.S. Thermophysical field testing of residential buildings made of autoclaved aerated concrete blocks. Magazine of Civil Engineering. 2016. No. 4, pp. 10–25.
6. Protasevich A.M., Leshkevich V.V. Moisture conditions of building external walls under conditions of the Republic of Belarus. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 9, pp. 37–40. (In Russian).
7. Grinfel’d G.I., Morozov S.A., Sogomonyan I.A., Zyryanov P.S. Humid condition of modern structures made of autoclaved aerated concrete under operating conditions. Inzhenerno-stroitel’nyi zhurnal. 2011. No. 2 (20), pp. 33–38.
8. Kornienko S.V. Improvement of the Russian standards for moisture protection of enclosing structures. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura. 2017. Vol. 47 (66), pp. 18–29. (In Russian).
9. Litavcova E., Korjenic A., Korjenic S., Pavlus M., Sarhadov I., Seman J., Bednar T. Diffusion of moisture into building materials: A model for moisture transport. Energy and Buildings. 2014. Vol. 68, pp. 558–561.
10. Declared Patent No. 2018108772 Sposob opredeleniya fakta kondensatsii vodyanogo para i raspolozheniya ploskosti maksimal’nogo uvlazhneniya v stroitel’nykh ograzhdayushchikh konstruktsiyakh posredstvom tsvetovoi indikatsii i izdelie-indikator dlya ego osushchestvleniya [The method of determining the fact of condensation of water vapor and the location of the plane of maximum moistening in building fencing structures by means of color indication and an indicator product for its implementation]. Petrov A.S., Kupriyanov V.N.; Declared. 12.03.2018. (In Russian).

For citation: Petrov A.S., Yuzmuhametov A.M., Kupriyanov V.N., Andreitseva K.S. Determination of the nature of humidification of enclosing structures by experimental method of color indication. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 24–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-24-28

Strength of Fine Concrete with Addition of Fine Crushed Recyclable Optical Discs

Number of journal: 6-2019
Autors:

Ezerskiy V.A.
Kuznetsova N.V.
Seleznev A.D.
Moiseenko G.A.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-18-23
УДК: 691.32:621.74

 

AbstractAbout AuthorsReferences
The possibility of utilization of optical disks after their fine crushing for partial replacement of filler in fine concrete is analyzed. The dependence of the compressive strength of concrete on three factors was studied: the amount of waste of fine crushed optical discs in fractions of the mass of the filler; the amount of plasticizer and water-cement ratio. In the experiment, the utilized optical disks were crushed to fractions of 0.315–2.5 mm. It is established that the use of crushed optical discs waste in fine concrete to partially replace construction sand in an amount from 0 to 50% of the total mass of fine filler reduces the compressive strength of concrete samples by 29%. The change in the values of other factors has approximately the same effect on the strength of the samples, but much less than the proportion of waste in the mixture: with an increase in the amount of plasticizer in the mixture, the compressive strength almost linearly increases by 7.5%, with an increase in the water-cement ratio – decreases by 6.3%. The decrease in bending strength and density with an increase in the proportion of waste of crushed discs in the filler is also established. The introduction of crushed optical discs up to 25% by weight of the filler in the mixture composition makes it possible to obtain, at certain ratios of the amount of plasticizer and water-cement ratio, samples with a compressive strength close to the strength of the samples without waste. At that a reduction in the consumption of the binder up to 20% is achieved.
V.A. EZERSKIY1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.V. KUZNETSOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.D. SELEZNEV2, Master Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.A. MOISEENKO3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Bialystok University of Technology (45A, Wiejska Street, Bialystok, 15-351, Poland)
2 Tambov State Technical University (106, Sovetskaya Street, Tambov, 392000, Russian Federation)
3 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Сурков А.А., Глушанкова И.С. Разработка системы управления отходами потребления поликарбоната // Транспорт. Транспортные сооружения. Экология. 2014. № 3. С. 119–131. https://elibrary.ru/download/elibrary_22961626_61217934.pdf
1. Surkov A.A., Glushankova I.S. Development of the management system of polycarbonate consumption waste. Transport. Transportnye sooruzheniya. Ekologiya. 2014. No. 3, pp. 119–131. https://elibrary.ru/download/elibrary_22961626_61217934.pdf (In Russian).
2. Ла Мантия Ф. Вторичная переработка пластмасс / Пер. с англ.; под ред. Г.Е. Заикова. СПб.: Профессия, 2007. 400 с.
2. La Mantiya F. Vtorichnaya pererabotka plastmass [Handbook of plastics recycling] Translation from English. Edited by G.E. Zaikova. Saint Petersburg: Professiya, 2007. 400 p.
3. Вайсман Я.И., Глушанкова И.С., Сурков А.А. Анализ методов и технических решений по утилизации отходов потребления поликарбоната // Экология и промышленность России. 2013. № 5. С. 36–41. https://elibrary.ru/download/elibrary_18962285_88793618.pdf
3. Vaisman Ya.I., Glushankova I.S., Surkov A.A. Analysis of methods and technical solutions for the disposal of polycarbonate consumption waste. Ekologiya i promyshlennost’ Rossii. 2013. No. 5, pp. 36–41. (In Russian).
4. Alavi Nikje M.M., Askarzadeh M. Chemical recycling of polycarbonate wastes into bisphenol A by using green solvent composition. Polimery. 2013. Vol. 58, pp. 292–294. DOI: https://dx.doi.org/10.14314/polimery. 2013. 292
5. Федосов С.В. Вторичные материальные ресурсы для строительной индустрии. Иваново: ИВГПУ, 2017. 188 с.
5. Fedosov S.V. Vtorichnye material’nye resursy dlya stroitel’noi industrii [Secondary material resources for the construction industry]. Ivanovo: IVGPU. 2017. 188 p.
6. Щепочкина Ю.А., Быков Б.И. Модификация мелкозернистого бетона добавками измельченной пластмассы // Строительство и реконструкция. 2017. № 4. С. 129–132.
6. Shchepochkina Yu.A., Bykov B.I. Modification of fine-grained concrete with crushed plastic additives. Stroitel’stvo i rekonstruktsiya. 2017. No. 4. pp. 129–132.
7. Thomas B.S., Gupta R.C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews. 2016. Vol. 54, pp. 1323–1333. DOI: https://doi.org/10.1016/j.rser.2015.10.092
8. Richardson A., Coventry K, Edmondson V., Dias E. Crumb rubber used in concrete to provide freeze–thaw protection (optimal particle size). Journal of Cleaner Production. 2016. Vol. 112. Part 1, pp. 599–606. DOI: https://doi.org/10.1016/j.jclepro.2015.08.028
9. Sambhaji P.P. Use of waste plastic in concrete mixture as aggregate replacement. International Journal of Advanced Engineering Research andScience. 2016. Iss. 12. Vol. 3, pp. 115–118. DOI: https://dx.doi.org/10.22161/ijaers/3.12.23
10. Ru Wang, Tengfei Zhang, Peiming Wang. Waste printed circuit boards nonmetallic powder as replacement for sand in cement mortar. Materiali Budowlane. 2016. Vol. 1, pp. 59–62. DOI: https://doi.org/10.15199/33.2016.01.18
11. Langier B., Werner K., Baranowski W. Modyfikacje betonu dodatkiem rozdrobnionego polipropylenu [Modification of concrete with addition of grinded polypropylene]. Przetwórstwo tworzyw. 2014. Vol. 4, pp. 299–304. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-a55a5f25-2445-44f0-a4bc-1ced63dd1232/c/Langier.pdf (in Polish).
12. Shen W., Shan L., Zhang T., Ma H., Cai Z., Shi H. Investigation on polymer–rubber aggregate modified porous concrete. Construction and Building Materials. 2013. Vol. 38, pp. 667–674. DOI: https://doi.org/10.1016/j.conbuildmat.2012.09.006
13. Ismail1 Z. Z., Jaeel A.J. Environmental friendly concrete using waste compact discs as fine aggregate replacement. Fourth International Conference on Sustainable Construction Materials and Technologies. Las Vegas. August 7–11, 2016. http://www.claisse.info/2016%20papers/S118.pdf
14. Tang W.C., Lo Y., Cui H.Z. Size effect of waste compact disc shred on properties of concrete. Advanced Materials Research. 2012. Vol. 346, pp. 40–46. DOI: https://doi.org/10.4028/www.scientific.net/AMR.346.40
15. Rane H. Patel P., Adate P., Patil N., Jadhav S. Kashikar V. Environment Friendly Concrete by Replacement of Coarse Aggregates by waste CD’s // International Journal of Engineering Research & Technology (IJERT). 2018. Iss. 4. Vol. 7, pp. 397–399. https://www.ijert.org/research/environment-friendly-concrete-by-replacement-of-coarse-aggregates-by-waste-cds-IJERTV7IS040366.pdf
16. Ezerskiy V., Kuznetsova N.V., Seleznev A.D. Justification of the water-cement ratio decision for cement mixtures using CBPB wastes. Materials Science Forum. 2019. Vol. 945, pp. 1009–1015. DOI: 10.4028/www.scientific.net/MSF.945.1009
17. Ezerskiy V., Kuznetsova N.V., Seleznev A.D. Evaluation of the use of the CBPB production waste products for cement composites. Construction and Building Materials. Vol. 190, pp. 1117–1123. DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.148
18. Ron Zevenhoven, Loay Saeed. Automotive shredder residue (ASR) and compact disc (CD) waste: options for recovery of materials and energy. Espoo: Helsinki University of Technology, Energy Engineering and Environmental Protection, 2003. 70 p.
19. Biehn A.W. Compact discard: finding environmentally responsible ways to manage discarded household CDs and DVDs. University of Pennsylvania, 2008. 61 p.
20. Ицкович С.М., Чумаков Л.Д., Баженов Ю.М. Технология заполнителей бетона. М.: Высшая школа, 1991. 272 с.
20. Itskovich S.M., Chumakov L.D., Bazhenov Yu.M. Tekhnologiya zapolnitelei betona [Concrete filler technology]. Moscow: Vysshaya shkola. 1991. 272 p.
21. Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента. Мн.: БГУ им. В.И. Ленина, 1982. 302 с.
21. Krasovskii G.I., Filaretov G.F. Planirovanie eksperimenta [Design of experiment]. Minsk: BGU named after V.I. Lenin. 1982. 302 p.
22. Бродский В.З., Бродский Л.И., Голикова Т.И., Никитина Е.П., Панченко Л.А. Таблицы планов эксперимента для факторных и полиномиальных моделей: Справочное издание. М: Металлургия, 1982. 753 с.
22. Brodskii V.Z., Brodskii L.I., Golikova T.I., Nikitina E.P., Panchenko L.A. Tablitsy planov eksperimenta dlya faktornykh i polinomial’nykh modelei (spravochnoe izdanie) [Tables with the designs of experiments for factor and polynomial models (reference book)]. Moscow: Metallurgiya. 1982. 753 p.

For citation: Ezerskiy V.A., Kuznetsova N.V., Seleznev A.D., Moiseenko G.A. Strength of fine concrete with addition of fine crushed recyclable optical discs. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 18–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-18-23

Development of the Theory of Concrete Composite Degradation

Number of journal: 6-2019
Autors:

Rimshin V.I.
Varlamov A.A.
Kurbatov V.L.
Anpilov S.M.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-12-17
УДК: 666.97.058

 

AbstractAbout AuthorsReferences
The elastic model of concrete composite behavior is considered. Two–factor “matrix-filler” model of behavior of the concrete composite investigated in the theory of degradation is substantiated. The study of elastic behavior is important in terms of assessing the stress-strain state of reinforced concrete structures. Ten parameters are considered in the adopted model. The study of the concrete composite model was carried out using ANSYS software. Elastic deformations of the model were determined. When simulating the shape and size of the filler, the number and relative position of the filler in the prismatic matrix were changed. The results obtained when simulating were compared with the theoretical model obtained in previous studies. The simulation results confirmed the correctness of the provisions laid down in the theoretical model. The obtained model is proposed to be used when assessing the behavior of the concrete composite in the operated structures.
V.I. RIMSHIN1, Doctor of Sciences (Engineering), Corresponding Member of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.A. VARLAMOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.L. KURBATOV3, Doctor of Sciences (Economics), Candidate of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.M. ANPILOV4, Doctor of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 Nosov Magnitogorsk State Technical University (11, Uritskogo Street, Magnitogorsk, 455000, Russian Federation)
3 Belgorod State Technological University named after V.G. Shukhov, North-Caucasian Branch (24, Zheleznovodskaya Street, Mineralnye Vody, Stavropol Region, 357202, Russian Federation)
4 Scientific and creative center of RAACS “VolgaAkademTsentr” (445043, Tolyatty, Yuzhnoye Highway, 24a)

1. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General models of the mechanics of reinforced concrete]. Moskva: Strojizdat. 1996. 416 p.
2. Korotaev S.A., Kalashnikov V.I., Rimshin V.I., Erofeeva I.V., Kurbatov V.L. Тhe impact of mineral aggregates on the thermal conductivity of cement composites. Ecology, Environment and Conservation. 2016. Vol. 22. No. 3, pp. 1159–1164.
3. Erofeev V., Karpushin S., Rodin A., Tretiakov I., Kalashnikov V., Moroz M., Smirnov V., Smirnova O., Rimshin V., Matvievskiy A. Physical and mechanical properties of the cement stone based on biocidal Portland cement with active mineral additive. Materials Science Forum. 2016. Vol. 871, pp. 28–32. DOI: 10.4028/www.scientific.net/MSF.871.28
4. Rimshin V.I., Varlamov A.A. Three-dimensional model of elastic behavior of the composite. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Teknologiya Tekstil’noi Promyshlennosti. 2018. No. 3, pp. 63–68. (In Russian).
5. Telichenko V., Rimshin V., Kuzina E. Methods for calculating the reinforcement of concrete slabs with carbon composite materials based on the finite element model. MATEC Web of Conferences. 2018. Vol. 251. 04061. DOI: 10.1051/matecconf/201825104061
6. Varlamov A.A., Rimshin V.I., Tverskoi S.Y. The General theory of degradation. IOP Conference Series: Materials Science and Engineering. 2018. 463(2):022028 DOI: 10.1088/1757-899X/463/2/022028
7. Varlamov A.A., Rimshin V.I., Tverskoi S.Y. The modulus of elasticity in the theory of degradation. IOP Conference Series Materials Science and Engineering. 463(2):022029. DOI:10.1088/1757-899X/463/2/022029
8. Varlamov A.A., Rimshin V.I., Tverskoi S.Y. Charting standard concrete based on the theory of degradation. IOP Conference Series Materials Science and Engineering. 463(2):022030. DOI:10.1088/1757-899X/463/2/0220309.
9. Bondarenko V.M., Rimshin V.I. Quasilinear equations of force resistance and the diagram σ–ε concrete. Stroitel’naya mekhanika inzhenernyh konstrukcij i sooruzhenij. 2014. No. 6, pp. 40–44. (In Russian).
10. Varlamov A.A. On the design of the chart behavior of concrete. Beton i zhelezobeton. 2016. No. 1, pp. 6–8. (In Russian).
11. Rahmanov V.A. Safonov A.A. Development of experimental evaluation methods for stress-strain diagrams of concrete under compression. Academia. Arhitektura i stroitel’stvo. 2017. No. 3, pp. 120–125. (In Russian).
12. Kurbatov Yu.E., Kashevarova G.G. Determination of elastic properties of a cement-sandy composition, the method of structural-simulation modeling. International Journal for Computational Civil and Structural Engineering. 2018. No. 14 (3), pp. 59–67.
13. Murashkin G.V., Mordovskij S.S. The application of the deformation diagrams for the calculation of the bearing capacity of eccentrically compressed concrete elements. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 3, pp. 38–40. (In Russian).
14. Karpenko N.I., Karpenko S.N. To the determination of strength of concrete under triaxial compression. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 7, pp. 27–28. (In Russian).
15. Oparina L.A. The results of the calculation of the energy intensity of a building’s lifecycle. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 11, pp. 50–52. (In Russian).

For citation: Rimshin V.I., Varlamov A.A., Kurbatov V.L., Anpilov S.M. Development of the theory of concrete composite degradation. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 12–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-12-17

Strength and Deformability of Concrete of Compressed and Bending Reinforced Concrete Elements with Shear Reinforcement

Number of journal: 6-2019
Autors:

Krishan A.L.
Rimshin V.I.
Astafieva M.A.
Troshkina E.A.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-8-11
УДК: 624.012.3

 

AbstractAbout AuthorsReferences
Borders and volumes of practical application of shear reinforcement of bearing reinforced concrete structures are constantly expanding. In this case, the calculation of strength and deformability of compressed and bending elements with shear reinforcement is performed on the basis of empirical dependences. In this paper, new dependences for determining the strength and ultimate deformation of the shortening of volumetric compressed concrete are proposed, which can reflect the basic regularities of their force resistance and provide better accuracy of calculations compared to those currently used. Comparison with the previously published experimental data showed that such dependences were obtained. An important advantage of these dependencies is that they take into account all the main factors affecting the mechanical properties of the volumetric compressed concrete and are universal.
A.L. KRISHAN1, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.I. RIMSHIN2, Doctor of Sciences (Engineering), Corresponding Member of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.A. ASTAF’EVA1, Reserch Teacher (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.A. TROSHKINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Nosov Magnitogorsk State Technical University (11, Uritskogo Street, Magnitogorsk, 455000, Russian Federation)
2 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Attard M.M., Samani A.K. A stress-strain model for uniaxial and confined concrete under compression. Engineering Structures. 2012. Vol. 41, pp. 335–349. DOI: https://doi.org/10.1016/j.engstruct.2012.03.027
2. Fafitis A., Shah S.P. Lateral reinforcement for high-strength concrete columns. ACI Materials Journal. 1985. Vol. 87. Iss. 12, pp. 212–232.
3. Han L.H., An Y.H. Performance of concrete-encased CFST stub columns under axial compression. Journal of Constructional Steel Research. 2014. Vol. 93, pp. 62–76. DOI: https://doi.org/10.1016/j.jcsr.2013.10.019
4. Imran I., Pantazopoulou S.J. Experimental study of plain concrete under triaxial stress. ACI Materials Journal. 1996. Vol. 93. Iss. 6, pp. 589–601.
5. Li Q., Ansari F. High-strength concrete in triaxial compression by different sizes of specimens. ACI Mater Journal. 2000. Vol. 97. Iss. 6, pp. 684–689.
6. Lu X., Hsu C. Stress-strain relations of high-strength concrete under triaxial compression. Journal of Materials in Civil Engineering. 2007. Vol. 19, pp. 261–268. DOI: 10.1061/(ASCE)0899-1561(2007)19:3(261)
7. Muguruma H., Watanabe S., Katsuta S., Tanaka S. A stress-strain model of confined concrete. JCA proceedings of cement and concrete. 1980. Vol. 34. Japan Cement Assn., Tokyo, Japan, pp. 429–432.
8. Subramanian N. Design of confinement reinforcement for RC columns. Indian Concrete Journal. 2011. Vol. 85, pp. 25–36.
9. Watson S., Zahn F.A., Park R. Confining Reinforcement for Concrete Columns. Journal of Structural Engineering. 1994. Vol. 120. Iss. 6, pp. 1798–1824. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1798)
10. Ванус Д.С. Экспериментальные исследования железобетонных балок с косвенным сетчатым армированием сжатой зоны. Промышленное и гражданское строительство. 2011. № 5. С. 56–57.
10. Vanus D.S. Experimental studies of reinforced concrete beams with indirect mesh reinforcement of the compressed zone. Promyshlennoe i grazhdanskoe stroitel’stvo. 2011. No. 5, pp. 56–57. (In Russian).
11. Гринев В.Д., Белевич С.Д. Работа железобетонных балок с усиленной сжатой зоной. Промышленное и гражданское строительство. 1993. № 10. С. 12–13.
11. Grinev V.D., Belevich S.D. Work reinforced concrete beams with reinforced compressed area. Promyshlennoe i grazhdanskoe stroitel’stvo. 1993. No. 10, pp. 12–13. (In Russian).
12. Hadi M., Elbasha N. Displacement ductility of helically confined HSC beams. The Open Construction and Building Technology Journal. 2008. Vol. 2, pp. 270–279. DOI: 10.2174/1874836800802010270
13. Расторгуев Б.С., Ванус Д.С. Расчет железобетонных элементов с поперечным сетчатым армированием. Промышленное и гражданское строительство. 2009. № 10. С. 53–54.
13. Rastorguev B.S., Vanus D.S. Calculation of reinforced concrete elements with transverse mesh reinforcement. Promyshlennoe i grazhdanskoe stroitel’stvo. 2009. No. 10, pp. 53–54. (In Russian).
14. Тамразян А.Г., Манаенков И.К. К расчету изгибаемых железобетонных элементов с косвенным армированием сжатой зоны. Промышленное и гражданское строительство. 2016. № 7. С. 41–44.
14. Tamrazyan A.G., Manaenkov I.K. To the calculation of bent reinforced concrete elements with indirect reinforcement of the compressed zone. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 7, pp. 41–44. (In Russian).
15. Яркин P.А., Струлев В.М. Изгиб железобетонных балок с косвенным армированием сжатой зоны бетона. Вестник ТГТУ. 2003. Т. 9. С. 486–491.
15. Yarkin P.A., Strulev V.M. Bending of reinforced concrete beams with indirect reinforcement of the compressed zone of concrete. Vestnik TGTU. 2003. Vol. 9, pp. 486–491. (In Russian).
16. Mander J.B., Priestley M.J.N., Park R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, ASCE. 1988. Vol. 114. Iss. 8, pp. 1804–1826. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
17. Krishan A. L. Power resistance of compressed concrete elements with confinement reinforcement by means of meshes. Advances in Environmental Biology. 2014. Vol. 8. No. 7, pp. 1987–1990. http://www.aensiweb.com/old/aeb/2014/1987-1990.pdf
18. Манаенков И.К. К совершенствованию диаграммы сжатого бетона c косвенным армированием. Строительство и реконструкция. 2018. № 2 (76). С. 41–50.
18. Manaenkov I.K. To improve the diagram of compressed concrete with indirect reinforcement. Stroitel’stvo i rekonstruktsiya. 2018. No. 2 (76), pp. 41–50. (In Russian).
19. Attard M.M., Setung S. Stress-strain relationship of confined and unconfined concrete. ACI Materials Journal. 1996. Vol. 93. Iss. 5, pp. 432–442.

For citation: Krishan A.L., Rimshin V.I., Astafieva M.A., Troshkina E.A. Strength and deformability of concrete of compressed and bending reinforced concrete elements with shear reinforcement. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 8–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-8-11

About the Size of Control Samples of Concrete

Number of journal: 6-2019
Autors:

Varlamov A.A.
Rimshin V.I.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-3-7
УДК: 624.072.31

 

AbstractAbout AuthorsReferences
Methods for determining the basic physical and mechanical characteristics of concrete are based on tests of standard concrete samples. The smallest size of such samples is determined by five sizes of filler. Extraction of such samples from finished products is hindered. Previously, dependences making it possible to determine the modulus of elasticity of the samples, knowing the ratio of the solution to the filler were obtained. This ratio is determined by the side surfaces of the sawn samples. Concrete samples obtained by sawing standard samples were tested. The results of complex comparative tests of standard and small samples are presented. As a result of the study it is revealed that the strength of small samples does not exceed the strength of the standard. The behavior diagrams of the standard samples practically coincide with the averaged diagrams of the work of samples of small sizes. Test results show the opportunity to move from tests of standard samples of concrete to concrete samples of small sizes.
A.A. VARLAMOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.I. RIMSHIN2, Doctor of Sciences (Engineering), Corresponding Member of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Nosov Magnitogorsk State Technical University (11, Uritskogo Street, Magnitogorsk, 455000, Russian Federation)
2 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Neville A. Core tests: easy to perform, not easy to interpret. Concrete International. 2001. November, pp. 59–68. https://sefindia.org/forum/files/ci2311neville_186.pdf
2. Bazhenov Y.M., Erofeev V.T., Rimshin V.I., Markov S.V., Kurbatov V.L. Changes in the topology of a concrete porous space in interactions with the external medium. Engineering Solid Mechanics. Vol. 4 (4), pp. 219–225.
3. Oller S., Onate E., Miquel J., Botello S. A plastic damage constitutive model for composite materials. International Journal of Solids and Structures. 1996. Vol. 33. Iss. 17, pp. 2501–2518.
4. Varlamov A.A. Model the elastic behavior of the concrete. Izvestiya KGASU. 2014. No. 3 (29), pp. 19–26. (In Russian).
5. Rimshin, V.I., Varlamov, A.A. Three-dimensional model of elastic behavior of the composite. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti. 2018. No. 3 (375), pp. 63–68. (In Russian).
6. Varlamov A.A., Gavrilov V.B., Sagadatov A.I. Comprehensive evaluation method of stress-strain state and durability of reinforced concrete structures. Byulleten’ stroitel’noj tehniki. 2017. No. 11, pp. 29–37. (In Russian).
7. Rimshin V.I., Gavrilov V.B., Varlamov A.A. Evaluation of mechanical and macrostructural properties of concrete by method of local destruction. Byulleten’ stroitel’noj tehniki. 2018. No. 12 (1012), pp. 24–26. (In Russian).
8. Krucilyak Yu.M., Krucilyak M.M., Varlamov A.A. The method of determining the characteristics of crack resistance of concrete. Beton i zhelezobeton. 2008. No. 1, pp. 20. (In Russian).
9. Pangaev V.V. Onina M.M., Serdyuk V.M., Molokov D.V. The study of scale factors to determine prochnosti cement mortars under compression. Izvestiya vuzov. Stroitel’stvo. 2012. No. 2, pp. 102–108. (In Russian).
10. Il’nickaya E.I., Protod’yakonov M.M. The influence of the scale effect in determining the fortress of rocks on irregular shapes. Resistance of rocks to breaking when procuring. Moscow: Izd. Akad. Nauk SSSR. 1962, pp. 214–224. (In Russian).
11. Lermit R. Problemy tekhnologii betona [Problems of concrete technology]. Moscow: Izdatel’stvo LKI. 2007. 296 p.
12. Shejnin A.M. Ekkel’ S.V. Quality assessment of in-situ concrete in road and airfield construction, when testing of the cores. Stroitel’nye Materialy [Construction Materials]. 2009. No. 5, pp. 17–20. (In Russian).
13. Sokolov B.S., Zagidullin M.R. Determination of concrete strength on the test results of cylindrical specimens whose dimensions differ from those regulated by standards. Stroitel’nye Materialy [Construction Materials]. 2010. № 8, pp. 70–73. (In Russian).
14. Parfenov A.A., Sivakova O.A., Gusar’O.A., Balakireva V.V. Selection of optimal methods for determining the strength of concrete when inspecting buildings and structures. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 60–63. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-60-63 (In Russian)
15. Varlamov A.A., Tverskoi S.Y., Gavrilov V.B. Samples of concrete of small sizes. Topical Problems of Architecture, Civil Engineering and Environmental Economics (TPACEE 2018). Moscow. E3S Web of Conferences. Vol. 91. Doi.org/10.1051/e3sconf/20199102043

For citation: Varlamov A.A., Rimshin V.I. About the size of control samples of concrete. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 3–7. (In Russian).
DOI: https://doi.org/10.31659/0585-430X-2019-771-6-3-7

Degradation of Reinforced Concrete Structures of Marine Works from the Combined Impact of Carbonation and Chloride Aggression

Number of journal: 5-2019
Autors:

Shalyi E.E.
Leonovich S.N.
Kim L.V.

DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
УДК: 691.328.1

 

AbstractAbout AuthorsReferences
Corrosion of reinforcement of marine and coastal hydraulic structures due to chloride aggression and carbonation of concrete leads to a sharp decrease in the safety of the structure. The existing design methods do not fully reflect the actual operating conditions of hydraulic structures. This is particularly evident in areas where the simultaneous impact of such factors as low air temperatures and a large number of clear days in the winter with strong solar radiation, leads to a sharp change in the actual operating conditions compared to the calculated. Concretes of many structures and installations experience a greater number of aggressive impacts than provided for by the design standards. As a result of these effects, the reinforcement is subjected to the depassivation process as soon as the chloride concentration on its surface exceeds the threshold concentration, or the pH value in the protective layer of concrete decreases to the threshold value as a result of carbonation. When oxygen penetrates to the surface of the reinforcement, electrochemical reactions are implemented with formation of corrosion products. This leads to cracking of the protective layer of concrete, reducing the cross-sectional area of the reinforcement. The paper proposes a method for predicting the complex degradation of reinforced concrete structures of coastal structures with due regard for the various mechanisms of corrosion wear, which makes it possible to develop effective ways to improve the durability and maintainability of structures operated in the marine environment.
E.E. SHALYI1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.N. LEONOVICH2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
L.V. KIM1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Far Eastern Federal University (E920, 12, Ajax Bay, Russky Island, Vladivostok, 690091, Russian Federation)
2 Belarusian National Technical University (220013, Belarus, Minsk, Nezavisimosty Ave., 65)

1. Huang T. The experimental research on the interaction between concrete carbonation and chloride ingress under loading: MSc thesis. Zhejiang University. 2013.
2. Bazant Z.P., Physical model for steel corrosion in concrete sea structures theory. Journal of the structural division. ASCE 105 (ST6), 1979: 1137–1153. http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/119.pdf
3. Andrade C., Prieto M., Tanner P. et al. Testing and modelling chloride penetration into concrete. Construction and Building Materials. 2011. Vol. 39, pp. 9–18. DOI: 10.1016/j.conbuildmat.2012.08.012
4. Apostolopoulos C., Papadakis V.,Consequences of steel corrosion on the ductility properties of reinforcement bar. Construction and Building Materials. 2008. Vol. 22 (12), pp. 2316–2324. DOI: 10.1016/j.conbuildmat.2007.10.006
5. Yuan C., Niu D., Luo D. Effect of carbonation on chloride diffusion in fly ash concrete. Disaster Advances. 2012. Vol. 5 (4), pp. 433–436.
6. Cairns J.W. State of the art report on bond of corroded reinforcement. Tech. Report No. CEB-TG-2/5. 1998.
7. Cao C., Cheung M. Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Construction and Building Materials. 2014. Vol. 51, pp. 75–81. https://doi.org/10.1016/j.conbuildmat.2013.10.042
8. Ho D.W.S., Lewis R.K. Carbonation of concrete and its prediction. Cement and Concrete Research. 1987. Vol. 17 (3), pp. 489–504. DOI: 10.1016/0008-8846(87)90012-3
9. Glass G.K., Buenfeld N. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corrosion Science. 2000. Vol. 42 (2), pp. 329–344. DOI: 10.1016/S0010-938X(99)00083-9
10. Böhni H. Corrosion in reinforced concrete structures. England: Woodhead Publishing Limited. 2005. 264 p.
11. Chindaprasirt P., Rukzon S., Sirivivatnanon V. Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended portland cement mortar. Construction and Building Materials. 2008. Vol. 22. Iss. 8, pp. 1701–1707. https://doi.org/10.1016/j.conbuildmat.2007.06.002
12. Rahman M., Al-Kutti W., Shazali M., Baluch M., Simulation of chloride migration in compression-induced damage in concrete. Journal of Materials in Civil Engineering. 2012. Vol. 24 (7), pp. 789–796. DOI: 10.1061/(ASCE)MT.1943-5533.0000458
13. Ozbolt J., Balabanic G., Kuster M. 3D numerical modelling of steel corrosion in concrete structures. Corrosion Science. 2011. Vol. 53 (12), pp. 4166–4177. DOI: 10.1016/j.corsci.2011.08.026
14. Yoon I. Deterioration of concrete due to combined reaction of carbonation and chloride penetration: experimental study. Key English Materials. 2007. Vol. 348–349, pp. 729–732. https://doi.org/10.4028/www.scientific.net/KEM.348-349.729
15. Yoon I. Simple approach to calculate chloride diffusivity of concrete considering carbonation. Computers and Concrete. 2009. Vol. 6 (1) DOI: 10.12989/cac.2009.6.1.001
16. Backus J., Mcpolin D., Basheer M. et al. Exposure of mortars to cyclic chloride ingress and carbonation. Advances in Cement Research. 2013. Vol. 25 (1), pp. 3–11. https://doi.org/10.1680/adcr.12.00029
17. Zhu, X., Zi, G., Cao, Z., & Cheng, X. Combined effect of carbonation and chloride ingress in concrete. Construction and Building Materials. 2016. Vol. 110, pp. 369–380. https://doi.org/10.1016/j.conbuildmat.2016.02.034
18. Wan X., Wittmann F., Zhao T., Fan H. Chloride content and pH value in the pore solution of concrete under carbonation. Journal of Zhejiang University SCIENCE A. 2013. Vol. 14. Iss. 1, pp. 71–78. https://doi.org/10.1631/jzus.A1200187
19. Алексеев С.Н., Иванов Ф.М., Модры С., Шиссль П. Долговечность железобетона в агрессивных средах. М.: Стройиздат, 1990. 320 с.
19. Alekseev S.N., Ivanov F.M., Modry S., Shissl’ P. Dolgovechnost’ zhelezobetona v agressivnykh sredakh [The durability of reinforced concrete in aggressive environments]. Moscow: Stroyizdat. 1990. 320 p.
20. Алексеев С.Н., Розенталь Н.К. Коррозионная стойкость железобетонных конструкций в агрессивной производственной среде. М.: Стройиздат, 1976. 205 с.
20. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ zhelezobetonnykh konstruktsii v agressivnoi proizvodstvennoi srede [Corrosion resistance of reinforced concrete structures in an aggressive production environment]. Moscow: Stroyizdat, 1976. 205 p.
21. Расчет срока службы железобетонных конструкций в условиях коррозии карбонизации. Перспективы развития новых технологий в строительстве и подготовке инженерных кадров: Cб. науч. ст. Гродн. гос. ун-та им. Я. Купалы. Гродно: ГрГУ, 2010. С. 369–375.
21. Calculation of the service life of reinforced concrete structures under carbonization corrosion conditions. Prospects for the development of new technologies in the construction and training of engineering personnel: A collection of scientific schools of the Grodno State University I. Kupala. Grodno: GrSU. 2010, pp. 369–375. (In Russian).
22. Aveldano R.R., Ortega N.F. Behavior of concrete elements subjected to corrosion in their compressed or tensed reinforcement. Construction and Building Materials. 2013. Vol. 38, pp. 822–828. DOI: 10.1016/j.conbuildmat.2012.09.039
23. Lee M.K., Jung S.H., Oh B.H. Effects of carbonation on chloride penetration in concrete. Aci Materials Journal. 2013. 110 (5), pp. 559–566.

For citation: Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72

Water Absorption of Wood-Polymer Composites Based on PVC with Partial Replacement of Wood Filler by Mineral One

Number of journal: 5-2019
Autors:

Askadskii A.A.
Matseevich T.A.
Kondrashchenko V.I.

DOI: https://doi.org/10.31659/0585-430X-2019-770-5-62-66
УДК: 676.022

 

AbstractAbout AuthorsReferences
The materials of wood-polymer composites (WPC) in the form of terrace boards, in which the wood filler is partially replaced by mineral one, are obtained. Materials from WPC with the use of matrix polymer (polyvinyl chloride) (PVC) have good mechanical properties, low abradability and resistance to climatic impacts. However, they have a relatively large water absorption, the task of reducing which is relevant not only in Russia but also in other countries where constructing facilities operating under the external environmental conditions. Modification of such materials in this work was carried out by replacing part of the wood filler by a mineral filler CaCO3 (chalk). Partial replacement of wood flour with chalk led to a noticeable decrease in swelling from 1.25 to 0.01%. Herewith, the modulus of elasticity is increased from 2260 to 2880 MPa, tensile strength varies from 30.5 to 16.7–32 MPa. The specific impact viscosity is slightly reduced from 8.9 to 7.74 kJ/m2. The optimal ratio of wood and mineral fillers is 60/40%.
A.A. ASKADSKII1, 2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.A. MATSEEVICH1, Doctor of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.I. KONDRASHCHENKO3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federation)
3 Russian University of Transport (9, Build. 9, Obraztsova Street, 127994, Moscow, Russian Federation)

1. Moroz P.A., Askadskiy Al.A., Matseyevich T.A., Solovyova E.V., Askadskiy A.A. Use of secondary polymers for production of wood and polymeric composites. Plasticheskie massy. 2017. No. 9–10, pp. 56–61. (In Russian).
2. Matseyevich T.A., Askadskiy A.A. Mechanical properties of a terrace board on the basis of polyethylene, polypropylene and polyvinylchloride. Stroitel’stvo: nauka i obrazovanie. 2017. T. 7. No. 3, pp. 48–59. (In Russian).
3. Abushenko A.V., Voskoboinikov I.V., Kondratyuk V.A. Production of products from WPC. Delovoi zhurnal po derevoobrabotke. 2008. No. 4, pp. 88–94 (In Russian).
4. Yershova O.V., Chuprova L.V., Mullina E.R., Mishurina O.A. Research dependence of properties the wood and polymeric composites from the chemical composition of a matrix. Sovremennye problem nauki i obrazovaniya. 2014. No. 2, p. 26. https://www.science-education.ru/ru/article/view?id=12363 (In Russian).
5. Klesov A.A. Drevesno-polimernye kompozity / per. s angl. A.Chmelya. [Wood and polymeric composites / translation from English A.Chmel.]. Saint Petersburg. Scientific bases and technologies. 2010. 736 p.
6. Walcott M.P., Englund K.A. A technology review of wood-plastic composites; 3 ed. N.Y.: Reihold Publ. Corp., 1999. 151 p.
7. Under edition. R.F. Grossman; translation from English under the editorship of V.V. Guzeev. Rukovodstvo po razrabotke kompozitsii na osnove PVKh. [The guide to development of compositions on the basis of PVC]. Scientific bases and technologies. 2009. 608 p.
8. Kickelbick G. Introduction to hybrid materials. Hybrid Materials: Synthesis, Characterization, and Applications / G. Kickelbick (ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007. 498 p.
9. Wilkie Ch., Summers J., Daniyels of H. Polivinilkhlorid / per. s angl. pod red. G.E. Zaikova. [The polyvinylchloride / translation from English under the editorship of G.E. Zaikov]. Saint Petersburg. Professiya. 2007. 728 p.
10. Kokta B.V., Maldas D., Daneult C., Bland P. Composites of polyvinyl chloride-wood fibers. Polymer-plastics Technology Engineering. 1990. Vol. 29, pp. 87–118.
11. Nizamov R.K. Polyvinylchloride compositions of construction appointment with multifunctional fillers. Diss. Doct. (Engineering). Kazan. 2007. 369 p. (In Russian).
12. Stavrov V.P., Spiglazov A.V., Sviridenok A.I. Rheological parameters of molding thermoplastic composites high-filled with wood particles. International Journal of Applied Mechanics and Enginnering. 2007. Vol. 12. No. 2, pp. 527–536.
13. Burnashev A.I. The high-filled polyvinylchloride construction materials on the basis of the nano-modified wood flour. Diss. Cand. (Engineering). Kazan. 2011. 159 p. (In Russian).
14. Figovsky O., Borisov Yu., Beilin D. Nanostructured binder for acid-resisting building materials. Scientific Israel – Technological Advantages. 2012. Vol. 14. No. 1, pp. 7–12.
15. Matseyevich T.A., Askadskiy A.A. Terrace boards: structure, production, properties. Part 1. Mechanical properties. Stroitel’nye materialy [Construction Materials]. 2018. No. 1–2, pp. 101–105. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-101-105
16. Matseyevich T.A., Askadskiy A.A. Terrace boards: structure, production, properties. Part 2. Thermal properties, water absorption, abrasion, hardness, resistance to climatic influences, the use of recycled polymers. Stroitel’nye materialy [Construction Materials]. 2018. No. 3, pp. 55–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-757-3-55-61

For citation: Askadskii A.A., Matseevich T.A., Kondrashchenko V.I. Water absorption of wood-polymer composites based on PVC with partial replacement of wood filler by mineral one. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 62–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-62-66

Fluoro-Anhydrite Compositions with a Light Filler Based on Expanded Perlite Sand

Number of journal: 5-2019
Autors:

Yakovlev G.I.
Kalabina D.A.
Grakhov V.P.
Buryanov A.F.
Gordina A.F.
Bazhenov K.A.
Nikitina S.V.

DOI: https://doi.org/10.31659/0585-430X-2019-770-5-57-61
УДК: 666.973.2

 

AbstractAbout AuthorsReferences
The dependence of the physical and mechanical properties of the composition on the basis of high-strength anhydrite binder on the concentration of light filler, as which the expanded perlite sand was used, was studied. The optimal ratio of filler and binder is determined by the combination of three main parameters: the compressive strength of the sample, the average density and the thermal conductivity coefficient. The assessment of the influence of the use of three modifying components: air-entraining admixture, primer with nano-additive and wetting agent on the physical and mechanical characteristics of the composition is carried out. Studies have shown that a significant impact on the properties of the composition had the introduction of an air entraining admixture, which increased the compressive strength at the age of 7 days from 1.34 to 2.07 MPa, as well as a wetting agent, which made it possible to reduce the density of the material from 891 to 695 kg/m3. The fluoro-anhydrite composition developed with a light filler on the basis of expanded perlite sand, with due regard for its physical and mechanical characteristics, can be used as an effective structural and thermal insulation material in the production of tongue-and-groove slabs, blocks for the construction of structures inside buildings and structures.
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.A. KALABINA1, graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.P. GRAKHOV1, Doctor of Sciences (Economics) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.F. BURYANOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.F. GORDINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
K.A. BAZHENOV1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.V. NIKITINA3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 “Novi Dom” OOO (31, Salutovskaya Street, Izhevsk, 426053, Russian Federation)

1. Degirmenci N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. Construction and Building Materials. 2008. Vol. 22, pp. 1857–1862. DOI: 10.1016/j.conbuildmat.2007.04.024
2. Гриневич А.В., Киселев А.А., Кузнецов Е.М., Бурьянов А.Ф., Ряшко А.И. Гипсовое вяжущее из α-СаSO4.0,5Н2О – отхода производства экстракционной фосфорной кислоты // Строительные материалы. 2014. № 7. C. 4–8.
2. Grinevich A.V., Kiselev A.A., Kuznetsov E.M., Bur’yanov A.F., Ryashko A.I. Gypsum binder from α-СаSO4.0,5Н2О – waste of extraction phosphoric acid production. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 4–8. (In Russian).
3. Garg M, Jain N, Singh M. Development of alpha plaster from phosphogypsum for cementitious binders. Construction and Building Materials. 2009. Vol. 23 (10), pp. 3138–3143. DOI: 10.1016/j.conbuildmat.2009.06.024
4. Орешкин Д.В. Экологические проблемы комплексного освоения недр при масштабной утилизации техногенных минеральных ресурсов и отходов в производстве строительных материалов // Строительные материалы. 2017. № 8. C. 55–63.
4. Oreshkin D.V. Environmental problems of comprehensive exploitation of mineral resources when large­scale utilization of man­made mineral resources and waste in the production of building materials. Stroitel’nye Materialy [Construction Materials]. 2017. No. 8, pp. 55–63. DOI: https://doi.org/10.31659/0585-430X-2017-751-8-55-63 (In Russian).
5. Hughes P., Glendinning S. Deep dry mix ground improvement of a soft peaty clay using blast furnace slag and red gypsum. Quarterly Journal of Engineering Geology and Hydrogeology. 2004. Vol. 37 (3), pp. 205–216. DOI: 10.1144/1470-9236/04-003
6. Fauziah I., Zauyah S., Jamal T. Characterization and land application of red gypsum: a waste product from the titanium dioxide industry. Science of Total Environment. 1996. Vol. 188, pp. 243–251. DOI: 10.1016/0048-9697(96)05179-0
7. Tesárek Pavel, Drchalová Jaroslava, Kolísko Jiří, Rovnaníková Pavla, Černý Robert. Flue gas desulfurization gypsum: study of basic mechanical, hydric and thermal properties. Construction and Building Materials. 2007. Vol. 21, pp. 1500–1509. DOI: 10.1016/j.conbuildmat.2006.05.009
8. Xiao Lu Guo, Hui Sheng Shi Thermal treatment and utilization of flue gas desulphurization gypsum as an admixture in cement and concrete. Construction and Building Materials. 2008. Vol. 22, pp. 1471–1476. DOI: 10.1016/j.conbuildmat.2007.04.001
9. Tesárek P., Rovnaníková P., Kolísko J. Černý, R. Właściwości hydrofobowego gipsu z odsiarczania spalin [Properties of hydrophobized FGD gypsum]. Cement-wapno-beton. 2005. Vol. 5, pр. 255–264 (In Polish)|
10. Гордина А.Ф., Яковлев Г.И., Полянских И.С., Керене Я., Фишер Х.Б., Рахимова Н.Р., Бурьянов А.Ф. Гипсовые композиции с комплексными модификаторами структуры // Строительные материалы. 2016. № 1–2. C. 90–95.
10. Gordina A.F., Yakovlev G.I., Polyanskikh I.S., Kerene Ya., Fisher Kh.B., Rakhimova N.R., Bur’yanov A.F. Gypsum compositions with complex modifiers of structure. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 90–95. https://doi.org/10.31659/0585-430X-2016-733-734-1-2-90-95
11. Colak A. Density and strength characteristics of foamed gypsum. Cement & Concrete Composites. 2000. Vol. 22, pp. 193–200.
12. Skujans J., Vulans A., Iljins U., Aboltins A. Measurements of heat transfer of multi-layered wall construction with foam gypsum. Applied Thermal Engineering. 2007. Vol. 27, pp. 1219–1224. DOI: 10.1016/j.applthermaleng.2006.02.047
13. Sayil B., Gurdal E. The physical properties of polystyrene aggregated gypsum blocks. Edited by Lacasse M.A., Vainer D.J. Proceedings of 8th international conference on durability of building materials and components. Canada: Vancouver. 1999, pp. 496–504 http://www.irbnet.de/daten/iconda/CIB1966.pdf
14. Santos A.G. PPF-reinforced, ESP-lightened gypsum plaster. Materiales de Construccion. 2009. Vol. 59, pp. 105–124. https://doi.org/10.3989/mc.2009.41107
15. Vimmrová Alena, Keppert Martin, Svoboda Luboš, Černý Robert. Lightweight gypsum composites: Design strategies for multi-functionality. Cement and Concrete Composites. 2011. Vol. 33, Iss. 1, pp. 84–89. https://doi.org/10.1016/j.cemconcomp.2010.09.011
16. Svoboda L., Vimmrová A. Acid agent for preparation of foamed gypsum. Czech utility design no. 17844. Prague. 2007.
17. Yakovlev G.I.,Tulegenova A.V., Pervushin G.N., Keriene J., Gordina A.F., Bazhenov K.A., Ali Elsayed Elrefaei. Multifunctional admixture used for activating fluoroanhydrite. 20th International Building Materials Conference «Ibausil». 12–14 September 2018. Weimar, Germany. Band 2, pp. 559–568.
18. Яковлев Г.И., Первушин Г.Н., Грахов В.П., Калабина Д.А., Гордина А.Ф., Гинчицкая Ю.Н., Баженов К.А., Трошкова В.В., Дрохитка Р., Хозин В.Г. Конструкционно-теплоизоляционный материал на основе высокопрочного ангидритового вяжущего // Интеллектуальные системы в производстве. 2019. Т. 17. № 1. С. 144–151. DOI: 10.22213/2410-9304-2019-1-144-151
18. Yakovlev G.I., Pervushin G.N., Grakhov V.P., Kalabina D.A., Gordina A.F., Ginchitskaya Yu.N., Bazhenov K.A., Troshkova V.V., Drokhitka R., Khozin V.G. Constructional and thermal insulation material based on high-strength anhydrite binder. Intellektual’nye sistemy v proizvodstve. 2019. Vol. 17. No. 1, pp. 144–151. DOI: 10.22213/2410-9304-2019-1-144-151 (In Russian).

For citation: Yakovlev G.I., Kalabina D.A., Grakhov V.P., Buryanov A.F., Gordina A.F., Bazhenov K.A., Nikitina S.V. Fluoro-anhydrite compositions with a light filler based on expanded perlite sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 57–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-57-61

Bitumen-Mineral Compositions for Road Construction with the Use of Household Waste Glass (Cullet)

Number of journal: 5-2019
Autors:

Borisenko Yu.G.
Azan P.M.
Shvachev D.P.
Vorobiev D.A.

DOI: https://doi.org/10.31659/0585-430X-2019-770-5-51-56
УДК: 625.855.53

 

AbstractAbout AuthorsReferences
It is shown that the promising direction of recycling of household waste glass (cullet) is its use in the compositions of bitumen-mineral compositions for road construction. The compositions of fine-grained bitumen-mineral compositions with the inclusion of cullet fractions of 20-5 mm are proposed, and a comparative analysis of the influence of different content fractions of cullet on physical and mechanical properties of the proposed compositions is made. It is revealed that the use of cullet significantly reduces the bitumen content and density of bitumen-mineral compositions. Rational limits of cullet content in fine-grained bitumen-mineral compositions, which make up no more than 36–40% of the mass, have been established. It is shown that the shear resistance and crack resistance of bitumen-mineral compositions with rational content of cullet in the mixture meet the requirements of GOST.
Yu.G. BORISENKO, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
R.M. AZAN, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.P. SHVACHEV, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.A. VOROBIEV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

North-Caucasus Federal University (1, Pushkina Street, Stavropol, 355009, Russian Federation)

1. Cocking R. The challenge for glass recycling. Sustainable Waste Manage: Proceedings of the International Symposium. 9–11 September 2003. Dundee UK, pp. 73–78.
2. Yegorov K.I., Mamina N.A. Glass waste – ecology, information, business. Stroitel’nye Materialy. [Construction Materials]. 1998. No. 10, pp. 33. (In Russian).
3. Glusing A.K., Conradt R. Dissolution kinetics of recycled crops in recycled cullet. Recycling and Reuse of Glass: Proceedings of International Symposium. 19–20 March 2001. Dundee UK, pp. 29–41.
4. Meyer C. Recycled glass – from waste material to valuable resource. Recycling and Reuse of glass Cullet: Proceedings of International Symposium. 19–20 March 2001. Dundee UK, pp. 1–10.
5. Melkonyan R.G., Vlasova S.G. Ecologicheskie y economicheskie problem ispol’zovania stekloboya v proizvodstve stekla [Environmental andeconomic problems of the use of cullet in the production of glass]. Ekaterinburg: Publishing house Ural. University, 2013. 100 p.
6. Belyaev I.D. Disposal and recycling of cullet. International Scientific and Technical Conference of Young Scientists BSTU named after V.G. Shukhov. 2017, pp. 36–38. (In Russian).
7. Ketov P.A., Puzanov S.I., Koranov V.S. The use of the binding properties of dispersed silicate glasses in the recycling of cullet. Stroitel’nye Materialy [Construction Materials]. 2007. No. 5, pp. 66–67. (In Russian).
8. Rossomagina A.S., Puzanov I.S. Development of stack loboy recycling processes by creating composite materials. Ecological and economic problems of mineral resources development Abstracts of the International Scientific Conference. 2005, pp. 83–84. (In Russian).
9. Meland I., Dahl P.A., Recycling glass cullet as concrete aggregates, applicability and durability. Recycling and Reuse of Glass Cullet: Proceedings of International Symposium. 19–20 March 2001. Dundee UK, pp. 167–177.
10. Pavlushkin T.K., Kiselenko N.G. The use of glass breakage in the production of building materials. Steklo I Keramika. 2011. No. 5, pp. 27–34. (In Russian)
11. Minko N.I., Kalatozi V.V. The use of cullet in the technology of materials for construction purposes. Bulletin of BSTU named after V.G. Shukhov. 2018. No. 1, pp. 82–86. (In Russian).
12. Chuprova L.V., Mishurina O.A. Ecological and economic aspects of waste recycling of glass. International Journal of Applied and Fundamental Research. 2016. No. 11, pp. 222–225.
13. Zaitsev E.I. Construction unburned composites based on the cullet of technical glasses. Rossiiskii khimicheskii zhurnal. 2003. Vol. XLVII. No. 4, pp. 26–31. (In Russian).
14. Miller I.J., Bailey M.D. Uses for waste glass a survey. Report. 1981. No. 2289. p. 33.

For citation: Borisenko Yu.G., Azan P.M., Shvachev D.P., Vorobiev D.A. Bitumen-mineral compositions for road construction with the use of household waste glass (cullet). Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 51–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-51-56

https://www.traditionrolex.com/10