Log in

Possibilities of Using Carbonate Rocks of the Tiksheozero Massif in the Industry of Construction Materials

Number of journal: №1-2-2019
Autors:

Skamnitskaya L.S.
Bubnova T.P.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-54-59
УДК: 691.212:691.54 (553.5)

 

AbstractAbout AuthorsReferences
The creation of a potential mineral raw material base due to the involvement of non-traditional and new types of minerals in the Republic of Karelia is of industrial interest in modern conditions. The Tiksheozero massif, characterized by large reserves of apatite and carbonate raw materials, is classified as a potentially industrial type. Calcite varieties are dominated; dolomite-(ankerite) - calcite and dolomite carbonatites especially are of subordinate importance. General geological and mineralogical data are given; weak rare-metal mineralization is a positive ecological characteristic of the object. Marketing research data reflect the state of the industry of construction materials based on mineral raw materials, including cement industry. Technological study of carbonatites containing apatite of the Tiksheozero massif made it possible to estimate their washability with obtaining apatite and calcite concentrates by flotation and roasting-magnetic technological schemes. Samples of construction materials were obtained and tested in the laboratory. The results of studies of the possibility to obtain silicate brick, cement clinker, lime, using non-enriched carbonatite rock, and calcite concentrate are presented. The prospect of the Tiksheozero massif is related to the ability of the comprehensive development and utilization of mineral resources in the Northern Karelia (Arctic area) on the basis of the formation of a large mining hub, profitable in economic terms, under the condition of formation of effective system of subsoil use.
L.S. SKAMNITSKAYA, senior researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.P. BUBNOVA, researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Institute of Geology of the Karelian Research Centre of the Russian Academy of Sciences (11, Pushkinskaya Street, Petrozavodsk, 185910, Russian Federation)

1. The site of the American Geological Survey. Cement: statistics and information. Access: https://minerals.usgs.gov/minerals/pubs/commodity/cement/.
2. Rakhimov R.Z., Rakhimova N.R. Construction and mineral binders of the past, present and future. Stroitel’nye Materialy [Construction Materials]. 2013. No. 5, pp. 57–59. (In Russian).
3. Henri Van Damme. Concrete material science: Past, present, and future innovations // Cement and Concrete Research. 2018. Vol. 112, pp. 5–24. https://doi.org/10.1016/j.cemconres.2018.05.002
4. Latyipov D.V. The state, problems and prospects for the development of mining enterprises in the construction materials industry. Gornyiy informatsionno-analiticheskiy byulleten. 2016. No. 12, pp. 222–224. (In Russian).
5. Ru-Stat site: Statistics of foreign trade of Russia. According to the Federal Customs Service of Russia. Group “mineral products”. http://ru-stat.com/date-M201709-201809/RU/import/world/0525 (appeal date 01/05/2018)
6. Mineral’no-syr’evaya baza Respubliki Kareliya. Kniga 2. Nemetallicheskie poleznye iskopaemye [The mineral resources of the Republic of Karelia. Book 2. Non-metallic minerals]. Petrozavodsk: Karelia. 2005. 280 p.
7. Ahtola T., Gautneb H., Halberg A., Philiphov, Shchiptsov V., Voytekhovsky Y. Industrial minerals deposits of the Fennoscandian shield (the FODD project). Industrial minerals: problems of forecasting, prospecting, evaluation and innovative technologies for the development of deposits: materials of the international scientific-practical conference. Kazan. 2015. pp. 3–6.
8. Skamnitskaya L.S., Bubnova T.P., Shchiptsov V.V. Evaluation of the potential apatite-bearing carbonatite georesources of the Tiksheozero massif, republic of Karelia. International Multidisciplinary Scientific GeoConference SGEM. 2015. No. 1–3, pp. 279–284.
9. Shchiptsov V.V., Lebedeva G.A., Il’ina V.P. Prospects for the use of the mineral resource base of Karelia for the production of building materials. Stroitel’nye Materialy [Construction Materials]. 2008. No. 5, pp. 8–11.
10. Shchiptsov V. Industrial minerals of the Tiksheozero-Eletozero alkaline ultramafic-caronaticitic and alkaline complexes in Karelia, Russia. Mineral deposit research for a high-tech world. Proceedings of the 12th Biennial SGA Meeting. 12–15 August 2013. Uppsala. Sweden, pp. 1781–1783.
11. Eremin N.I. Nemetallicheskie poleznye iskopaemye [Non-metallic minerals]. Мoscow: MGU. Akademkniga. 2007. 459 p.
12. Schneider M., Romer M., Tschudin M., Bolio H. Sustainable cement production – present and future. Cement and Concrete Research. Vol. 41. Iss. 7. 2011, pp. 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019
13. Panychev A.A., Nikonova A.P. Study of the possibility of extracting calcium carbonate from dumps for cement production. Vestnik MGTU im. G.I. Nosova. 2009. No. 1, pp. 25–29. (In Russian).
14. Sheichenko M. S., Karatsupa S. V., Yakovlev E. A. i dr. Enrichment as a way to increase the efficiency of using technogenic raw materials as a component of composite binders. Vestnik BGTU im. V.G. Shukhova. 2014. No. 1, pp. 16–21. (In Russian).
15. Milos Kuzvart. Industrial minerals and rocks in the 21st Century / Utilización de rocas y minerales industriales. [Alicante 4 de julio de 2005]. 2006, pp. 287–303.
16. Tyukavkina V.V., Bryilyakov Yu.E., Gurevich B.I. Portland cement clinker obtained using carbonate concentrate. Tsement i ego primenenie. 2017. No. 5, pp. 78–80. (In Russian).

For citation: Skamnitskaya L.S., Bubnova T.P. Possibilities of using carbonate rocks of the Tiksheozero massif in the industry of construction materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 54–59. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-54-59 (In Russian).

Building Materials as Disperse Systems: Multiscale Modeling with Dedicated Software

Number of journal: №1-2-2019
Autors:

Smirnov V.A.
Korolev E.V.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53
УДК: [544.77:691-404.8]:004.942:004.416.6

 

AbstractAbout AuthorsReferences
No doubt, the majority of modern building materials are – at every single stage of their existence – disperse systems. Thus, to investigate the structure formation and to reveal peculiarities in influence of control factors to structure and properties, it is possible to employ vast amount of theoretical and semi-empirical methods from interface and colloids science and physical chemistry – the interdisciplinary intersections of physics, nanoscience, chemistry and many other fields. With computational experiments in mind, the particle systems can be considered as the most reasonable representations of both compositions and composites. Modeling of particles’ motion under internal and external forces is the particle dynamics method, and it is dated back to XIX century. As of now, there are numerous software packages available for modeling of particle dynamics. Unfortunately, many of the packages are targeted only to nano- and, on rare occasions, to micro-scale spatial levels. Some specific functionality for macro-scale modeling, along with simplified pairwise potentials, but complicated initial distributions and topology analysis methods, still require adequate implementation for the R&D in construction material science. The present article devoted to three simultaneous goals: i) to shortly describe the problem of numerical modeling the building materials by means of particle dynamics, ii) to briefly discuss the distinctive features of our software, and iii) to perform the modeling of nanoscale dispersion and to demonstrate the amount of informative parameters that can be obtained with help of our software.
V.A. SMIRNOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.V. KOROLEV, Doctor of Engineering, Professor, Director of the Research and Educational Center “Nanomaterials and Nanotechnology”

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Gladkikh V.A., Korolev E.V., Smirnov V.A., Sukhachev I. Modeling the rutting kinetics of the sulfur-extended asphalt. Procedia Engineering. 2016. Vol. 165, pp. 1417–1423.
2. Grishina A.N., Korolev E.V. Zhidkostekol’nye stroitel’nye materialy spetsial’nogo naznacheniya [Special-purpose building materials based on water glass]. Moscow: Moscow State University of Civil Engineering. 2015. 223 p. (In Russian).
3. Bernal J.D., Finney J.L. Random close-packed hard-sphere model. II. Geometry of random packing of hard spheres. Discussions of the Faraday Society. 1967. Vol. 43, p. 62.
4. Scott G.D., Kilgour D.M. The density of random close packing of spheres. Journal of Physics D: Applied Physics. 1969. Vol. 2, p. 863.
5. Xu R., Yang X.H., Yin A.Y., Yang S.F. A Three-dimensional aggregate generation and packing algorithm for modeling asphalt mixture with graded aggregates. Journal of Mechanics. 2011. Vol. 26 (2), pp. 165–171.
6. Stroeven P., Stroeven M. Assessment of packing characteristics by computer simulation // Cement and Concrete Research. 1999. Vol. 29 (8), pp. 1201–1206.
7. Jodrey W.S., Tory E.M. Computer simulation of isotropic, homogeneous, dense random packing of equal spheres. Powder Technology. 1981. Vol. 30 (2), pp. 111–118.
8. Mos´cin´ski J., Bargiel M., Rycerz Z.A., Jacobs P.W.M. The force-biased algorithm for the irregular close packing of equal hard spheres. Molecular Simulation. 1989. Vol. 3 (4), pp. 201–212.
9. Bezrukov A., Stoyan D., Bargiel M. Spatial statistics for simulated packings of spheres. Image Analysis and Stereology. 2001. Vol. 20, pp. 203–206.
10. Fu G., Dekelbab W. 3-D random packing of polydisperse particles and concrete aggregate grading. Powder Technology. 2003. Vol. 133 (1–3), pp. 147–155.
11. Korolev E.V., Proshin A.P., Smirnov V.A. Investigation of stability of aggregates in composites. Izvestija Vuzov. Stroitelstvo. 2002. No. 4, pp. 40–45 (In Russian).
12. Proshin A.P., Danilov A.M., Korolev E.V., Smirnov V.A. Dynamic models for investigation of cluster forming in disperse systems. Extreme cases. Izvestija Vuzov. Stroitelstvo. 2003. No. 3, pp. 32–38 (In Russian).
13. Proshin A.P., Danilov A.M., Korolev E.V., Smirnov V.A. Kinetic model of flocculation in disperse systems. Izvestija Vuzov. Stroitelstvo. 2003. No. 4, pp. 53–57. (In Russian).
14. Korolev E.V., Proshin A.P., Danilov A.M., Smirnov V.A. Modeling of the liophobic disperse systems. Izvestija Vuzov. Stroitelstvo. 2004. No. 1, pp. 40–47 (In Russian).
15. Proshin A.P., Korolev E.V., Danilov A.M., Smirnov V.A. Method of numerical investigation of structure forming of disperse systems. Vestnik otdeleniya stroitel’nykh nauk RAASN. 2004. No. 6, pp. 336–346. (In Russian).
16. Proshin A.P., Danilov A.M., Korolev E.V., Bormotov A.N., Smirnov V.A. Modeling of structure formation of disperse systems. Proc. of the 4th International Conference “System Identification and Control Problems”. Moscow: Institute of Control Sciences. 2005, pp. 700–724 (In Russian).
17. Korolev E.V., Smirnov V.A., Inozemtcev A.S. Dynamic modeling of nanoscale systems. Nanotekhnologii v stroitel’stve. 2012. No. 3, pp. 26–34 (In Russian).
18. Smirnov V.A., Evstigneev A.V., Korolev E.V. Multiscale material design in construction. MATEC Web of Conferences. 2017. Vol. 106. Article 03027. https://doi.org/10.1051/matecconf/201710603027
19. Derjaguin B., Landau L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica U.R.S.S. 1941. Vol. 14, pp. 633–662.
20. Kinetics of Aggregation and Gelation. Ed. by Family F., Landau D.P. Amsterdam: North Holland, 1984. 294 p.
21. Smoluchowski M. Versuch einer mathematischen theorie der koagulationskinetik kolloider losungen. Zeitschrift f. Physik. Chemie. 1917. Vol. 92, pp. 129–168.
22. Berendsen H.J.C, van der Spoel D., van Drunen R. GROMACS – a message-passing parallel molecular-dynamics implementation. Computer Physics Communications. 1995. Vol. 91, pp. 43–56.
23. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics. 1995. Vol. 117, pp. 1–19.
24. Plimpton S., Hendrickson B. A new parallel method for molecular dynamics simulation of macromolecular systems // Journal of Computational Chemistry. 1996. Vol. 17, pp. 326–337.

For citation: Smirnov V.A., Korolev E.V. Building materials as disperse systems: multiscale modeling with dedicated software. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 43–53. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53 (In Russian).

Mechanically Activated Composite Fluoroanhydrite Binder

Number of journal: №1-2-2019
Autors:

Anikanova L.A.
Volkova О.V.
Kudyakov A.I.
Kurmangalieva A.I.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-36-42
УДК: 691.54:666.962

 

AbstractAbout AuthorsReferences
The paper offers the approach to the integrated utilization of anhydrous calcium sulfate (anhydrite) generated in the manufacture of fluorides and stored as industrial waste. Waste anhydrite can be used to obtain binding materials for dry mortars. Investigated are the anhydrite binders containing disintegrated waste anhydrite and brick dust. It is shown that mechano-chemical activation of binding and filling materials provides favorable conditions for the creation of the surface nanostructures. Together with microfillers, the latter produce a synergetic effect of the pozzolanic activity and crystallization by seeding for anhydrite binders. It is found that microfillers increase the strength properties and water resistance and reduce the setting time of the anhydrite binder. The integrated utilization of anhydrite allows extending the range of gypsum binders and products produced therefrom, addressing environmental problems and reducing the cost of anhydrite finishing materials.
L.A. ANIKANOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
О.V. VOLKOVA, Candidate of Sciences (Engineering)
A.I. KUDYAKOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.I. KURMANGALIEVA, Engineer

Tomsk State University of Architecture and Building, (2, Solyanaya Sq., 634003, Tomsk, Russia)

1. Ponomarenko A.A., Kapustin F.L. Technology of processing of acid fluoride for use in the manufacture of Portland cement. Himicheskaja tehnologija. 2011. No. 6, pp. 323–325. (In Russian).
2. Fedorchuk Yu.M. Tekhnogennyi angidrit, ego svoistva, primenenie. [Industrial anhydrite, its properties, application] Tomsk: TPU. 2005. 110 p.
3. Lesovik V.S., Chernyshova N.V., Klimenko V.G. The processes of structure formation of gypsum-based composites taking into account of the Genesis of raw materials. Izvestiya vuzov. Stroitel’stvo. 2012. No. 4, pp. 3–11. (In Russian).
4. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Nefedev A.P., Khudovekova E.A., Buryanov A.F., Fisher H.-B. Activated fillers for gypsum and anhydrite mixes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 14–17. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-14-17 (In Russian).
5. Kudyakov A.I., Anikanova L.A., Kopanitsa N.O., Gerasimov A.V. Mortar properties depending on grain-size distribution and type of fillers. Stroitel’nye Materialy [Constriction Materials]. 2001. No. 11, pp. 28–29. (In Russian).
6. Sychev M.M. Theoretical problems of binding materials. Zhurnal prikladnoi khimii. 1981. Vol. 7, No. 2, pp. 391–408. (In Russian).
7. Berdov G.I., Il’ina L.V., Zyryanova V.N., Nikonenko N.I., Sukharenko V.A. influence of mineral microfillers on building materials properties Stroitel’nye Materialy [Constriction Materials]. 2012. No. 9, pp. 79–83. (In Russian).
8. Avvakumov E.G., Gusev A.A. Mekhanicheskie metody aktivatsii v pererabotke prirodnogo i tekhnogennogo syr’ya [Mechanical activation in recycling natural and industrial wastes]. Novosibirsk: Geo. 2009. 155 p.
9. Belov V.V., Bur’janov A.F., Jakovlev G.I., Petropavlovskaja V.B., Fisher H.-B., Maeva I.S., Novichenkova T.B. Modifikacija struktury i svojstv stroitel’nyh kompozitov na osnove sul’fata kal’cija. [Modification of structure and properties of construction composites based on calcium sulphate] Moscow: De Nova. 2012. 196 p.
10. Petropavlovskaya V.В. The use of mineral ultra-disperse modifiers on the basis of industrial wastes in gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 18–23. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-18-23 (In Russian).
11. Anikanova L.A, Kudyakov A.I., Volkova O.V. Anhydrite finishing wall materials. Trudy Bratskogo gosudarstvennogo universiteta. Seriya: estestvennye i inzhenernye nauki. 2015. Vol. 1, pp. 230–234. (In Russian).
12. Kudyakov A.I., Anikanova L.A., Redlikh V.V. Anhydrite composite binders for wall structures. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. JOURNAL of Construction and Architecture. 2012. No. 1, pp. 106–111. (In Russian).

For citation: Anikanova L.A., Volkova О.V., Kudyakov A.I., Kurmangalieva A.I. Mechanically activated composite fluoroanhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 36–42. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-36-42 (In Russian).

The Use of Plasticizers in Modified Gypsum Composites

Number of journal: 1-2-2019
Autors:

Petropavlovskaya V.B.
Zavad’ko M.Yu.
Petropavlovskii K.S.
Novichenkova T.B.
Buryanov A.F.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-28-35
УДК: 666.941.4

 

AbstractAbout AuthorsReferences
The use of dispersed fillers in order to improve the performance properties of gypsum materials requires the introduction of chemical additives to control the rheological characteristics of raw mixes. The study of the influence of various plasticizing additives on the properties of gypsum composites modified with a basaltic additive can improve the manufacturability of the process of structure formation and improve the quality of the material. In the experiments, additives of domestic and foreign production were used: Lakhta KMD PRO (St. Petersburg, Russia), Friplast 2 (Omsk, Russia), Melflux 1461f (Trostberg, Germany). The optimal values of water content for the studied ranges of injection of plasticizing additives are established. Introduction to the system based on hemihydrate and basalt filler polycarboxylate plasticizers is reflected in the structure and properties of the resulting composite. The most effective impact on the rheology and quality of raw mixes and the structure and properties of the resulting gypsum stone with a basalt additive was rendered by the addition of a Fryplast based polycarboxylate copolymer, which improves the quality of gypsum products. Basalt supplement is one of the most promising in the composition of the organo-mineral complex, that can not only participate in physical, but also in chemical processes that occur at the atomic-molecular level, during solidification of building mineral composites.
V.B. PETROPAVLOVSKAYA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.Yu.ZAVAD’KO1, Engineer
K.S. PETROPAVLOVSKII2, Engineer
T.B. NOVICHENKOVA1, Candidate of Sciences (Engineering)
A.F. BURYANOV2, Doctor of Sciences (Engineering)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Tver State Technical University (22, Afanasiy Nikitin Еmbankment, Tver, 170026, Russian Federation)

1. Petropavlovskaya V.B., Novichenkova T.B., Burianov A.F., Solovyev V.N., Petropavlovskiy K.S. Recycling mineral fiber in the production of gypsum products. Vestnik Moskovskogo gosudarstvennogo stroitel’nogo universiteta. 2017. No. 12 (111), pp. 1392–1398. (In Russian).
2. Novichenkova T.B., Petropavlovskaya V.В., Zavad’ko M.Yu., Bur’yanov A.F., Pustovgar A.P., Petropavlovskiy K.S. The use of dusty wastes of basalt production as a filler for gypsum compositions. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 9–13. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-9-13 (In Russian).
3. Petropavlovskaya V., Novichenkova T., Petropavlovskii K., Buryanov A. Gypsum composites, improved by applying basalt dust. MATEC Web Conf. International Science Conference SPbWOSCE-2017 “Business Technologies for Sustainable Urban Development” 2018. Vol. 170. https://doi.org/10.1051/matecconf/201817003009 (In Russian).
4. Petropavlovskaya V.B., Novichenkova T.B., Zavadko M. Modified hydration hardening gypsum composites. Innovations and modeling in the construction of materials science and education: Materials of the international correspondence scientific-practical conference. Tver: TvSTU. 2017. pp. 80–87.
5. Aleksandrov D.Yu. The prospect of using waste basalt fibers in the road industry. Fundamental and applied research of young scientists: Materials of the International scientific-practical conference of students, graduate students and young scientists. Omsk: SibADI. 2017, pp. 17–20. (In Russian).
6. Pagina L.V., Dadunashvili D.A Modification of cement binder with finely ground basalt powder. Master’s Journal. 2016. No. 2, pp. 391–396. (In Russian).
7. Eroshkina N.A., Korovkin M.O. Properties of geopolymer binders based on dispersed waste mining and processing of basalt. Stroitel’stvo, nauka i obrazovanie. 2015. No. 1 (1), pp. 25–28. (In Russian).
8. Sizov Yu.V., Abramov D.G. The use of basalt waste as a reinforcing additive for fine-grained concrete. Actual problems of life safety and ecology: Collection of scientific papers and materials of the III International Scientific and Practical Conference with a scientific school for young people. Tver: TvSTU. 2017, pp. 309–312. (In Russian).
9. Belov V.V., Ali R.A. Development of optimal compositions of non-autoclaved aerated concrete using pulverized basalt waste. Innovations and modeling in the construction of materials science and education: Materials of the international correspondence scientific-practical conference. Tver: TvSTU, 2016. pp. 17–21. (In Russian).
10. Lesovik V.S., Ilinskaya G.G. Basalt fiber as a reinforcing material for dry construction mixtures. Scientific research, nanosystems and resource-saving technologies in the building materials industry (XIX scientific readings). International Scientific and Practical Conference. Belgorod: BSTU. 2010. Part 1, pp. 190–192. (In  Russian).
11. Buryanov А.F., Novichenkova Т.B., Petropavlovskaya V.B., Petropavlovskii K.S. Simulating the structure of gypsum composites using pulverized basalt waste. MATEC Web Conf. RSP 2017 – XXVI R-S-P Seminar 2017 Theoretical Foundation of Civil Engineering. 2017. Vol. 117. https://doi.org/10.1051/matecconf/201711700026
12. Ablesimov N.E., Malova Yu.G. Stone (basalt) fiber: research and scientific schools. Nauchnoe obozrenie. Tekhnicheskie nauki. 2016. No. 6, pp. 5–9. (In Russian).
13. I International basalt forum: assessment of the realities and possibilities of the basalt industry. Ratsional’noe osvoenie nedr. 2016. No. 5–6, pp. 117–119. (In Russian).
14. Rakhimova G.M., Arinova A.S., Rakhimova A.M., Khan M.A. Prospects for the use of basalt fiber in concrete using nanosilica. Trudy Universiteta. 2016. No. 2 (63), pp. 72–75. (In Russian).

For citation: Petropavlovskaya V.B., Zavad’ko M.Yu., Petropavlovskii K.S., Novichenkova T.B., Buryanov A.F. The use of plasticizers in modified gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 28–35. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-28-35 (In Russian).

Low Water Requirement Cements of Centrifugal Impact Grinding

Number of journal: №1-2-2019
Autors:

Garkavi M.S.
Artamonov A.V.
Kolodezhnaya E.V.
Pursheva A.V.
Akhmetzyanova M.A.
Khudovekova E.A.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-23-27
УДК: 666.94.052.3

 

AbstractAbout AuthorsReferences
Low water requirement cements (LWRC) are a new type of hydraulic cements obtained by co-grinding of Portland cement clinker, gypsum and water reducing agent (plasticizer). During the grinding, in the process of interaction between clinker minerals and water reducing agent, cement acquires specific properties, which distinguish it from ordinary Portland cement. Obtaining of low water requirement cement in centrifugal impact mill is accompanied by mechanical activation of milled components and realization of its reaction with water solution of polycarboxylate plasticizer. LWRC is characterized by narrow particle size distribution, regular shape and large concentration of defects on which plasticizer can be «inoculated», are typical for particles. Nanostructured plasticizer layer is formed by mechanism of molecular layering on the surface of cement particle. Obtained in centrifugal impact mill low water requirement cements with different material composition has an active from 42 MPa (LWRC 50) to 73 MPa (LWRC 100). On a base this cements heavy concretes with strength class of 50 and higher, with cement consumption per unit of strength up to 8,3 kg/MPa, and frost resistance class over 500 were made.
M.S. GARKAVI1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.V. ARTAMONOV1, Candidate of Sciences (Engineering)
E.V. KOLODEZHNAYA1, Candidate of Sciences (Engineering)
A.V. PURSHEVA1, Engineer
M.A. AKHMETZYANOVA1, Engineer
E.A.KHUDOVEKOVA2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 «Ural-Omega», OOO (89, Building 7, Lenin Avenue, Magnitogorsk, 455037, Russian Federation)
2 «Evrosintez» OOO (1a, Stepnaya Street, Magnitogorsk, 455000, Russian Federation)

1. Yudovich B.E., Zubekhin S.A., Falikman V.R., Bashlikov N.F. Cement with low water demand: new results and perspectives. Tsement i ego primenenie. 2006. No. 4, pp. 80–84. (In Russian).
2. Khozin V.G., Khokhryakov O.V., Sibgatullin I.R., Gizzatullin A.R., Kharchenko I.Y. Carbonate cements of low water-need is a green alternative for cement industry of Russia. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 76–82. (In Russian).
3. Avvakumov E.G., Gusev A.A, Mekhanicheskie metody aktivatsii v pererabotke prirodnogo i tekhnogennogo syr’ya. [Mechanical activation in processing of natural and industrial raw materials]. Novosibirsk: Academic press “Geo”. 2009. 155 p.
4. Khudyakova L.I., Voiloshnikov O.V., Kotova I.Y. Influence of mechanical activation on process of formation and properties of composite binding materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pp. 37–39. (In Russian).
5. Khripacheva I.S., Garkavi M.S., Artamonova A.V., Voronin K.M., Artamonov A.V. Centrifugally-grinding cements. Tsement i ego primenenie. 2013. No. 4, pp. 106–109.
6. Butyagin P.Yu., Streletskii A.N. Kinetics and energy balance in mechanochemical transformations. Fizika tverdogo tela. 2005. No. 5, pp. 830–836. (In Russian).
7. Malugin A.A., Nanotechnology of molecular layering. Rossiiskie nanotekhnologii. 2007. No. 3–4, pp. 87–100. (In Russian).
8. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Nefedev A.P., Khudovekova E.A., Buryanov A.F., Fisher H.-B. Activated fillers for gypsum and anhydrite mixes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 14–17. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-14-17 (In Russian).
9. Nesvetaev G.V., Kardumyan G.S. About rational application of additives to concrete at large-panel prefabrication plants. Stroitel’nye Materialy [Construction Materials]. 2016. No. 3, pp. 31–35. (In Russian).
10. Nesvetaev G.V. Self-compacting technology of concretes. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 24–27. (In Russian).
11. Bazhenov Yu.M. Ways of development of building materials: new concretes. Tekhnologii betonov. 2012. No. 3–4, pp. 39–42. (In Russian).
12. Slyusar A.A., Poluektova V.A., Mukhacheva V.D. Concrete on the basis of a binder of low water demand and modifier SB-FF. Stroitel’nye Materialy [Construction Materials]. 2009. No. 9, pp. 65–67.

For citation: Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Pursheva A.V., Akhmetzyanova M.A., Khudovekova E.A. Low water requirement cements of centrifugal impact grinding. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 23–27. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-23-27 (In Russian).

The Study of the Influence of Graphene Oxide on the Strength of Cement Stone Using River Sand

Number of journal: №1-2-2019
Autors:

Fedorova G.D.
Skriabin A.P.
Aleksandrov G.N.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
УДК: 691.545:539.2

 

AbstractAbout AuthorsReferences
A review of foreign literature on the study of graphene oxide as an additive for cement composites is presented. It is shown that every year the volume of research in this area increases significantly, and the results indicate the prospects of its use as a modifier of cement stone and solidified solution. The results of the study of the influence of graphene oxide in an amount of 0.05% by weight of cement on the strength of cement stone using river sand belonging to a group of very small are presented. It is established that graphene oxide significantly increases the strength at an early stage of hardening when bending (by 22.4%) than when compressing (by 9.1%). At 28 days of age, the increase in strength when bending and when compressing was only 2.2% and 4.6%, respectively. A possible reason for a slight increase in the strength of the cement stone is the quality of the graphene oxide suspension. Thus, the necessity of modification of graphene oxide suspension to control the structure formation of the cement stone microstructure is revealed.
G.D. FEDOROVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.P. SCRYABIN, Undergraduate
G.N. ALEXANDROV, Master

North-Eastern Federal University in Yakutsk (58, Belinskogo Street, Yakutsk, 677000, Russian Federation)

1. Ву Х.Ч. Неорганические вяжущие: новый взгляд на процесс гидратации и твердения // «ALITinform» Международное аналитическое обозрение. Цемент. Бетон. Сухие смеси. 2014. № 1 (33). С. 26–43.
1. Wu H.C. Inorganic cements: review and reexamination. «ALITinform» International Analitical Review. Cement. Concrete. Dry Mixtures. 2014. No. 1 (33), pp. 26–43. (In Russian).
2. Карпова E.А., Мохамед Али Элсаед, Скрипкюнас Г., Керене Я., Кичайте А., Яковлев Г.И., Мацияускас М., Пудов И.А., Алиев Э.В., Сеньков С.А. Модификация цементного бетона комплексными добавками на основе эфиров поликарбоксилата, углеродных нанотрубок и микрокремнезема // Строительные материалы. 2015. № 2. С. 40–47.
2. Karpova E.A., Mohamed Ali Elsaed, Skripkiunas G., Keriene Ja., Kiaite A., Yakovlev G.I., Macijauskas M., Pudov I.A., Aliev E.V., Sen’kov S.A. Modification of сement сoncrete by use of сomplex additives based on the polycarboxylate ether, carbon nanotubes and microsilica. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 40–47. (In Russian).
3. Лхасаранов С.А., Урханова Л.А., Буяннтуев С.Л. Исследование фазового состава цементного камня с углеродными наноматериалами // Строительные материалы. 2018. № 1–2. С. 23–25.
3. Fedorova G.D., Alexandrov G.N., Scryabin A.P., Baishev K.F. Influence of graphene oxide on compressive strength of cement paste. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 11–17. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-11-17 (In Russian).
4. Пухаренко Ю.В., Староверов В.Д., Рыжов Д.И. Фуллероидные углеродные наночастицы для модификации бетонов // Технологии бетонов. 2015. № 3–4. С. 40–43.
4. Pucharenko Yu.V., Staroverov V.D., Ryzhev V.D. Staroverov D.I. Fulleroid carbon nanoparticles for modifying concrete. Technologii betonov. 2015. No. 3–4, pp. 40–43. (In Russian).
5. Wang Q., Wang J., Lu C-X. and etc. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Materials. 2015. Vol. 30. Iss. 4, pp. 349–359.
6. Pan Z., He L., Qiu L., Korayem A.H. and etc. Mechanical properties and microstructure of a grapheme oxide – cement composite. Cement & Concrete Composites. 2015. Vol. 58, pp. 140–147.
7. Fakhim B., Hassani A., Rashidi A., Ghodousi P. Preparation and mechanical proprieties of graphene oxide: cement nanocomposites. The Scientific World Journal. 2014. Vol. 20, pp. 1–10.
8. Yang H., Monasterio M., Cui H., Han N. Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Composites Part A: Applied Science and Manufacturing. 2017. Vol. 102, pp. 263–272.
9. Xiangyu Li, Zeyu Lu, Samuel Chuah and etc. Effect of grapheme oxide aggregates on hydration degree, sorptivity, and tehsile splitting strength of cement paste. Composites Part A: Applied Science and Manufacturing. 2017. Vol. 100, pp. 1–8.
10. Федорова Г.Д., Баишев К.Ф., Скрябин А.П. Оксид графена как перспективный материал для цементных композитов // Научное обозрение. 2017. № 12. С. 36–41.
10. Fedorova G.D., Baishev K.F., Skryabin A.P. Graphene oxide as a promising nanomaterial for cement. Nauchnoe obozrenie. 2017. No. 12, pp. 36–41. (In Russian).
11. Федорова Г.Д., Александров Г.Н., Скрябин А.П., Баишев К.Ф. Влияние оксида графена на прочность при сжатии цементного камня // Строительные материалы. 2018. № 1–2. С. 11–17.
11. Fedorova G.D., Alexandrov G.N., Scryabin A.P., Baishev K.F. Influence of graphene oxide on compressive strength of cement paste. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 11–17. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-11-17. (In Russian).
12. Kapitonov A.N. et al. Characterization of graphene oxide suspension for fluorescence quenching in DNA-diagnostics. Korean Journal of Materials Research. 2016. Vol. 26. No. 1, pp. 1–7.
13. Peng Hui, Ge Yaping, Cai C.S. and etc. Mechanical properties and microstructure of grapheme oxide cement-based composites. Construction and Building Materials. 2019. Vol. 194, pp. 102–109. https://doi.org/10.1016/j.conbuildmat.2018.10.234
14. Wu-Jian Long, Jing-Jie Wei, Feng Xing and etc. Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism. Cement and Concrete Composites. 2018. Vol. 93, pp. 127–139. https://doi.org/10.1016/j.cemconcomp.2018.07.001
15. Zhao Li, Guo Xinli, Liu Yuanyuan, Zhao Yuhong and etc. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites. Construction and Building Materials. 2018. Vol. 190, pp.150–163. https://doi.org/10.1016/j.conbuildmat.2018.09.105

For citation: Fedorova G.D., Skriabin A.P., Aleksandrov G.N. The study of the influence of graphene oxide on the strength of cement stone using river sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 16–22. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22 (In Russian).

Anomalous Effects of Changes in the Viscosity of Epoxy Resins and the Plasticity of Bitumen when Introducing Carbon Nano-Tubes

Number of journal: №1-2-2019
Autors:

Khozin V.G.
Nizamov R.K.
Starovoitova I.A.
Zykova E.S.
Ayupov D.A.
Elrefai A.E.M.M.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-11-15
УДК: 667.621.633-022.532

 

AbstractAbout AuthorsReferences
The extreme dependence of the viscosity of liquid epoxy resin on the content of single – and multi-layer carbon nano-tubes having a sharp minimum at 0.001 and 0.005 wt.% respectively is described. It is established that the nano-modification of oil road bitumen by single-layer “Tuball” CNTs also manifests itself in the form of extreme dependence of softening temperature and extensibility (ductility) with a minimum of the first indicator and a maximum of the second at thousandths of the nano-additive. The data obtained complement the previously established similar regularity of changes in the physical and mechanical properties of solid materials during their nano-modification. Nano-modification of materials in the technological aspect is effectively manifested and is of practical interest only in a narrow concentration range of particles, when their number and specific surface area per unit volume of the matrix (dispersion medium) reaches a certain critical value, implicitly dependent on the chemical nature of nano-particles and their geometry.
V.G. KHOZIN1, Doctor of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
R.K. NIZAMOV1, Doctor of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.A. STAROVOITOVA1, Candidate of Science (Engineering)
E.S. ZYKOVA1, Engineer
D.A. AYUPOV1, Candidate of Science (Engineering)
A.E.M.M. ELREFAI2, Candidate of Science (Engineering)

1 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)
2 Egyptian Russian University (Cairo-Suez road, Badr City, Cairo, 11829, Egypt)

1. Khozin V.G., Abdrakhmanova L.A., Nizamov R.K. Common concentration pattern of effects of construction materials nanomodification. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 25–33. (In Russian).
2. Bogdanov A.N., Abdrakhmanova L.A., Khozin V.G. Modification of mud by plasticizing additives. Proceeding of scientific-practical conference devoted to the sixtieth anniversary of the V.G. Shukhov. Belgorod State Technical University. Belgorod. 2014, pp. 46–49. (In Russian).
3. Krasinnikova N.M., Morozov N.M. Kashapov R.R. The influence of silica sol on the phase composition of hydrated cement with polyfunctional additive. Izvestiya KGASU. 2016. No. 1 (35), pp. 172–178. (In Russian).
4. Lipatov Yu.S. Fizicheskaya khimiya napolnennykh polimerov [Physical chemistry of filled polymers]. Moscow: Khimiya. 1977. 304 p.
5. Ur’ev N.B. Fiziko-khimicheskie osnovy tekhnologii dispersnykh sistem i materialov [Physical and chemical fundamentals of the technology of dispersed systems and materials]. Moscow: Khimiya. 1988. 256 p.
6. Korolev E.V. Nanotechnology in material science. Analysis of achievements and current state. Stroitel’nye Materialy [Construction Materials]. 2014. No. 11, pp. 47–78. (In Russian).
7. Irzhak T.F., Irzhak V.I. Epoxy nanocomposites. Review. Vysokomolekulyarnye soedineniya. Seriya A. 2017. Vol. 59. No. 6, pp. 791–825. (In Russian).
8. Irzhak V.I. Epoxy composite materials with carbon nanotubes. Uspekhi khimii. 2011. No. 8, pp. 821–840. (In Russian).
9. Ayupov D.A., Murafa A.V., Makarov D.B., Khakimullin Yu.N., Khozin V.G. Nanomodofied bitumen binders for asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2010. No. 10, pp. 34–35. (In Russian).
10. Urkhanova L.A., Shestakov N.I., Buyantuyev S.L., Semenov A.P., Smirnyagina N.N. Improving the properties of bitumen and asphalt by introducing a carbon nano-modifier. Proceeding of scientific-practical conference devoted to the sixtieth anniversary of the V.G. Shukhov. Belgorod State Technical University. Belgorod. 2014, pp. 391–398. (In Russian).
11. Khozin V.G. Usilenie epoksidnykh polimerov [Strengthening epoxy polymers]. Kazan: Dom pechati. 2004. 446 p.
12. Polimernye kompozitsionnye materialy: struktura, svoistva, tekhnologiya / Pod red. Berlina A.A [Polymer composite materials: structure, properties, technology. Ed. by Berlin A.A.]. Saint Petersburg: «Professiya». 2014. 592 p.

For citation: Khozin V.G., Nizamov R.K., Starovoitova I.A., Zykova E.S., Ayupov D.A., Elrefai A.E.M.M. Anomalous effects of changes in the viscosity of epoxy resins and the plasticity of bitumen when introducing carbon nano-tubes. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 11–15. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-11-15 (In Russian).

Fine-Grained Concrete Modified With a Suspension of Chrysotile Nanofibers

Number of journal: №1-2-2019
Autors:

Yakovlev G.I.
Drochytka R.
Pervushin G.N.
Grakhov V.P.
Saidova Z.S.
Gordina А.F.
Shaybadullina A.V.
Pudov I.A.
Elrefai A.E.M.M.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10
УДК: 691.276

 

AbstractAbout AuthorsReferences
This article presents the results of the study of the cement matrix modified with chrysotile nanofibers. The positive effect of this nanoadditive on the strength characteristics of the material was confirmed. It was noted that at the age of 7 days compressive strength of samples increased by 78% and bending strength – by 50%. Studies on a laser particle size analyzer confirmed that the nanosized component of chrysotile fibers prevails in suspension, which possibly influences the structuring process in the cement matrix. Fine-grained concrete modified with an aqueous suspension of chrysotile nanofibers in the amount of 0.1% of the cement weight was studied using the differential thermography method, IR spectrometry and scanning electron microscopy. These analysis methods proved that the introduction of a suspension of chrysotile nanofibers into the cement binder results in a change of the cement matrix composition and structure of a modified fine-grained concrete with the formation of calcium hydrosilicates of lower basicity, leading to an increase in the strength of cement concrete.
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
R. DROCHYTKA2, Dr. Eng.
G.N. PERVUSHIN1, Doctor of Sciences (Engineering)
V.N. GRAKHOV1, Doctor of Sciences (Economics)
Z.S. SAIDOVA1, Master
А.F. GORDINA1, Candidate of Sciences (Engineering)
A.V. SHAYBADULLINA1, Master
I.A. PUDOV1, Candidate of Sciences (Engineering)
A.E.M.M. ELREFAI3, Candidate of Sciences (Engineering)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Brno University of Technology (Faculty of Civil Engineering) (95, Veveri, Brno, 60200, Czech Republic)
3 Egyptian Russian University (Cairo-Suez road, Badr City, Cairo, 11829, Egipt)

1. Shchetkova E.A., Sevast’yanov R.V. Chrysotile as the optimal reinforcing agent for fiber concrete. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvo i arkhitektura. 2015. No. 2, pp. 174–191. (In Russian).
2. Vezentsev A.I., Gudkova E.A., Pylev L.N., Smirnova O.V. On the issue of changing the surface and biological properties of chrysotile in asbestos cement. Stroitel’nye Materialy [Construction Materials]. 2008. No. 9, pp. 26–27. (In Russian).
3. Khristoforov A.I., Khristoforova I.A., Eropov O.L. Cement-sand composition, modified with asbestos and tetraethoxysilane. Stroitel’stvo i rekonstruktsiya. 2012. No. 3 (41), pp. 66–72. (In Russian).
4. Kosyachenko G.E., Tishkevich G.I., Ivanovich E.A. Respiratory diseases in workers exposed to chrysotile asbestos dust. Meditsina truda i promyshlennaya ekologiya. 2015. No. 9, pp. 76–77. (In Russian).
5. Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite) / IARC Monographs on the evaluation of carcinogenic risks to humans – 100C. 2012, pp. 219–309.
6. Neiman S.M., Vezentsev A.I., Kashanskii S.V. O bezopasnosti asbestotsementnykh materialov i izdelii [On the safety of asbestos-cement materials and products]. Moscow: RIF «STROIMATERIALY». 2006. 64 p.
7. Yakovlev G.I., Pervushin G.N., Pudov I.A., Dulesova I.G., Burianov A.F., Saber M. Structuring of cement binding matrixes with multi-layer carbon nanotubes. Stroitel’nye Materialy [Construction Materials]. 2011. No. 11, pp. 22–24. (In Russian).
8. Aruova L.B., Urkinbaeva Zh.I., Kozhagel’diev B.K., Toleubaeva Sh.B., Kozhagel’diev A.B. Safety of chrysotile asbestos for human health. The use of asbestos cement pipes for water and heat supply. Aktual’nye nauchnye issledovaniya v sovremennom mire. 2018. No. 4-10 (36), pp. 101–105. (In Russian).
9. Kaushanskii, V.E. Some regularities of the hydration activity of calcium silicates. Zhurnal prikladnoi khimii. 1977. No. 8, pp. 1688–1692. (In Russian).
10. Gorshkov V.S., Savel’ev V.G., Abakumov A.V. Vyazhushchie, keramika i steklokristallicheskie materialy: Struktura i svoistva [Knitting, ceramics and glass-ceramic materials: Structure and properties]. Moscow: Stroyizdat, 1994. 584 p.
11. Vezentsev A.I., Naumova L.N. Increase of chrysotile fluff efficiency. Stroitel’nye Materialy [Construction Materials]. 2008. No. 9, pp. 18–20. (In Russian).
12. Dzhamanbalin K.K. Structure and properties of chrysotile asbestos nanotubes. Nauka i biznes: puti razvitiya. 2015. No. 12 (54), pp. 8–13. (In Russian).

For citation: Yakovlev G.I., Drochytka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina А.F., Shaybadullina A.V., Pudov I.A., Elrefai A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10 (In Russian).

https://www.traditionrolex.com/10