Log in

Foamed Gypsum Panels for Partitions

Number of journal: 10-2019
Autors:

Saduakasov M.S.
Shoybekov B.M.
Tokmadzheshvili G.G.
Ermukhanbet M.A.
Meyrkhanov T.B.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-64-69
УДК: 666.914+691.175

 

AbstractAbout AuthorsReferences
The efficiency of materials used for the arrangement of interior and inter-apartment partitions used in modern construction of the Republic of Kazakhstan is analyzed. Environmental and fire safety, as well as sound insulation properties of partition materials and products are accepted as criteria. It is shown that currently used foamed polystyrene concrete panels are technologically advanced in the installation of partitions, but do not quite meet the environmental and fire safety requirements. Partitions made of plasterboard sheets do not provide sufficient sound insulation in the interior space. One of the effective options is the arrangement of interior partitions from foam gypsum strip panels, in which functional requirements for materials in combination with economic benefits for construction organizations are the most fully provided. With a material thickness of 100 mm, the required sound insulation level of 41 dB for residential houses of category B and B regulated by the relevant interstate standard is achieved. The results of research on the development of technology of foamed gypsum strip panels with an average density of 600–800 kg/m3 are presented. It is established that the acceptable strength corresponding to the class of compressive strength B2 is achieved with the gypsum binder of G-5 grade at a material density of 800 kg/m3, with the binder of G-13grade – at a density of 700 kg/m3. To increase the bending strength of the material, cellulose and propylene fibers were used, the introduction of which in an amount of 0.2–0.4% increases the bending strength to 2.6–2.8 MPa. The introduction of finely ground gypsum stone provides a sharp increase in the rate of strength gain: after 25–30 minutes, the strength reaches 1.5–1.7 MPa, while similar strength samples without additives gain after 50–60 minutes. Thus, studies have shown the possibility of organizing the production of strip gypsum panels based on foamed gypsum. For introduction of technology of foamed gypsum panels in manufacture it is necessary to conduct tests of materials of natural size in order to set a minimum value of bending strength sufficient for demolding and transportation of the panels and also identify the equipment for preparation of foamed gypsum mixture
M.S. SADUAKASOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
B.M. SHOYBEKOV1, Engineer
G.G. TOKMADZHESVILI1, Architect
M.A. ERMUKHANBET1, Master
T.B. MEYRKHANOV2, Student

1 Constructions materials research and design institute (152/6, Radostovsia Street, Almaty, 050060, Republic of Kazakhstan)
2 Nazarbayev University (53, Kabanbay Batyr Avenue, Nur-Sultan city, 010000, Republic of Kazakhstan)

1. Buryanov A.F. Effective gypsum materials for the installation of interior partitions. Stroitel’nye Materialy [Construction Materials]. 2008. No. 8, pp. 30–32 (In Russian).
2. Goncharov Yu.A., Dubrovina G.G., Gubskaya A.G., Buryanov A.F. Gipsovye materialy i izdeliya novogo pokoleniya: otsenka energoeffektivnosti [New generation plaster materials and products: energy efficiency assessment]. Minsk: Kolorgrad. 2016. 333 p.
3. Bessonov I.B., Yalunina O.V. Environmental aspects of the use of gypsum building materials. Stroitel’nye Materialy [Construction Materials]. 2004. No. 4, pp. 11–13 (In Russian).
4. Viteska M., Hummel’ H.-U., Ditch S., Fisher H.-B. Assessment of fire resistance of gypsum sheets. Stroitel’nye materialy, oborudovanie, tehnologii XXI veka. 2012. No. 12, pp. 22–25 (In Russian).
5. Shubin I.L., Aistov V.A., Porozchenko M.A. Sound insulation of enclosing structures in high-rise buildings. Requirements and methods of support. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 33–43. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-33-43 (In Russian).
6. Goncharov Yu.A., Dubrovina G.G., Shypko S.D. Provision of required acoustic condition in premises due to the use of gypsum tongue-and-groove slabs. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 31–35. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-31-35 (In Russian).
7. Bryukner Kh., Deiler Ye., Fitch G. i dr. Gips. Izgotovleniye i primenenie gipsovykh stoitel’nykh materialov. Per. s nem. V.F. Goncharova, V.V. Ivanitskogo, V.B.Ratinova. Pod red. V.B.Ratinova. [Gypsum. Production and use of gypsum building materials. Trans. from German Goncharov V.F., Ivanitskiy V.V., Ratinov V.B. Edited by Ratinov V.B.]. Moscow: Stroyizdat. 1981. 223 p.
8. Merkin A.P., Kobidze T.E. Features of the structure and fundamentals of the technology for producing effective foam concrete materials. Stroitel’nye Materialy [Construction Materials]. 1988. No. 3, pp. 16–18 (In Russian).
9. Patent KR 33909. Ustroistvo dlya nepreryvnogo prigotovleniya penogipsovoy smesi [Device for continuously preparing foamed gypsum mixtures]. Saduakasov M., Shoibekov B., Tokmadzheshvili G. Declared 18.01.2018. Registered 17.09.2019.
10. Klyuev S.V., Klyuev A.V., Abakarov A.D., Shorstova E.S., Gafarova N.G. The effect of particulate reinforcement on strength and deformation characteristics of fine-grained concrete. Journal of Civil Engineering. 2017. No. 7 (75), pp. 66–75.
11. Kalashnikov V.I., Ananyev S.V. High-strength and especially high-strength concretes with disperse reinforcement Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 59–61. (In Russian).
12. Saraykina K.A., Shamanov V.A. Dispersed concrete reinforcement. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Urbanistika. 2011. No. 2 (2), pp. 70–75. (In Russian).
13. Popov A.L., Nelyubova V.V., Bezrodnykh A.A. To the question of the modification of cellular concrete autoclave hardening with mineral fibers. In the book: Innovative materials and technologies in design Abstracts of the IV All-Russian scientific and practical conference with the participation of young scientists. 2018, pp. 25–26. (In Russian).
14. Nizina T.A., Balykov A.S., Volodin V.V., Korovkin D.I. Fiber fine-grained concretes with polyfunctional modifying additives. Journal of Civil Engineering 2017. No. 4 (72), pp. 73–83.
15. Gipsovye materialy i izdeliya (proizvodstvo i primeneniye). Pod red. A.V. Ferronskoy [Plaster materials and products (production and use). Edited by Ferronskaya A.V.]. Moscow: ACB. 2004. 488 p.
16. Saduakassov M.S. Effect of CaSO4∙2H2O on the structure formation and strength of foam gypsum. Stroitel’nye Materialy [Construction Materials]. 1990. No. 1, pp. 22–23 (In Russian).

For citation: Saduakasov M.S., Shoybekov B.M., Tokmadzheshvili G.G., Ermukhanbet M.A., Meyrkhanov T.B. Foamed gypsum panels for partitions. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 64–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-64-69

Features of Hydration of Modified Gypsum-Cement-Pozzolan Binder

Number of journal: 10-2019
Autors:

Galautdinov A.R.
Mukhametrakhimov R.Kh.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-58-63
УДК: 691.332

 

AbstractAbout AuthorsReferences
Without reducing the importance of numerous studies on the development of water-resistant gypsum-pozzolan binders, it should be noted that their production is mainly achieved with an increased content of Portland cement and active mineral additives in the mixture, in some cases – the use of gypsum with high strength. In this regard, of interest are the studies aimed at the development of water-resistant gypsum-pozzolan binder based on low-grade gypsum with a reduced content of Portland cement and active mineral additives, the hydration of which will provide conditions for the formation of stable structures. Some issues related to the study of the features of structure formation of such systems continue to be poorly studied. The objectives are achieved through the use of active mineral additives with high hydraulic activity, as well as multifunctional complex additives. The research carried out made it possible to establish influence of a complex of mineral and chemical additives on processes of hydration and structure formation of gypsum-cement-pozzolan stone, its limits of durability and water resistance, and also water demand of a mix.
A.R. GALAUTDINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
R.Kh. MUKHAMETRAKHIMOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya street, Kazan, 420043, Russian Federation)

1. Yunusova Z.A., Polyakova I.V., Asyanova V.S., Babkov V.V., Lomakina L.N. Development of gypsum-cement-pozzolanic binder based on gypsum and gypsum production waste. Problems of the building complex of Russia. Proceedings of the XVIth International Scientific and Technical Conference. Ufa. 2012, pp. 34–37. (In Russian).
2. Polak A.F., Babkov V.V., Kapitonov S.M., Anvarov R.A. Structure formation and strength of water-binding combined gypsum systems. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 1991. No. 8, pp. 60–64. (In Russian).
3. Korovyakov V.F. Plaster binders and their use in construction. Rossiyskiy Khimicheskiy Zhurnal. Khimiya sovremennykh stroitel’nykh materialov. 2003. Vol. XVII. No. 4, pp. 18–25. http://www.chemnet.ru/rus/jvho/2003-4/18.pdf (In Russian).
4. Korovyakov V.F. Theoretical foundations of the creation of composite gypsum binders. ALIT inform: Tsement. Beton. Sukhiye smesi. 2009. No. 6, pp. 92–101. (In Russian).
5. Petropavlovskaya V.B., Kedrova N.G., Nekrasova I.Yu. Effect of active mineral additive in the form of waste from the production of expanded clay on the properties of composite gypsum binder. Improving the efficiency of production and use of gypsum materials and products. Proceedings of the VIIIth International Scientific and Practical Conference. Maykop. 2016, pp. 117–122. (In Russian).
6. Gordina A.F., Yakovlev G.I., Polyansky I.S., Kerene J., Fisher H.B., Rakhimova N.R., Buryanov A.F. Gypsum compositions with complex modifiers of structure. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 90–95. (In Russian).
7. Izryadnova O.V, Sychugov S.V., Yakovlev G.I. Polyfunctional additive based on carbon nanotubes and silica fume to improve the physicomechanical characteristics of a gypsum-cement-pozzolanic binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 63–67. (In Russian).
8. Chumadova L.I., Gureev K.N., Aznabayev A.A., Sulteev T.M., Davydov O.I. Optimizing the composition of the mixture on the basis of GCPV in the production of interior decoration materials. Sovremennoye stroitel’stvo i arkhitektura. 2017. No. 2 (06), pp. 12–14. (In Russian).
9. Khaliullin M.I., Rachimov R.Z., Gayfullin A.R. Influence of a complex modifying additive on the composition, structure and properties of artificial stone on the basis of composite gypsum binder. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2014. No. 3 (29), pp. 148–155. (In Russian).
10. Nuriev M.I., Khaliullin M.I., Rakhimov R.Z., Gayfullin A.R., Hayrvarina A.M., Stoyanov O.V. Influence of plasticizers on the properties of gypums-cement-pozzolan binder. Vestnik Tekhnologicheskogo universiteta. 2015. Vol. 18. No. 6, pp. 119–122. (In Russian).
11. Chumadova L.I., Gureev K.N., Kurochkin A.S. Glass fiber reinforcement in the production of decorative finishing panels and partitions based on GCPB. APRIORI. Ceriya: Yestestvennyye i tekhnicheskiye nauki. 2017. No. 2. http://apriori-journal.ru/seria2/2-2017/Chumadova-Gureev-Kurochkin1.pdf (In Russian).
12. Volzhensky A.V., Rogovoy M.I., Stambulko V.I. Gipsotsementnyye i gipsoshlakovyye vyazhushchiye veshchestva i izdeliya [Gypsum cement and gypsum slag binders and products]. Moscow: Gosstroyizdat. 1960. 162 p.
13. Volzhensky A.V., Stambulko V.I., Ferronskaya A.V. Gipsotsementno-putstsolanovyye vyazhushchiye, betony i izdeliya [Gypsum-cement-pozzolanic binders, concretes and products]. Moscow: Stroyizdat. 1971. 318 p.
14. Volzhensky A.V., Kogan G.S., Krasnoslobodskaya Z.S. The influence of active silica on the interaction processes of aluminate components of portland cement clinker with gypsum. Stroitel’nye Materialy [Construction Materials]. 1963. No. 1, pp. 31–34. (In Russian).
15. Volzhensky A.V., Kogan G.S., Arbuzov N.T. Gipsobetonnyye paneli dlya peregorodok i vnutrenney oblitsovki naruzhnykh sten [Gypsum concrete panels for partitions and internal lining of external walls]. Moscow: State Publishing House of Literature on Building Materials. 1955. 185 p.
16. Ferronskaya A.V. Dolgovechnost’ gipsovykh materialov, izdeliy i konstruktsiy [Durability of gypsum materials, products and structures]. Moscow: Stroyizdat. 1984. 256 p.
17. Babkov V.V., Latypov V.M., Lomakina L.N., Shigapov R.I. Modified gypsum binders of increased water resistance and gypsum ceramics-concrete wall blocks for low-rise housing construction based on them. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 4–8. (In Russian).
18. Ermilova E.Yu., Kamalova Z.A., Rahimov R.Z., Shchelkonogova Ya.V. Determination of the composition of hydration products of a composite cement stone with a complex additive of thermally activated polymineral clay and limestone. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2017. No. 4 (42), pp. 289–295. (In Russian).
19. Mukhametrakhimov R.Kh., Galautdinov A.R. Gypsum-cement-pozzolanic binder based on low-grade raw materials and industrial waste. Vestnik Tekhnologicheskogo universiteta. 2016. Vol. 19. No. 24, pp. 56–59. (In Russian).
20. Mukhametrakhimov R.Kh., Galautdinov A.R. Role of active mineral additives of natural origin in the formation of the structure and properties of the gypsum-cement-pozzolanic binder. Vestnik Tekhnologicheskogo universiteta. 2017. Vol. 20. No. 6, pp. 60–63. (In Russian).
21. Galautdinov A.R., Mukhametrakhimov R.Kh. Improving the water resistance of gypsum-cement-pozzolanic binder based on low-quality gypsum. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2016. No. 4 (38), pp. 333–343. (In Russian).

For citation: Galautdinov A.R., Mukhametrakhimov R.Kh. Features of hydration of modified gypsum-cement-pozzolan binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 58–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-58-63

Activation of Metallurgical Dust to Modify the Properties of Gypsum Compositions

Number of journal: 10-2019
Autors:

Gordina A.F.
Yakovlev G.I.
Ruzina N.S.
Drochitka R.
Begunova N.V.
Kuzmina N.V.
Begunova E.V.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-53-57
УДК: 666.914

 

AbstractAbout AuthorsReferences
The main results of studies of the influence of different activation methods on the efficiency of metallurgical dust as a modifier of the properties of gypsum binder are presented. It is proved that the functionalization of metallurgical dust makes it possible to increase the efficiency of the technogenic product, leading to an increase in the strength characteristics of the gypsum binder. The use of mechanical activation together with grafting of functional groups makes it possible to reduce the concentration of the modifier by 4 times, the increase in compressive and bending strength at the same time exceeds 100%. The most economical method of activation is the introduction of chemical additives (Portland cement). This method allows to increase the compressive strength of gypsum compositions up to 40%. The introduction of the activated modifier affects the processes of hydration and hardening of gypsum, leading to the formation of amorphous tumors on the surface of the crystals based on calcium hydrosilicates, which provide additional bonds between the crystals and block their surface, limiting the access of water, which is confirmed by the data of infrared and microstructural analysis.
A.F. GORDINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.S. RUZINA1, Master
R. DROCHITKA2, Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.V. BEGUNOVA1, Engineer
N.V. KUZMINA1, Engineer
E.V. BEGUNOVA1, Engineer

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Brno University of Technology (63900, Brno Poříčí, 273/5)

1. Dvorkin L.I., Dvorkin O.L. Stroitel’nye materialy iz otkhodov promyshlennosti [Building materials based on man-made products]. Rostov-on-Don: Feniks. 2007. 368 p.
2. Rakhimov R.Z., Khaliullin M.I., Gaifullin A.R. Composite gypsum binders with the use of claydite dust and blast-furnace slags. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 13–15. (In Russian).
3. Chernysheva N.V., Drebezgova M.Yu. Man-made products for production of composite gypsum binders. Scientific and engineering problems of construction and technological disposal of industrial waste. Belgorod. 2014, pp. 230–235. (In Russian).
4. Akulova M.V., Isakulov B.R., Dzhumabaev M.D. i dr. Integrated electromechanical activation of ash and slurry binders for lightweight concrete. Nauchno-tekhnicheskii vestnik Povolzh’ya. 2014. No. 1, pp. 49–52. (In Russian).
5. Trubitsyn A.S. Thermal activation of granulated blast furnace slag as a component of binders. Cand. Diss. (Engineering). Moscow. 2013. 149 p. (In Russian).
6. Patent RF 2474544. Sposob prigotovleniya nanomodifikatora iz otkhodov promyshlennosti [A method of preparing a nanomodifier from industrial waste]. Romanov I.V., Buldyzhov A.A., Alimov L.A. Declared. 03.08.2011. Published. 10.02.2013. Bulletin No. 4. (In Russian).
7. Kopylov V.E., Burenina O.N. The use of oil sludge for the activation of mineral powders that are part of asphalt concrete. Vestnik VSGUTU. 2018. No. 4 (71), pp. 19–24. (In Russian).
8. Khaliullin M.I., Gaifullin A.R., Rakhimov R.Z. The complex effect of the components on the basic properties of artificial stone based on clinker-free composite gypsum binders. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2016. No. 2 (36), pp. 212–220. (In Russian).
9. Gordina A.F. Calcium sulphate composite materials with dispersed modifiers. Cand. Diss. (Engineering). Kazan. 2016. 160 p.
10. Yakovlev G.I., Gordina A.F., Polyanskikh I.S., Fisher H.-B., Ruzina N.C., Shameeva E.V., Kholmogorov M.E. Gypsum compositions modified with Portland cement and metallurgic dust. Stroitel’nye Materialy [Construction Materials]. 2017. No. 6, pp. 76–79. DOI: https://doi.org/10.31659/0585-430X-2017-749-6-76-79. (In Russian).
11. Eremin A., Pustovgar A., Pashkevich S., Ivanova I., Golotina A. Determination of calcium sulfate hemihydrate modification by X-ray diffraction analysis. Procedia Engineering. 2016. Vol. 165, pp. 1343–1347. https://doi.org/10.1016/j.proeng.2016.11.862
12. Singh N.B., Middendorf B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials. 2007. Vol. 53 (1), pp. 57–77. https://doi.org/10.1016/j.pcrysgrow.2007.01.002

For citation: Gordina A.F., Yakovlev G.I., Ruzina N.S., Drochitka R., Begunova N.V., Kuzmina N.V., Begunova E.V. Activation of metallurgical dust to modify the properties of gypsum compositions. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 53–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-53-57

Properties and Structure of Anhydrite Binder of Ergachinsky Deposit in the Presence of Phosphate Activators and Aleurolite

Number of journal: 10-2019
Autors:

Tokarev Yu.V.
Ageev A.V.
Volkov M.A.
Kuzmina N.V.
Yakovlev G.I.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-46-52
УДК: 691.553

 

AbstractAbout AuthorsReferences
The results of studies of physical and mechanical properties and structure of the binder based on natural anhydrite in the presence of chemical and mineral additives are presented. The data were obtained by mechanical testing, differential scanning calorimetry, infrared spectral analysis, scanning electron microscopy and laser granulometry. For the first time, the efficiency of using phosphates of sodium and ammonium as activators of hardening of anhydrite binder is shown. Strength characteristics are increased from 2.5 to 4 times compared to the control composition, depending on the type of additive. The efficiency of using aleurolite – aluminosilicate rock of sedimentary origin as a mineral additive has been established. The use of an additive in an amount from 0 to 5% leads to an increase in strength to 40%, which is caused by the action of aleurolite particles as crystallization centers, on the surface of which crystallohydrates of gypsum dihydrate are formed. In this case, the additive is directly involved in the formation of the structure, which is confirmed by the results of infrared spectral analysis. The introduction of burnt aleurolite separately is impractical, but when combined introduction with lime strength characteristics are increased to 45% due to additional compaction by new hydration products formed by the interaction of metacaolin and lime.
Yu.V. TOKAREV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.V. AGEEV, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.A. VOLKOV, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.V. KUZMINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Sergeeva N.A., Sycheva L.I. The influence of the structure of the anhydrite component on the properties of multiphase gypsum binders. Uspekhi v khimii i khimicheskoy tekhnologii. 2017. Vol. 31. No. 3 (184), pp. 102–104. (In Russian).
2. Sergeeva N.A., Sycheva L.I. The effect of additives on the properties of anhydrite binder. Uspekhi v khimii i khimicheskoy tekhnologii. 2017. Vol. 32. No. 2 (198), pp. 158–160. (In Russian).
3. Anikanova L.A., Volkova О.V., Kudyakov A.I., Kurmangalieva A.I. Mechanically activated composite fluoroanhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 36–42. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-36-42 (In Russian).
4. Klimenko V.G. The role of double salts based on sulfates of Na+, K+, Ca2+, NH4+ in the technology of producing anhydrite binders. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2017. No. 12, pp. 119–125. (In Russian).
5. Altykis M.G., Khaliullin M.I., Rakhimov R.Z., Morozov V.P., Bakhtin A.I. To the question of the mechanism of structural transformations of gypsum binders based on CaSO4 anhydrite in the process of hardening. Izvestiya vuzov. Stroitel’stvo. 1996. No. 12, pp. 57–61. (In Russian).
6. Garkavi M.S., Artamonov A.V., Kolodyazhnaya E.V., Burianov A.F. Composite anhydrite-slag binder of centrifugal-impact grinding. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 16–18. (In Russian).
7. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Nefedev A.P., Khudovekova E.A., Buryanov A.F., Fisher H.-B. Activated fillers for gypsum and anhydrite mixes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 14–17. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-14-17 (In Russian).
8. Levashova A.K., Sycheva L.I. The influence of the nature of the plasticizer on the properties of anhydrite binder. Uspekhi v khimii i khimicheskoy tekhnologii. 2016. No. 7 (176). URL: https://cyberleninka.ru/article/n/vliyanie-prirody-plastifikatora-na-svoystva-angidritovogo-vyazhuschego (Date of access: 05/13/2019).
9. Tkachenko D.I. The influence of metallurgical dust on the properties and structure of anhydrite compositions. Resursoeffektivnyye tekhnologii v stroitel’nom komplekse regiona. 2017. No. 8, pp. 112–114. (In Russian).
10. Fomina E.V., Lesovik V.S., Fomin A.E., Absimetov M.V., Elistratkin M.Yu. Increasing the effectiveness of aerated concrete through the use of coal waste. Regional’naya arkhitektura i stroitel’stvo. 2018. No. 4  (37), pp. 38–47. (In Russian).
11. Urkhanova L.A., Antropova I.G. The use of ultrabasic aluminosilicate rocks of Buryatia in the technology of building materials. Vestnik VSGUTU. 2017. No. 1 (64), pp. 68–72. (In Russian).
12. Maria C.G. Juenger, Ruben Snellings, Susan A. Bernal. Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research. 2019. Vol. 122, pp. 257–273.
13. Singh N.B., Middendorf B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials. 2007. Vol. 53, pp. 57–77.
14. Konovalov V.M., Glikin D.M., Solomatova S.S. The use of mudstones in the production of mixed cements. Sovremennyye problemy nauki i obrazovaniya. 2015. No. 2–2, p. 96. (In Russian).
15. Zinin E.V., Sycheva L.I. Gypsum-cement-pozzolanic binders based on gypsum and anhydrite. Uspekhi v khimii i khimicheskoy tekhnologii. 2017. Vol. 31. No. 3, pp. 37–39. (In Russian).

For citation: Tokarev Yu.V., Ageev A.V., Volkov M.A., Kuzmina N.V., Yakovlev G.I. Properties and structure of anhydrite binder of Ergachinsky deposit in the presence of phosphate activators and aleurolite. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 46–52. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-46-52

Lightened Self-Reinforced Gypsum Composites

Number of journal: 10-2019
Autors:

Petropavlovskii K.S.
Buryanov A.F.
Petropavlovskaya V.В.
Novichenkova T.B.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-40-45
УДК: 691.335

 

AbstractAbout AuthorsReferences
The issues of obtaining lightened gypsum composites that meet the modern requirements of the market of building materials are considered. The use of a high-strength gypsum matrix, represented by calcium dihydrate and hydrosulfoaluminate crystals, in combination with a porous filler contributes to the formation of a lightened and, at the same time, hardened gypsum stone. It is shown that fractionated fillers in the gypsum self-reinforced composite form a compacted structure of the gypsum matrix with the formation of a contact zone between calcium sulfate dihydrate and additives that reduce the weight of the material obtained. The dependence of the strength limit of the composite on the percentage of lightened granules of the foam filler has an extreme dependence, a synergistic effect was found in the system of calcium sulfate dihydrate-foam ceramics. Gypsum matrix creates a margin of strength and makes it possible within wide limits to vary the content of foam filler in the lightened self-reinforced material in accordance with the required performance properties and the selected technology of their production.
K.S. PETROPAVLOVSKII1, Engineer
A.F. BURYANOV1, Doctor of Science (Engineering)
V.В. PETROPAVLOVSKAYA2, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.B. NOVICHENKOVA2, Candidate of Science (Engineering)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Tver State Technical University (22, Afanasiy Nikitin Еmbankment, Tver, 170026, Russian Federation)

1. Zabalza B.I., Valero C.A., Aranda A. Life cycle assessment of building materials: Comparative analysis of energy and environmental IMPacts and evaluation of the eco-efficiency improvement potential. Building and Environment. 2011. Vol. 46 (5), pp. 1133–1140.
2. Mahlia T.M.I., Taufiq Ismail B.N., Masjuki H.H. Correlation between thermal conductivity and the thickness of selected insulation materials for building wall. Energy and Buildings. 2007. Vol. 39, pp. 182–187.
3. Rao A., Jha K.N., Misra S. Use of aggregates from recycled construction and demolition waste in concrete. Resources, Conservation and Recycling. 2007. Vol. 50. Iss. 1, pp. 71–81. https://doi.org/10.1016/j.resconrec.2006.05.010
4. Lin K.L. Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. Hazardous Materials. 2006. Vol. 137 (3), pp. 1810–1816. 10.1016/j.jhazmat.2006.05.027
5. Raut A.N., Madurwar M., Ralegaonkar R. Physico-mechanical properties investigation of innovative sustainable construction material. Conference Paper. 2013. DOI: 10.13140 / RG.2.1.1345.2480/1
6. Shih P.H., Wu Z.Z., Chiang H.L. Characteristics of bricks made from waste steel slag. Waste Management. 2004. Vol. 24 (10), pp. 1043–1047. DOI: 10.1016/j.wasman.2004.08.006.
7. Хаев Т.Э., Ткач Е.В., Орешкин Д.В. Модифицированный облегченный гипсовый материал с полыми стеклянными микросферами для реставрационных работ // Строительные материалы. 2017. № 10. С. 45–50.
7. Кhaev T.E., Tkach E.V., Oreshkin D.V. Modified lightweight gypsum material with hollow glass microspheres for restoration works. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 45–50. DOI: https://doi.org/10.31659/0585-430X-2017-753-10-45-50. (In Russian).
8. Shi C., Zheng K. A review on the use of waste glasses in the production of cement and concrete. Resources Conservation and Recycling. 2007. Vol. 52 (2), pp. 234–247. DOI: 10.1016/j.resconrec.2007.01.013
9. Shazim Ali Memon, Tommy Yiu Lo, Hongzhi Cui Utilization of waste glass powder for latent heat storage application in buildings. Energy and Buildings. 2013. Vol. 66, pp. 405–414. https://doi.org/10.1016/j.enbuild.2013.07.056
10. Nunes Sandra, Mafalda Matos, Telma Ramos, Joana Sousa сoutinho Mixture design of SCC incorporating fine glass powder. Conference: HAC 2012 - 3о Congreso Iberoamericano sobre hormigón autocompactante. Avances y oportunidades. At Madrid. 2012.
11. Yixin Shao, Thibaut Lefort, Shylesh Moras, Damian Rodriguez, Studies on concrete containing ground waste glass. Cement and Concrete Research. Vol. 30 (1), pp. 91–100. DOI: 10.1016/S0008-8846(99)00213-6
12. Ahmad Shayan, Xu Aimin. Performance of glass powder as a pozzolanic material in concrete: a field trial on concrete slabs. Cement and Concrete Research. 2006. Vol. 36 (3), pp. 457–468.
13. Белов В.В., Петропавловская В.Б. Использование вторичных сырьевых ресурсов в производстве строительных материалов. Тверь: ТвГТУ, 2017. 120 с.
13. Belov V.V., Petropavlovskaya V.B. Ispol’zovaniye vtorichnykh syr’yevykh resursov v proizvodstve stroitel’nykh materialov [The use of secondary raw materials in the production of building materials]. Tver: TvGTU. 2017. 120 p.
14. Бабков В.В., Латыпов В.М., Ломакина Л.Н., Шигапов Р.И. Модифицированные гипсовые вяжущие повышенной водостойкости и гипсокерамзитобетонные стеновые блоки для малоэтажного жилищного строительства на их основе // Строительные материалы. 2012. № 7. С. 4–8.
14. Babkov V.V., Latypov V.M., Lomakina L.N., Asyanova V.S., Shigapov R.I. Modified gypsum binders of high water resistance and gypsum-claydite-concrete wall blocks for low-rise housing construction on their basis. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 4–8. (In Russian).
15. Новиченкова Т.Б., Петропавловская В.Б., Завадько М.Ю., Бурьянов А.Ф., Пустовгар А.П., Петропавловский К.С. Применение пылевидных отходов базальтового производства в качестве наполнителя гипсовых композиций // Строительные материалы. 2018. № 8. С. 9–13.
15. Novichenkova T.B., Petropavlovskaya V.В., Zavad’ko M.Yu., Bur’yanov A.F., Pustovgar A.P., Petropavlovskiy K.S. The use of dusty wastes of basalt production as a filler for gypsum compositions. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 9–13. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-9-13 (In Russian)
16. Гальцева Н.А., Бурьянов А.Ф., Булдыжова Е.Н., Соловьев В.Г. Использование синтетического ангидрита сульфата кальция для приготовления закладочных смесей. // Строительные материалы. 2015. № 6. С. 76–77.
16. Gal’tseva N.A., Bur’yanov A.F., Buldyzhova E.N., Solov’ev V.G. The Use of Synthetic Calcium Sulfate Anhydrite for Production of Filling Mixtures. Stroitel’nye Materialy [Construction Materials]. 2015. No. 6, pp. 76–77.
17. Кедрова Н.Г., Петропавловская В.Б., Некрасова И.Ю. Модификация свойств гипсового вяжущего при использовании керамической добавки. Инновации и моделирование в строительном материаловедении: Сборник научных трудов. Тверь: ТвГТУ, 2017. С. 51–57.
17. Kedrova N.G., Petropavlovskaya V.B., Nekrasova I.Y. Modification of gypsum binder properties using ceramic additive. Innovation and modeling in building materials science: Collection of scientific papers. Tver: TvSTU. 2017, pp. 51–57. (In Russian).
18. Иващенко Ю.Г., Евстигнеев С.А., Страхов А.В. Роль наполнителей и модификаторов в формировании структуры и свойств композитов на основе гипсового вяжущего. Надежность и долговечность строительных материалов, конструкций и оснований фундаментов: Материалы VI Международной научно-технической конференции. Волгоград, 2011. С. 159–162.
18. Ivashchenko Yu.G., Evstigneev S.A., Strahov A.V. The role of fillers and modifiers in the formation of the structure and properties of composites based on gypsum binder. The reliability and durability of building materials, structures and foundations: Materials of the VI International scientific-technical conference. Volgograd. 2011, рр.159–162. (In Russian).
19. Бердов Г.И., Ильина Л.В., Зырянова В.Н., Никоненко Н.И., Сухаренко В.А. Влияние минеральных наполнителей на свойства строительных материалов // Строительные материалы. 2012. № 9. С. 79–83.
19. Berdov G.I., Il’ina L.V., Zyryanova V.N., Nikonenko N.I., Sukharenko V.A. Influence of mineral microfillers on building materials properties. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 79–83. (In Russian).
20. Пыкин А.А., Лукутцова Н.П., Лукаш А.А., Ласман И.А., Головин С.Н., Тугай Т.С. Свойства и структура строительного гипса с микрокристаллической целлюлозой // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2017. № 12. С. 55–61.
20. Pykin A.A., Lukutcova N.P., Lukash A.A., Lasman I.A., Golovin S.N., Tugaj T.S. Properties and structure of construction gypsum with microcrystalline cellulose. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shuhova. 2017. No. 12, pp. 55–61. (In Russian).
21. Byars E.A., Morales-Hernandezz B., Hui Ying Z. Waste glass as concrete aggregate and pozzolan: laboratory and industrial projects. Concrete (London). 2004. Vol. 38 (1), pp. 41–44.
22. Petropavlovskaya V., Buryanov А., Novichenkova T., Petropavlovskii K. Gypsum composites reinforcement. IOP Conf. Series: Materials Science and Engineering. 2018. 365. 032060. DOI: 10.1088/1757-899X/365/3/032060
23. Петропавловская В.Б., Бурьянов А.Ф., Новиченкова Т.Б., Петропавловский К.С. Самоармированные гипсовые композиты. М.: Де Нова, 2015. 163 с.
23. Petropavlovskaya V.B., Buryanov A.F., Novichenkova T.B., Petropavlovskiy K.S. Samoarmirovannyye gipsovyye kompozity [Self-reinforced gypsum composites]. Moscow: De Nova. 2015. 163 p.
24. Petropavlovskaya V., Buryanov А., Novichenkova Т., Petropavlovskii K. Self-hardening of a gypsum. Key Engineering Materials. 2017. Vol. 737, pp. 517–521. https://doi.org/10.4028/www.scientific.net/KEM.737.517
25. Петропавловская В.Б., Белов В.В., Новиченкова Т.Б., Бурьянов А.Ф. Закономерности влияния зернового состава на свойства сырьевых смесей прессованных гипсовых материалов // Строительные материалы. 2011. № 6. С. 4–5.
25. Petropavlovskaya V.B., Belov V.V., Novichenkova T.B., Burianov A.F. Regularities of influence of grain composition on properties of raw mixes of pressed gypsum materials. Stroitel’nye Materialy [Construction Materials]. 2011. No. 6, pp. 4–5. (In Russian).

For citation: Petropavlovskii K.S., Buryanov A.F., Petropavlovskaya V.В., Novichenkova T.B. Lightened self-reinforced gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 40–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-40-45

Influence of the Chemical Nature of Plasticizers on the Properties of Gypsum Paste and Stone

Number of journal: 10-2019
Autors:

Khozin V.G.
Maysuradze N.V.
Mustafina A.R.
Kornyanen M.E.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-35-39
УДК: 691.311

 

AbstractAbout AuthorsReferences
The results of the study of the effect of additives of different types of industrial plasticizers (water – soluble surfactants), widely used in cement concretes – C-3, Melflux, Stachement 2280, on the technological and physical-mechanical properties of gypsum binder are presented. It is established that their introduction into the gypsum paste leads to a significant water-reducing effect, depending on the chemical structure and concentration of the additive, and the setting time changes: C-3 monotonically reduces them, and Stachement and Melflux slow down the hydration process of semi-aqueous gypsum. The concentration dependence of the strength of the cured gypsum binder is described by curves with maxima at 0.5% (C-3) and 0.6% (Melflux, Stachement). The latter increase the compressive strength of the cured gypsum binder by 5 times, and when bending by 3.5 times compared to the strength of the unmodified binder.
V.G. KHOZIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.V. MAYSURADZE1, Candidate of Sciences (Engineering)
A.R. MUSTAFINA1, Graduate Student
M.E. KORNYANEN2, Director

1 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)
2 OOO “Gypsum Company” (“Gipsovaya Kompaniya”) (24, Off. 305, Volzhskaya Street, Siukeevo Village, Kamsko-Ust’insky District, Republic of Tatarstan, 422825, Russian Federation)

1. Ahverdov I.N. Osnovy fiziki betona [Basic physics of concrete]. Moscow: Stroizdat. 1981. 464 p.
2. Batrakov V.T. Modificirovannye betony. Teoriya i praktika [Modified concretes. Theory and practice]. 2nd ed. Moscow: 1998. 768 p.
3. Potorochina S.A., Novikova V.A., Gordina A. F. Effect of polycarboxylate plasticizer on the technical parameters of gypsum. Bulletin of science and education of North-West Russia. 2015. Vol. 1. No. 3. pp. 1–6. http://vestnik-nauki.ru/wp-content/uploads/2015/11/2015-%E2%84%963-%D0%9F%D0%BE%D1%82%D0%BE%D1%80%D0%BE%D1%87%D0%B8%D0%BD%D0%B0.pdf (Date of access 10.05.2019). (In Russian).
4. Redlih V.V., Kudyakov A.I. Gypsum mixtures with plasticizers and dispersed mineral additives. Materials of the 56th scientific and technical conference. Tomsk: TGASU. 2010. pp. 97–101. (In Russian).
5. Gajfullin A.R., Rahimov R.Z., Haliullin M.I., Stoyanov O. V. Influence of superplasticizers on properties of composite gypsum binders. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2013. Vol. 16. No. 5, pp. 119–121. (In Russian).
6. Fedorova V.V., Sycheva L.I. Influence of plasticizing additives on the properties of gypsum binders. Uspekhi v himii i himicheskoj tekhnologii. 2015. Vol. XXIX. No. 7, pp. 78–80. (In Russian).
7. Pustovgar A.P., Buryanov A.F., Vasilik P.G. Features of application of hyperplasticizers in dry building mixes. Stroitel’nye Materialy [Construction Materials]. 2010. No. 12, pp. 62–65. (In Russian).
8. Petropavlovskaya V.B., Zavad’ko M.Yu., Petropavlovskii K.S., Novichenkova T.B., Buryanov A.F. The use of plasticizers in modified gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 28–35. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-28-35 (In Russian).
9. Garkavi M.S., Shlenkina S.S. To the question of the use of plasticizers for gypsum binders. Proceedings of the V International scientific and practical conference “Improving the efficiency of production and application of gypsum materials and products”. Under the scientific editorship of A.F. Buryanov. Kazan. 2010. 290 p. (In Russian).

For citation: Khozin V.G., Maysuradze N.V., Mustafina A.R., Kornyanen M.E. Influence of the chemical nature of plasticizers on the properties of gypsum paste and stone. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 35–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-35-39

Main Provisions of GOST 34028–2016 "Reinforcing Bars for Reinforced Concrete Structures. Technical Conditions" and Their Application When Designing Reinforced Concrete Structures

Number of journal: 10-2019
Autors:

Tikhonov I.N.
Savrasov I.P.
Kharitonov V.A.
Tikhonov G.I.
Tsyba O.O.
Kuzmenko N.V.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-27-34
УДК: 666.982.24

 

AbstractAbout AuthorsReferences
The global practice of creating normative documents for the most responsible types of industrial products shows that this process requires significant time and material costs, , and the positive effect of the introduction of new standards is possible only in the presence and involvement for their development of leading scientists and practitioners in the field of science and production considered. In GOST 34028–2016 “Reinforcing bars for reinforced concrete structures. Technical requirements”, put into effect from January 1, 2019, additional requirements for special purpose rebar rolling have been introduced, the use of which in construction will provide high technical and economic efficiency of design, safety of work during the construction of building facilities and their operation, significant reduction of risks of emergency situations under the influence of special types of loads (seismic, explosive, shock, dynamic impulsive, etc.), and in metallurgical production stimulates without any significant costs the development of mass production of innovative products that are competitive both at the domestic and foreign markets. The article presents the identified advantages and disadvantages of the provisions of this standard in metallurgical production, as well as established individual inconsistencies with the requirements of GOST 34028–2016 and normative documents for the design of reinforced concrete structures.
I.N. TIKHONOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.P. SAVRASOV1, Candidate of Sciences (Engineering)
V.A. KHARITONOV1, Candidate of Sciences (Engineering)
G.I. TIKHONOV1, Engineer
O.O. TSYBA2, Candidate of Sciences (Engineering)
N.V. KUZMENKO3, Engineer

1 JSC Research Center of Construction (6, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)
2 Subcommittee 4 “Reinforcing bars for reinforced concrete structures», Technical committee 375 “Metal products from ferrous metals and alloys” of Rosstandart (23/9, bldg. 2, Radio Street, Moscow, 105005, Russian Federation)
3 Tula Metal Rolling Plant (32, bldg. 1, Shcheglovskaya zaseka Street, Tula, 300001, Russian Federation)

1. Tikhonov I.N., Meshkov V.Z., Rastorguev B.S. Design of reinforced concrete reinforcement. Moscow: TSITP them. G.K. Ordzhonikidze. 2015. 273 р. (In Russian).
2. Tikhonov I.N., Blazhko V.P., Tikhonov G.I., Kazaryan V.A., Krakovsky M.B., Tsyba O.O. Innovative solutions for efficient reinforcement of reinforced concrete structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 8, pp. 3–10. (In Russian).
3. Tikhonov I.N., Meshkov V.Z., Zvezdov A.I, Savrasov I.P. Effective reinforcement for reinforced concrete structures of buildings, designed taking into account the impact of special loads. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 39–45. (In Russian).
4. Tikhonov I.N. Development, production and implementation of innovative types of reinforcing bars for construction. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 67–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-67-75
5. Tikhonov I.N., Smirnova L.N., Bubis A.A. On the requirements of new normative documents to the reinforcement of reinforced concrete structures for construction in seismic areas. Sejsmostojkoe stroitel`stvo. Bezopasnost` sooruzhenij. 2019. No. 1. pp. 43–49. (In Russian).
6. Madatyan S.A. Armatura zhelezobetonnyh konstrukcij [Reinforcement of reinforced concrete structures]. Moscow: Voentechlit. 2000. 256 p.
7. Skorobogatov S.M. Osnovy teorii rascheta vynoslivosti sterzhnej armatury zhelezobetonnyh konstrukcij [Fundamentals of the theory of calculating the endurance of rods of reinforcement of reinforced concrete structures]. Moscow: Stroyizdat. 1976. 108 p.
8. Gorodnicki F.M., Mikhailov K.V. Vynoslivost’ armatury zhelezobetonnykh konstruktsii [Endurance of reinforcement of reinforced concrete structures]. Moscow: Stroyizdat. 1972. 151 p.
9. Kwasnikov A.A. Method of calculation of interaction of concrete and reinforcement of reinforced concrete structures in Abaqus. Stroitel’naya mekhanika i raschet sooruzhenii. 2019. No. 1, pp. 65–70. (In Russian).
10. Mulin N.M. Sterzhnevaya armatura zhelezobetonnyh konstrukcij [Core reinforcement of reinforced concrete structures]. Moscow: Stroyizdat. 1974. 233 p.

For citation: Tikhonov I.N., Savrasov I.P., Kharitonov V.A., Tikhonov G.I., Tsyba O.O., Kuzmenko N.V. Main provisions of GOST 34028-2016 “Reinforcing bars for reinforced concrete structures. Technical conditions” and their application when designing reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 27–34. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-27-34

Research in Stress-Strain State of Underground Fiber-Concrete Pipes

Number of journal: 10-2019
Autors:

Mastanzade N.S.
Rasulov H.I.
Rustamli T.M.
Altun F.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-16-21
УДК: 628.25

 

AbstractAbout AuthorsReferences
The stress-strain state of fiber-concrete water-sewer pipes made by the method of dry vibro-pressing is considered. Laboratory tests of fiber-concrete samples for compression, bending, crack resistance, stretching and splitting were carried out at the testing site. The main purpose of the research is to determine the optimal amount of fiber in the pipe and the necessary design mechanical characteristics of the fiber concrete. The elastic modulus, Poisson’s ratio and tensile loads were determined. 3D steel fibers were used in the test and the results of the fiber concrete pipe test are presented. The results of testing of fiber-concrete pipes with different steel fiber content (20, 30 and 40 kg/m3) made it possible to determine the optimal composition of fiber-concrete. An overabundance of fiber leads to the separation of the concrete structure, which reduces its resistance.
N.S. MASTANZADE1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
H.I. RASULOV1, Candidate of Sciences (Engineering)
T.M. RUSTAMLI2, Engineer
F. ALTUN3, Doctor of Sciences

1 Scientific Research and Design Construction Institute of Building Matwrials named after S.A. Dadashev (AZ 1014, Azerbaijan, Baku, Fizuli Street, 67)
2 Gidrotransproyekt (AZ 1060, Azerbaijan, Baku, G. Khalilov Street, 8)
3 Erciyes University (Turkish, Kayseri, Melikgazi, Keshk)

1. GOST 6482-2011. Concrete pipes, non-pressure. Technical conditions. Moscow: Standartinform, 2013.
2. Klein G.K. Raschet trub ulozhennykh v zemle [Underground pipes design]. Moscow: Gosstroiizdat, 1957. 194 p.
3. Heyes С., Ram S., Evans C., Lambourne H., Orence R. Performance of sewer pipes riner during earthquakes. Australian Geomechanics. Vol. 50. No. 4. Dec. 2015.
4. EN 1916:2002. Concrete pipe and fittings, unreinforced steel fiber and reinforced.
5. SP 52-104–2006. Steel-fiber concrete structures. Moscow. 2010.
6. Doru Z. Steel fibers reinforced concrete pipes – experimental tests and numerical solutions. IOP Conf. Series: Materials Science and Engineering. 245(2017) 02232
7. Yavarov А.V., Kolosova G.S., Kuroedov V.V. Stress-strain state of buried pipelines. Stroitel’stvo unikal’nykh zdanii i sooruzhenii: internet-zhurnal. 2013. No. 1(6), pp. 1-10. http://unistroy.spbstu.ru/index_2012_06/01_kolosova_kuroedov_yavarov_6.pdf (date of access 23.07.2019). (In Russian).
8. Aliyev T., Mastanzade N., Rasulov Kh., Rustəmli T., Mursalov O. Experimental research of the fiber concrete sewer pipe. International conference “Actual problems in manufacturing building materials and ways of their solution”. October 26, 2018, Baku, pp. 42–47.
9. Flores-Berrones R., Liu X.L. Seismic vulnerability of buried pipelines. Geofisica International. 2003. Vol. 42. No. 2, pp. 237–246.
10. Gumerov R.A., Larionov V.I., Sushehev S.P. Estimation of lateral loads on the undergroun pipeline at seismic impact. Problemi sbora, podgotovki i transportorovki nefti i nefteproduktov. 2016. No. 4 (106), pp. 146–155. (In Russian).
11. Aleksandrov A.A., Kotlyarevskiy V.A., Larionov V.I., Lisin Yu.V. The model of dynamic analusis of seismic effects strength of main pipelines. Neftegazovoye delo. 2011. No. 5, pp. 54–62. (In Russian).
12. Shues O.O.V., Besseling F., Sturwold P.H. Modelling of a pipe rowin a 2D planestrain FE-analysis. Numerical methods in Geotechnical engineering, 214 Taylor&Francis Group. London, pp. 247–282.
13. EN 14651. Test method for metallic fibered concrete – measuring the flexural tensile strength (limit of proportionality (LOP), residual). June. 2005. 17 р.
14. Ferrado F.L., Escalante M.R., Rougier V.C. Numerical simulation of the three edge bearing test of steel fiber reinforced concrete pipes. Mecanica Computational. Vol. XXXIV, pр. 2329–2341. Cordoba, 8–11 Noviembre 2016. Argentina.
15. Figueiredo A.D.De, Fuente A.De La, Aguado A., Molins C., Chama Neto P.J. Steel fiber reinforced concrete pipes. Part 1: technological analysis of the mechanical behavior. Ibracon Structures and Materials Journal. 2012. Vol. 5, No. 1, pp. 1–11.

For citation: Mastanzade N.S., Rasulov H.I., Rustamli T.M., Altun F. Research in stress-strain state of underground fiber-concrete pipes. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10 pp. 16–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-16-21

Influence of Electro-Surface Properties of Mineral Filler on Frost Resistance of Powder Concretes

Number of journal: 10-2019
Autors:

Rakhimbaev Sh.M.
Tolypina N.M.
Kosinova A.A.
Khakhaleva E.N.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-12-15
УДК: 691.32

 

AbstractAbout AuthorsReferences
The influence of mineral fillers with positively and negatively charged electro-surface properties on the frost resistance of powder concretes is investigated. Tests for frost resistance were carried out according to GOST 10060-2012 (5.1), the first basic method. It is established that the samples of powder concrete with 30% of ground quartz sand have the lowest frost resistance, compared with powder concrete with 30% of ground marble and fine-grained concrete C:N=1:3. The results confirmed the hypothesis stated in the paper that concretes, in which the charge of the surface of pores and capillaries is strongly shifted to the negative domain, are subjected to deeper saturation of the material with water. This is evidenced by the results of changes in the mass of samples during frost resistance tests. t is proposed to use the data obtained as a theoretical basis for the selection of rational compositions of concrete of increased frost resistance, both fine-grained and powder.
Sh.M. RAKHIMBAEV1, Doctor of Sciences (Engineering)
N.M. TOLYPINA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.A. KOSINOVA2, Candidate of Sciences (Engineering), Head of Production Laboratory (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.N. KHAKHALEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 “Zavod zhelezobetonnykh konstruktsii №1” OJSC (Plant of reinforced concrete structures) (5, Kommunalnaya Street, Belgorod, 308009, Russian Federation)

1. Solomatov V.I. About interaction forces in disperse cement. Izvestiya vuzov. Stroitel’stvo i arkhitektura. 1996. No. 3, pp. 49–52. (In Russian).
2. Rakhimbaev S.M., Tolypina N.M., Khakhaleva E.N. Influence of small filler from sand on efficiency of effect of additives-flux oil. Vestnik SibADI. 2016. No. 3, pp. 74–79. (In Russian).
3. Rakhimbaev S.M., Tolypina N.M., Karpacheva E.N. Role of the films adsorbed on a surface of particles of natural quartz sand in processes of plasticization of concrete mixes. Promyshlennoe i grazhdanskoe stroitel’stvo. 2014. No. 8, pp. 15–18. (In Russian).
4. Alves J.A., Baldo J.B. The behavior of zeta potential of silica suspensions. New Journal of Glass and Ceramics. 2014. No. 4, pp. 29–37. DOI: 10.4236/njgc.2014.42004
5. Plugin A.N. Electroheterogeneous interactions when curing cement knitting. Doc. Diss. (Chemistry). Kharkiv. 1989. 282 p. (In Ukraine).
6. Ersoy B., Dikmen S., Uygunoğlu T., Icduygu M.G., Kavas T., Olgun A. Effect of mixing water types on the time-dependent zeta potential of Portland cement paste. Science and Engineering of Composite Materials. 2013. Vol. 20. Iss. 3, pp. 285–292. DOI: 10.1515/secm-2012-0099
7. Vovk A.I. Super softeners in concrete: analysis of chemistry of processes. Tekhnologiya betonov. 2007. No. 3, pp. 12–14. (In Russian).
8. Moulin P. Roques H. Zeta potential measurement of calcium carbonate. Journal of Colloid and Interface Science. 2003. 261. 115–126.
9. Minakov S.V. Influence of mineral additives on efficiency of softeners of cement systems. Theory and practice of increase in efficiency of construction materials. Materials III All-Russian conference of young scientists. Penza. 2008, pp. 124–127. (In Russian).
10. Rakhimbaev S.M., Minakov S.V. Influence of complex organo-mineral additives on properties of a cement stone. Vestnik donbasskoi natsional’noi akademii stroitel’stva i arkhitektury. 2010. No. 3 (83), pp. 43–45. (In Ukraine).
11. Rusanov A.I. Termodinamika poverkhnostnykh yavlenii [Thermodynamics of the superficial phenomena]. Leningrad: Publishing house Leningrad University. 1960. 181 p.

For citation: Rakhimbaev Sh.M., Tolypina N.M., Kosinova A.A., Khakhaleva E.N. Influence of electro-surface properties of mineral filler on frost resistance of powder concretes. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 12–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-12-15

The Study of Crack Resistance of Concretes of a New Generation

Number of journal: 10-2019
Autors:

Travush V.I.
Karpenko N.I.
Erofeev V.T.
Erofeeva I.V.
Tarakanov O.V.
Kondrashchenko V.I.
Kesariyskiy A.G.

DOI: https://doi.org/10.31659/0585-430X-2019-775-10-3-11
УДК: 691.3

 

AbstractAbout AuthorsReferences
According to the level of technical and economic indicators, concrete and reinforced concrete are and will remain the main structural materials. New types of effective concretes have been developed in the world practice. All of them are multicomponent, which is determined not only by the variety of chemical and mineralogical composition of the components, but also by the large-scale levels of their dispersion. The new generation of concretes includes powder-activated sand concrete with an optimized content of dispersed fillers and fine crushed sand. A comparison of data on the crack resistance of powder-activated concretes of the new generation, which includes reaction and rheological-active filler, plasticizer and fine aggregates with the properties of materials of the transition and old generations was made. Crack resistance characteristics were determined on beam samples with a pre-induced initial crack. Power and energy parameters: specific energy consumption for static destruction of the sample; static j-integral; static stress intensity factor at normal rupture were considered as the studied parameters. It is established that the increase in water-cement ratio in composites leads to a decrease in the energy parameters of the fracture mechanics. With the introduction of the biocidal additive the trend of effect of water-cement ratio on the parameters of crack resistance of cement stone were the same. The use of reactive and rheological active filler increases the parameters of the crack resistance of sand concrete, especially the static j-integral Ji, which characterizes the energy of viscous (plastic) destruction of the material at the crack top, increasing due to increased adhesion of cement stone to the active surface of the reaction-active filler.
V.I. TRAVUSH1, Doctor of Sciences (Engineering), Professor, Academician of RAACS
N.I. KARPENKO1, Doctor of Sciences (Engineering), Professor, Academician of RAACS
V.T. EROFEEV2, Doctor of Sciences (Engineering), Academician of RAACS
I.V. EROFEEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
O.V.TARAKANOV3, Doctor of Sciences (Engineering)
V.I. KONDRASHCHENKO4, Doctor of Sciences (Engineering)
A.G. KESARIYSKIY5, Candidate of Sciences

1 Russian Academy of Architecture of Construction Sciences (24, Bolshaya Dmitrovka Street, Moscow, 107031, Russian Federation)
2 National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 4Republic of Mordovia, 30005, Russian Federation)
3 Penza State University of Architecture and Civil Engineering (28, Germana Titova Street, Penza, 440028, Russian Federation)
4 Russian University of Transport (MIIT) (9, build. 9, Obraztsova Street, Moscow, 127994, Russian Federation)
5 LLC Laboratory of Complex Technologies (1a, Iskraskaya Street, Dnepropetrovsk region, Pavlograd, 51412, Ukraine)

1. Bazhenov Yu.M. Modern technology of concrete. Concrete and reinforced concrete – a look into the future: scientific papers of the III All-Russian (II International) conference on concrete and reinforced concrete. Vol. 7. Moscow. May 12–16, 2014, pp. 23–28. (In Russian).
2. Falikman V.R., Sorokin Yu.V., Kalashnikov O.O. Construction and technical properties of particularly high-strength quick-hardening concrete. Beton i zhelezobeton. 2004. No. 5, pp. 5–10. (In Russian).
3. Silver Deo. Aspects of the use of non-metallic fiber. The study of the use of fiber for concrete products. CPI – International Concrete Production. 2011. No. 4, pp. 46–56. (In Russian).
4. Lesovik R.V., Klyuyev S.V., Klyuyev A.V., Netrebenko A.V., Yerofeyev V.T., Durachenko A.V. Fine-grain concrete reinforced by polypropylene fiber. Research Journal of Applied Sciences. 2015. Vol. 10. Iss. 10, pp. 624–628 DOI: 10.3923/rjasci.2015.624.628
5. Erofeev V.T. Frame construction composites for buildings and structures in aggressive environments. Procedia Engineering. 2016. Vol. 165, pp. 1444–1447. https://doi.org/10.1016/j.proeng.2016.11.877
6. Kalashnikov V.I. Through the rational rheology of the future of concrete. Part 3. From high-strength and extra-high-strength concrete of the future to superplasticized general-purpose concrete of the present. Tekhnologii betonov. 2008. No. 1, pp. 22–26. (In Russian).
7. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V. Suspension-filled concrete mixes for new generation powder-activated concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2016. No. 4 (688), pp. 30–37. (In Russian).
8. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V., Arkhipov V.P. The concept of strategic development of plasticized powder-activated concrete of a new generation. High-strength cement concrete: technology, construction, economics (VPB-2016): Collection of abstracts of international reports. scientific and technical conference. Kazan. 2016, p. 36.
9. Gulyaeva E.V., Erofeeva I.V., Kalashnikov V.I., Petukhov A.V. Effect of water content, type of superplasticizer and hyperplasticizer on the spreadability of suspensions and strength properties of cement stone. Molodoi uchenyi. 2014. No. 19, pp. 191–194. (In Russian).
10. Gulyaeva E.V., Erofeeva I.V., Kalashnikov V.I., Petukhov A.V. The effect of reactive additives on the strength properties of plasticized cement stone. Molodoi uchenyi. 2014. No. 19, pp. 194–196. (In Russian).
11. Moroz M.N., Kalashnikov V.I., Erofeeva I.V. Effective new generation concretes with low specific cement consumption per unit of strength Molodoi uchenyi. 2015. No. 6, pp. 189–191. (In Russian).
12. Kalashnikov V.I., Volodin V.M., Moroz M.N., Erofeeva I.V., Petukhov A.V. Super and hyperplasticizers. Silica fume. New generation concrete with low specific cement consumption per unit of strength. Molodoi uchenyi. 2014. No. 19, pp. 207–210. (In Russian).
13. Kalashnikov V.I., Erofeeva I.V., Volodin V.M., Abramov D.A. High-performance self-compacting powder-activated sand concrete and fiber concrete. Sovremennye problemy nauki i obrazovaniya. 2015. No. 1–2. https://www.science-education.ru/pdf/2015/1-2/237.pdf (In Russian).
14. Erofeev V.T., Cherkasov V.D., Emel’yanov D.V., Erofeeva I.V. Impact strength of cement composites. Academia. Arkhitektura i stroitel’stvo. 2017. No. 4, pp. 89–94. (In Russian).
15. Erofeeva I.V. Biostability of carbonate-quartz composites. Vestnik of BSTU named after V.G. Shukhov. 2018. No. 6, pp. 28–32. (In Russian).
16. Kalashnikov V.I. Terminology of science of new generation of concrete. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, pp. 103–106. (In Russian).
17. Erofeeva I.V. Physico-mechanical properties, biological and climatic resistance of powder-activated concrete. Dis ... Candidate of Sciences (Engineering). Penza 2018.318 p. (In Russian).
18. Chernyshev E.M., Potamoshneva N.D., Artamonova O.V., Slavcheva G.S., Korotkikh D.N., Makeev A.I. Applications of nanochemistry in the technology of solid-phase building materials: scientific and engineering problem, directions and examples of implementation. Stroitel’nye Materialy [Construction Materials]/ 2008. No. 2, pp. 32–36. (In Russian).
19. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Prochnost’ i parametry razrusheniya tsementnykh kompozitov [Strength and fracture parameters of cement composites]. Saransk: Publishing House of Mordov University. 2015.360 p.
20. Korotkikh D.N. Patterns of destruction of the structure of high-strength cement concrete based on the analysis of complete equilibrium diagrams of their deformation (part 1). Vestnik of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture. 2012. Vol. 26, pp. 56–67. (In Russian).
21. Bazhenov Yu.M., Chernyshov E.M., Korotkikh D.N. Designing of modern concrete structures: determining principles and technological platforms. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 6–14. (In Russian).
22. Kaprielov S.S., Shenfel’d A.V., Krivoborodov Yu.R. Beton i zhelezobeton. 1992. No. 7, pp. 4–7. (In Russian).
23. Kaprielov S.S., Chilin I.A. Ultra-high-strength self-compacting fiber-reinforced concrete for monolithic structures. Concrete and reinforced concrete – a look into the future: scientific papers of the III All-Russian (II International) conference on concrete and reinforced concrete. Vol. 3. Moscow. May 12–16, 2014, pp. 158–164. (In Russian).
24. Korotkikh D. N., Kesariiskii A.G. Laser holographic interferometry study of the process of crack formation during the destruction of high-strength concrete. Vіsnik DonNABA. 2011. No. 4 (90), pp. 32–39. (In Russian).
25. Korotkikh. D.N. Treshchinostoikost’ sovremennykh tsementnykh betonov (problemy materialovedeniya i tekhnologii): monografiya [Crack resistance of modern cement concrete (problems of materials science and technology): monograph. Voronezh: Voronezh GASU. 2014. 141 p.
26. Akchurin T.K., Ushakov A.V. Teoreticheskie i metodologicheskie voprosy opredeleniya kharakteristik treshchinostoikosti betona pri staticheskom pogruzhenii [Theoretical and methodological issues of determining the characteristics of crack resistance of concrete with static immersion.]. Volgograd: VolgGASU Publishing house. 2005. 408 p.

For citation: Travush V.I., Karpenko N.I., Erofeev V.T., Erofeeva I.V., Tarakanov O.V., Kondrashchenko V.I., Kesariyskiy A.G. The study of crack resistance of concretes of a new generation. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 3–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-3-11

Application of Microbial Carbonate Biomineralization in Biotechnologies of Building Materials Creation and Restoration: Analysis of the State and Prospects of Development

Number of journal: 9-2019
Autors:

Strokova V.V.
Vlasov D.Yu.
Frank-Kamenetskaya O.V.
Dukhanina U.N.
Balitsky D.A.

DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
УДК: 620.22

 

AbstractAbout AuthorsReferences
Microbial carbonate biomineralisation, an intensively developing field of nature-like technologies, expands the range of tools to control the processes of structure formation at various technological stages of the life cycle of composite construction materials: from the design of the raw material mixture to the self-healing during operation. As any interdisciplinary field, the technology of carbonate biomineralization in the construction materials science, passing the stages of studying natural analogues of the processes alleged to borrowing theoretical substantiation of prospects of their practical use, has passed to the stage of accumulating empirical results requiring synthesis and analysis. The paper presents a review of publications for the twenty-year period on such criteria as the generic affiliation of the bacterial cells used; the used precursors of biochemical reactions; the effect of biomineralization on the properties of composite materials; the characteristic features of the products of phase formation. The existing methods of introduction of bacterial cultures and precursors in technologies of the production of composite building materials with application of carbonate bio-mineralization are generalized and classified.
V.V. STROKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.Yu. VLASOV2, Doctor Sciences (Biology)
O.V. FRANK-KAMENETSKAYA2, Doctor Sciences (Geology and Mineralogy)
U.N. DUKHANINA1, Engineer
D.A. BALITSKY1, Bachelor

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Saint Petersburg University (7/9, University Embankment, St. Petersburg, 199034, Russian Federation)

1. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В. Микробная карбонатная биоминерализация как инструмент природоподобных технологий в строительном материаловедении // Строительные материалы. 2019. № 7. С. 66–72. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
1. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V. Microbial carbonate biomineralisation as a tool of natural-like technologies in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
2. Seifan M., Berenjian A. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied Microbiology and Biotechnology. 2019. Vol. 103. No. 12, рр. 4693–4708. DOI: https://doi.org/10.1007/s00253-019-09861-5
3. Zelenskaya M.S., Rusakov A.V., Frank-Kamenetskaya O.V., Vlasov D.Yu., Himelbrant D.E., Izatulina A.R. The formation of calcium oxalate hydrates by the interaction between microorganisms and apatite on the base of field and laboratory research. VI International Symposium «Biogenic – abiogenic interactions in natural and anthropogenic systems» devoted to the 150th anniversary of the Saint-Petersburg Naturalists Society. 2018, рр. 117–118.
4. Frank-Kamenetskaya O.V., Vlasov D.Yu. Biofilm mineralization by participation of lithobiotic microbial community. VI International Symposium «Biogenic – abiogenic interactions in natural and anthropogenic systems» devoted to the 150th anniversary of the Saint-Petersburg Naturalists Society. 2018, pp. 18–20.
5. Le Métayer-Levrel G., Castanier S., Orial G., Loubière J.-F., Perthuisot J.-P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology. 1999. Vol. 26, pp. 25–34.
6. Ерофеев В.Т., Дергунова А.В., Аль Дулайми С.Д.С. Исследование биобетонов и их применение // Наукоемкие технологии и инновации: Сборник докладов Международной научно-практической конференции, посвященной 65-летию БГТУ им. В.Г. Шухова. 2019. С. 56–59.
6. Erofeev V.T., Dergunova A.V., Al Dulaymi S.D.S. Research of bio-concretes and their application. Science-intensive technologies and innovations. Collection of reports of the International Scientific and Practical Conference dedicated to the 65th anniversary of BSTU. V.G. Shukhov. 2019, pp. 56–59. (In Russian).
7. Шувалова Е.А., Салуквадзе Г.А., Федотов А.С. Обзор интеллектуальных строительных материалов // Современные технологии: актуальные вопросы, достижения и инновации: Cборник статей XVI Международной научно-практической конференции. 27 апреля 2018 г. Пенза. С. 53–55.
7. Shuvalova E.A., Salukvadze G.A., Fedotov A.S. Overview of intellectual building materials. Modern technologies: current issues, achievements and innovations collection of articles of the XVI International Scientific Practical Conference. 2018. April 27, 2018 Penza, pp. 53–55. (In Russian)
8. Чепелева К.В., Никитина О.С., Банникова А.С., Сиротская К.В. Технология биоминерализации: возможности и перспективы использования // Эпоха науки. 2016. № 8. С. 226–233.
8. Chepeleva K.V., Nikitina OS, Bannikova A.S., Sirotskaya K.V. Technology of biomineralization: opportunities and prospects of use. Epocha nauki. 2016. No. 8, рр. 226–233.
9. Ерофеев В.Т., Аль Дулайми С.Д.С., Смирнов В.Ф. Бактерии для получения самовосстанавливающихся бетонов // Интернет-журнал «Транспортные сооружения». 2018. № 4. DOI: 10.15862/07SATS418
9. Erofeev V.T., Al Dulaimi S.D.S., Smirnov V.F. Bacteria for the production of self-healing concretes. Internet-zhurnal «Transportnye sooruzheniya». 2018. No. 4. DOI: 10.15862/07SATS418
10. De Belie N., Wang J., Basaran Z., Paine K. Bacteriabased concrete. In book: Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures. 2018, рp. 31–567. DOI: 10.1016/B978-0-08-102181-1.00019-8
11. Noeiaghaei T., Mukherjee A., Dhami N., Chae S. Biogenic deterioration of concrete and its mitigation technologies. Construction and Building Materials. 2017. Vol. 149, рр. 575–586. DOI 10.1016/j.conbuildmat.2017.05.144
12. Anbu P., Kang C.-H., Shin Y.-J., So J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springer Plus. 2016. Vol. 5 (250), pp. 5–26. DOI: 10.1186/s40064-016-1869-2
13. Sidiq А., Gravina R., Giustozzi F. Is concrete healing really efficient? A review. Construction and Building Materials. 2019. Vol. 205, pp. 257–273.
14. De Muynck W., De Belie N., Verstraete W. Microbial carbonate precipitation in construction materials: a review. Ecological Engineering. 2010. Vol. 36, рр. 118–136. DOI:10.1016/j.ecoleng.2009.02.006
15. Huseien G., Shah K. W., Sam A.R.M. Sustainability of nanomaterials based self-healing concrete: An allinclusive insight. Journal of Building Engineering. 2019. Vol. 23, pp. 155–171. DOI: 10.1016/j.jobe.2019.01.032
16. Mohd S.R., Rizwan A.K. A review of concrete properties modified by microbial induced calcite precipitation (MICP). International Journal of Engineering and Technology. 2018. Vol. 7 (29), рр. 720–727. DOI:10.14419/ijet.v7i4.29.21646
17. DeJong J.T., Soga K., Banwart S.A., Whalley W.R., Ginn, T.R., Nelson D.C., Barkouki T. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. Journal of the Royal Society, Interface. 2011. Vol. 8 (54), pp. 1–15. DOI:10.1098/rsif.2010.0270
18. Dhami N.K., Reddy M.S., Mukherjee A. Biomineralization of calcium carbonates and their engineered applications. Frontiers in Microbiology. 2013. Vol. 4, рр. 314. DOI: 10.3389/fmicb.2013.00314
19. Dhami N.K., Reddy M.S., Mukherjee A. Application of calcifying bacteria for remediation of stones and cultural heritage. Frontiers in Microbiology. 2014. Vol. 5, рр. 304. DOI: 10.3389/fmicb.2014.00304
20. Hammes F., Verstraete W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology. 2002. Vol. 1, рр. 3–7. DOI: 10.1023/A:1015135629155
21. Joshi S., Goyal S., Mukherjee A., Reddy M.S. Microbial healing of cracks in concrete: a review. Journal of Industrial Microbiology and Biotechnology. 2017. Vol. 44, рр. 1511–1525. DOI: 10.1007/s10295-017-1978-0
22. Ivanov V., Chu J., Stabnikov V. Basics of construction microbial biotechnology. Biotechnologies and Biomimetics for Civil Engineering. 2015, pp. 21–56. DOI: 10.1007/978-3-319-09287-4_2
23. Thakur A., Phogat A., Singh K. Bacterial concrete and effect of different bacteria on the strength and water absorption characteristics of concrete: a review. International Journal of Civil Engineering and Technology. 2016. Vol. 7, рр. 43–56.
24. Talaiekhozani A., Keyvanfar A., Shafaghat A., Andalib R., Majid M., Fulazzaky M., Rosli M., Lee C., Hussin M.W., Hamzah N., Marwar F., Haidar H. A review of self-healing concrete research development. Journal of Environmental Treatment Techniques. 2014, рр. 1–11.
25. Ganiyu A., Babr A., Ajagbe W., Nasiru M., Keyvanfar A., Majid M.Z. Properties of biological self-healing concretes; a short review. Conference: 1st International Conference on Cement & Concrete Technology, At Military Technological College – Sultanate of Oman. 2017, pp. 376–385.
26. Nasiru M., Keyvanfar A., Majid M.Z. Ghoshal S., Mohammadyan S.E.Y., Ganiyu A., Kouchaksaei M.S., Mahdi Taheri M., Kamyab H., Shirdar M.R., Mccaffer R. Tests and methods of evaluating the selfhealing efficiency of concrete: A review. Construction and Building Materials. 2016, pp. 1123–1132. DOI: 10.1016/j.conbuildmat.2016.03.017
27. Morsali S., Gamze Y. The application of bacteria as a main factor in self-healing concrete technology factor in self-healing concrete technology. 2019. https://www.researchgate.net/publication/330292236_The_application_of_bacteria_as_a_main_factor_in_selfhealing_concrete_technology_factor_in_selfhealing_concrete_technology
28. Rathnayaka I. Review on self-healing concrete with Bacillus subtilis. Conference: Annual International Research Symposium (AIRS) – 2018, At International Collage of Business and Technology, Sri Lanka. 2019, pp. 1–5.
29. Abdullah M.A.A., Abdullah N.A.H, Tompang M.F. Development and performance of bacterial selfhealing concrete – a review. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 431. DOI: 10.1088/1757-899X/431/6/062003
30. De Muynck W., Verbeken K., De Belie N., Verstraete W. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering. 2010. Vol. 36, рр. 99–111.
31. De Muynck W., Cox K., De Belie N., Verstaete W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials. 2008. Vol. 22, рр. 875–885.
32. Dhami N.K., Reddy M.S., Mukherjee A. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World Journal of Microbiology and Biotechnology (Formerly MIRCEN Journal of Applied Microbiology and Biotechnology). 2013. Vol. 29, рр. 2397–2406.DOI: 10.1007/s11274-013-1408-z
33. Wang J.Y., Snoeck D.,Van Vlierberghe S., Verstraete W., De Belie N. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials. 2014. Vol. 68, pp. 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018
34. Wang J.Y., Soens H., Verstraete W., De Belie N. Selfhealing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research. 2014. Vol. 56, pp. 139–152.
35. Wang J., Mignon А., Snoeck D., Wiktor V., Boon N., De Belie N. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Frontiers in Microbiology. 2015. Vol. 6, pp. 1088. DOI:10.3389/fmicb.2015.01088
36. Ерофеев В.Т., Аль Дулайми С.Д.С. Исследование изменений прочностных характеристик цементных композитов в зависимости от концентрации в них бактерий и возраста образцов // Приволжский научный журнал. 2018. № 3 (47). С. 70–77.
36. Erofeev V.T., Al Dulaimi S.D.S. Study of changes in the strength characteristics of cement composites depending on the concentration of bacteria in them and the age of the samples. Privolzhskii nauchnyi zhurnal. 2018. No. 3 (47), рр. 70–77. (In Russian).
37. Сивков С.П., Логинова Т.В., Мымрина А.К. Биодобавки для сухих строительных смесей // Сухие строительные смеси. 2017. № 5. С. 15–18.
37. Sivkov S.P., Loginova T.V., Mymrina A.K. upplements for dry building mixes. Sukhie stroitel’nye smesi. 2017. No. 5, pp. 15–18. (In Russian).
38. Логинова Т.В., Сивков С.П. Влияние биоминерализации на прочность гипсового вяжущего // Проблемы науки. 2017. № 1 (14). С. 5–7.
38. Loginova T.V., Sivkov S.P. The influence of iomineralization on the strength of gypsum binder. Problemy nauki. 2017. No. 1 (14), рр. 5–7. (In Russian).
39. Логинова Т.В., Сивков С.П. Влияние биоминерализации на свойства цемента // Национальная Ассоциация Ученых. 2016. № 5 (21). С. 146–149.
39. Loginova T.V., Sivkov S.P. The influence of iomineralization on the properties of cement. Natsional’naya Assotsiatsiya Uchenykh. 2016. No. 5 (21), рр. 146–149. (In Russian).
40. Логинова Т.В., Сивков С.П. Исследование свойств бактериальных цементов // Успехи в химии и химической технологии. 2017. Т. 31. № 1 (182). С. 15–16.
40. Loginova T.V., Sivkov S.P. Study of the properties of bacterial cements. Uspekhi v khimii i khimicheskoi tekhnologii. 2017. Vol. 31. No. 1 (182), pp. 15–16. (In Russian).
41. Мымрина А.К., Сивков С.П. Применение биоминерализации для поверхностного упрочнения бетонов // Успехи в химии и химической технологии. 2016. Т. 30. № 7 (176). С. 72–73.
41. Mymrina A.K., Sivkov S.P. The use of biomineralization for the surface hardening of concretes. Uspekhi v khimii i khimicheskoi tekhnologii. 2016. Vol. 30. No. 7 (176), рр. 72–73. (In Russian).
42. Александрова А.К., Сивков С.П. Синтез карбонатных блоков с использованием биоцементов // Успехи в химии и химической технологии. 2018. Т. 32. № 2 (198). С. 16–18.
42. Alexandrova A.K., Sivkov S.P. Synthesis of carbonate blocks using bio-cements. Uspekhi v khimii i khimicheskoi tekhnologii. 2018. Vol. 32. No. 2 (198), рр. 16–18. (In Russian).
43. Логинова Т.В., Мымрина А.К., Сергеева Н.А., Карамаш А.О., Сивков С.П., Градова Н.Б. Улучшение свойств затвердевшего гипсового камня методами биотехнологии // Успехи в химии и химической технологии. 2015. Т. 29. № 7 (166). С. 53–55.
43. Loginova T.V., Mymrina A.K., Sergeeva N.A., Karamash A.O., Sivkov S.P., Gradova N.B. Improving the properties of hardened gypsum stone using methods of biotechnology. Uspekhi v khimii i khimicheskoi tekhnologii. 2015. Vol. 29. No. 7 (166), pp. 53–55. (In Russian).
44. Andalib R., Zaimi, M., Majid M.Z.A., Hussin M.W., Keyvanfar, A., Talaiekhozani A., Haidar H. Geopolymer bacterial concrete using microorganism. Journal of Environmental Treatment Techniques. 2015. Vol. 3, рр. 212–214.
45. Priyom S.N., Moinul Islam Md., Saiful Islam Md. An experimental investigation on the performance of bacterial concrete. Conference: 4th International Conference on Advances in Civil Engineering 2018 (ICACE 2018). https://www.researchgate.net/publication/329842409_AN_EXPERIMENTAL_INVESTIGATION_ON_THE_PERFORMANCE_OF_BACTERIAL_CONCRETE.
46. Gandhimathi A., Suji D., Elayarajah B. Bacterial concrete: Development of concrete to increase the compressive and split-tensile strength using Bacillus sphaericus. International Journal of Applied Engineering Research. 2015. Vol. 10, pp. 7125–7132.
47. Oriola F., Sani J.E., Adah A.M. Evaluation of the effect of Bacillus Pumilus precipitate on the strength and durability of concrete. Civil and Environmental Research. 2018. Vol. 10, pp. 1–10.
48. Achal V., Mukerjee A., Reddy M.S. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials. 2013. Vol. 48, рр. 1–5. DOI: 10.1016/j.conbuildmat.2013.06.061
49. Nguyen H.T., Ghorbel E., Fares H., Cousture A. Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites. 2019. Vol. 104. DOI: 10.1016/j.cemconcomp.2019.103340
50. Achal V., Pan X., Zihnio lu N.O. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering. 2011. Vol. 37. Iss. 4, рр. 554–559. DOI: 10.1016/j.ecoleng.2010.11.009
51. Al-Salloum Y., Abbas H., Sheikh I.Q., Hadi S., Alsayed S., Almusallam T. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi Journal of Biological Sciences. 2017. Vol. 24. Iss. 2, рр. 286–294. DOI: 10.1016/j.sjbs.2016.01.016
52. Joshi S., Goyal S., Mukherjee A., Reddy A. Protection of concrete structures under sulfate environments by using calcifying bacteria. Construction and Building Materials. 2019. Vol. 209, рр. 156–166. DOI: 10.1016/j.conbuildmat.2019.03.079
53. Andalib R., Majid M.Z.A., Hussin M.W. Mohanadoss P., Keyvanfar A., Mirza J., Lee H.-S. Optimum concentration of Bacillus megaterium for strengthening structural concrete. Construction and Building Materials. 2016. Vol. 118, рр. 180–193. DOI: 10.1016/j.conbuildmat.2016.04.142
54. Oriola F., Olusoga F.P., Sani J.E., Wilson U., Orina O.Z. Influence of Bacillus coagulans on the compressive strength and durability of concrete. Civil and Environmental Research. 2018. Vol. 10. No. 8, pp. 7–16.
55. Yoosathaporn S., Tiangburanatham P., Bovonsombut S., Chaipanich A., Pathom-Aree W. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties. Microbiological Research. 2016. Vol. 186–187, рр. 132–138. DOI:10.1016/j.micres.2016.03.010
56. Abudoleh S.M., Mahayreh A.A., Frejat A.A., Hulaisy F.A, Hamdan, S.O. Bioconcrete development using calcite -precipitating bacteria isolated from different sources in Jordan. International Conference on Building Materials and Materials Engineering (ICBMM 2018) 2019. Vol. 278(12):01011. DOI: 10.1051/matecconf/201927801011
57. Achal V., Mukherjee A., Reddy M.S. Microbial Concrete: way to enhance the durability of building structures. Journal of Materials in Civil Engineering. 2010. Vol. 23, рр. 730–734. DOI: 10.1061/(ASCE) MT.1943-5533.0000159
58. Nain N., Surabhi R., Yathish N.V., Krishnamurthy V., Deepa T., Tharannum S. Enhancement in strength parameters of concrete by application of Bacillus bacteria. Construction and Building Materials. 2019. Vol. 202, рр. 904–908. DOI: 10.1016/j.conbuildmat.2019.01.059
59. Alshalif A.F., Irwan, J.M. Othman N., Al-Gheethi A., Khalid F.S. Improvement of mechanical properties of bio-concrete using Enterococcus faecalis and Bacillus cereus. Environmental Engineering Research. 2019. Vol. 24, pp. 630–637. DOI: 10.4491/eer.2018.306
60. Sreenivasulu B., Lingamgunta, L.K., Kannali J., Gajula S.K., Bandikari R., Dasari S., Dalavai V., Chinthala P., Gundala P.B., Kutagolla P., Balaji V.K. Subsurface endospore-forming bacteria possess biosealant properties. Scientific Reports. 2018. Vol. 8. DOI: 10.1038/s41598-018-24730-3
61. Chaurasia L., Bisht V., Singh L.P. A novel approach of biomineralization for improving microand macroproperties of concrete. Construction and Building Materials. 2018. Vol. 195, pp. 340–351. DOI: 10.1016/j.conbuildmat.2018.11.031
62. Shaheen N., Khushnood R.A., Ud Din S., Khalid A. Influence of bio-immobilized lime stone powder on self-healing behaviour of cementitious composites. IOP Conference Series: Materials Science and Engineering. 2018 Vol. 431. DOI: 10.1088/1757-899X/431/6/062002
63. Balam H. N., Mostofinejad D., Eftekhar M. Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials. 2017. Vol. 145, рр. 107–116. DOI: 10.1016/j.conbuildmat.2017.04.003
64. Yoon H.-S., Yang K.-H., Lee S.-S. Evaluation of sulfuric acid resistance of biomimetic coating mortars for concrete surface protection. Journal of the Korea Concrete Institute. 2019. Vol. 31, pp. 61–68. DOI: 10.4334/JKCI.2019.31.1.061
65. Seifan M., Ebrahiminezhad, A., Younes G., Berenjian A. Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: nanobiotechnological approach. Bioprocess and Biosystems Engineering. 2018. Vol. 42, рр. 37–46. DOI: 10.1007/s00449-018-2011-3
66. Alazhari M., Sharma T., Heath A., Cooper R., Paine K. Application of expanded perlite encapsulated bacteria and growth media for selfhealing concrete. Construction and Building Materials. 2018. Vol. 160, pp.610–619. DOI: 10.1016/j.conbuildmat.2017.11.08
67. Le Métayer-Levrel G., Castanier S., Orial G., Loubière J.-F., Perthuisot J.-P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology. 1999. Vol. 126, pp. 25–34. DOI: 10.1016/S0037-0738(99)00029-9
68. Rodriguez-Navarro C., Fadwa J., Schiro M., RuizAgudo E., Gonzalez-Mu oz M.T. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. Applied and Environmental Microbiology. 2012. Vol. 78, pp. 4017–4029. DOI: 10.1128/AEM.07044-11
69. Rodriguez-Navarro C., Rodriguez-Gallego M., Chekroun K.B., Gonzalez-Munoz M.T. Conservation of ornamental stone by Myxococcus xanthus – induced carbonate biomineralization. Applied and Environmental Microbiology. 2003. Vol. 69, pp. 2182–2193. DOI: 10.1128/AEM.69.4.2182-2193.2003
70. Talaiekhozani A., Keyvanfar A., Andalib R., Samadi M., Shafaghat, A., Kamyab H., Majid M.Z.A., Mohamad zin R., Fulazzaky M.A., Lee C.T., Hussin M.W. Application of Proteus mirabilis and Proteus vulgaris mixture to design self-healing concrete. Desalination and water treatment. 2013. Vol. 52. DOI:10.1080/19443994.2013.854092
71. Minto J., Tan Q., Lunn R., Mountassir El G., Guo H., Cheng X. Microbial mortar – restoration of degraded marble structures with microbially induced carbonate precipitation. Construction and Building Materials. 2018. Vol. 180, pp. 44–54. DOI: 10.1016/j.conbuildmat.2018.05.200
72. Bang S.S., Galinat J.K., Ramakrishnan V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology. 2001. Vol. 28. Iss. 4–5, pp. 404–409. DOI: 10.1016/S0141-0229(00)00348-3
73. Stabnikov V., Chu J., Ivanov V., Li Y. Erratum to: Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World journal of microbiology and biotechnology. 2013. Vol. 30. DOI: 10.1007/s11274-013-1309-1.
74. Kim D., Park K., Kim D. Effects of ground conditions on microbial cementation in soils. Materials. Vol. 7, pp. 143–156. DOI:10.3390/ma7010143
75. Terzis D., Laloui L. 3-D micro-architecture and mechanical response of soil cemented via microbialinduced calcite precipitation. Scientific reports. Vol. 8 (1). DOI: 10.1038/s41598-018-19895-w
76. Liu L., Liu H., Xiao Y., Chu J., Xiao H., Wang Y. Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bulletin of Engineering Geology and the Environment. 2018. Vol. 77. No. 4, pp. 1–11. DOI: 10.1007/s10064-017-1106-4
77. M. Sharaky A., S. Mohamed N., Elmashad M.E., M. Shredah N. Application of microbial biocementation to improve the physico-mechanical properties of sandy soil. Construction and Building Materials. 2018. Vol. 190, pp. 861–869. DOI:10.1016/j.conbuildmat.2018.09.159.
78. Kim G., Youn H. Microbially induced calcite precipitation employing environmental isolates. Materials. Vol. 9, р. 468. DOI:10.3390/ma9060468.

For citation: Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V., Dukhanina U.N., Balitsky D.A. Application of microbial carbonate biomineralization in biotechnologies of building materials creation and restoration: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103

Creep of Composite Materials and Mathematical Interpretation of Experimental Studies Results

Number of journal: 9-2019
Autors:

Bondarev B.A.
Storodubtseva T.N.

DOI: https://doi.org/10.31659/0585-430X-2019-774-9-76-82
УДК: 678.0

 

AbstractAbout AuthorsReferences
The results of the study of the ability of the material to deform in time under the influence of constant loads are presented. Wood and plastics based on it are considered as elastic-visco-plastic materials. For these materials, it can be assumed that under the action of a constant load, the following is characteristic: creep deformation under the load not exceeding a certain value (even the limit of long-term resistance) is asymptotic and reversible, and the destruction of the material does not occur; when the load exceeds this limit, creep leads to the destruction of the material, creep deformation is not completely reversible and has a continuous nature; the strength of the material varies significantly over time; under the action of a constant given strain, there is a decrease in stress over time (relaxation). A detailed analysis of the positive properties and disadvantages of polymer concrete is given. Disadvantages of polymer concrete were revealed when studying their mechanical properties, in particular, their long-term strength. As a result of development of the structure formation theory, improvement of technology, improvement of methods of experimental research, it is unambiguously established that polymer concretes have damping creep at all ways of loading though when tensioning and bending they are rather big.
B.A. BONDAREV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.N. STORODUBTSEVA2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)
2 Voronezh State University of Forestry and Technologies named after G.F. Morozov (8, Timiryazeva Street, Voronezh, 394087, Russian Federation)

1. Aleksandrov A.V., Potapov V.D., Derzhavin B.P. Soprotivlenie materialov [Strength of materials]. Moscow: Higher school. 1995. 560 p.
2. Belyankin F.P., Yacenko V.F. Deformativnost’ i soprotivlyaemost’ drevesiny kak uprugo-vyazkoplasticheskogo tela [Deformability and resistance of wood as an elastic – viscoplastic body]. Kyiv: Publishing house of USSR Academy of Sciences. 1997. 198 p.
3. Yacenko V.F. Prochnost’ i polzuchest’ sloistyh plastikov [Strength and creep of laminates (compression, tension, bending)]. Kyiv: Naukova Dumka. 1966. 204 p.
4. Ivanov A.M. Structural diagrams of polymers and plastics used in construction. Creep of building materials and structures. Sb. TSNIISK: 1964. No. 218, pp. 41–44. (In Russian).
5. Bazhenov Yu.M. Tekhnologiya betona [Concrete technology]. Moscow: ASV. 2003. 500 p.
6. Bondarev B.A., Harchevnikov V.I., Storodubceva T.N., Komarov P.V. Dolgovechnost’ kompozicionnyh materialov na osnove othodov drevesiny v konstrukciyah special’nogo naznacheniya / Pod red. V.I. Harchevnikova [Durability of composite materials based on wood waste in special purpose structures]. Lipetsk : LGTU. 2007. 200 p.
7. Rzhanicyn A.R. Nekotorye voprosy mekhaniki sistem, deformiruyushchihsya vo vremeni [Some questions of mechanics of systems deforming in time]. Moscow: Gostehizdat. 1969. 252 p.
8. Bykovskij V.N. Soprotivlyaemost’ materialov vo vremeni s uchetom statisticheskih faktorov [The resistance of materials over time, taking into account statistical factors]. Moscow: State construction. 1958. 124 p.
9. Leont’ev N.L. Uprugie deformacii drevesiny [The elastic deformation of the wood]. Leningrad: Goslesbumizdat. 1952. 120 p.
10. Ivanov A.M. Calculation of wooden structures taking into account the duration of the load. Proceedings of the Voronezh Institute of civil engineering. No. 6, pp. 11–18. (In Russian).
11. Ivanov A.M., Potapov Yu.B., Alimov S.A. Ob uravnenii nelinejnoj polzuchesti nekotoryh plastmass I drevesiny // Izv. vuzov. Stroitel’stvo i arhitektura. 1968. No. 6, pp. 13–20. (In Russian).
12. Ivanov A.M. Issledovanie prochnosti i deformativnosti drevesiny [Study of strength and deformability of wood]. Moscow: Stroizdat. 1956. 218 p.
13. Kvasnikov E.N. Voprosy dlitel’nogo soprotivleniya [Long-term resistance issues]. Leningrad: ILS, LISI. 1972. 96 p.
14. Ryb’ev I.A. Stroitel’nye materialy na osnove vyazhushchih veshchestv [Building materials based on binders]. Moscow: Higher school. 1978. 309 p.
15. Harchevnikov V.I. Fundamentals of structure formation of fiberglass polymer concrete. Izv. vuzov. Stroitel’stvo i arhitektura. 1987. No. 11, pp. 62–66. (In Russian).
16. Calculations and application of structures hermopolitan in construction. Guide. Moscow: Ministry of nonferrous metallurgy of the USSR. 1975. 235 p.
17. Manual for the design and manufacture of tank equipment from hermopolitan. Moscow: MCM SOVIET UNION. 1979. 94 p. (In Russian).
18. Ivanov A.M., Potapov Yu.B. Structural diagram of furfuraceous plastbeton compression. Mekhanika polimerov. 1968. No. 3, pp. 454–461. (In Russian).
19. Potapov Yu.B., Zalan L.M. The creep of the resin plastobeton PHAM compression. Beton i zhelezobeton. 1965. No. 9, pp. 31–32. (In Russian).
20. Zalan L.M. Comparative data on creep sandy plastobeton on monomer FA and FAM. Plastmassa v stroitel’stve na zheleznodorozhnom transporte. 1966, pp. 49–54. (In Russian).
21. Belyaev V.E., Kobelev M.I., Lomuhin V.A. Strength and deformability of steel-plastic beams and plates under long-term action of constant load. Beton i zhelezobeton. 1968. No. 7, pp. 23–24. (In Russian).
22. Stalepolimernye stroitel’nye konstrukcii [Steelpolymer building structures]. Edited by S.S. Davydov and A.M. Ivanov. Leningrad: Stroyizdat. 1972. 200 p.
23. Bobryshev A.N. Long-term strength of composite materials at low stresses and high temperatures. Durability of building materials and structures. Theses of International Science Conference. 1995. 96 p. (In Russian).
24. Zhurkov S.I., Narzulaev B.N. Time dependence of the strength of solids. Journal of technical physics. 1963. Vol. 23, Iss. 10, pp. 1–9. (In Russian).
25. Prochnost’ i deformativnost’ konstrukcij s primeneniem plastmass [The strength and deformability of structures with the use of plastics]. Ed. A. B. Gubenko. Moscow: Stroizdat. 1966. 296 p.
26. Bartenev G.M., Zuev Yu.S. Prochnost’ i razrushenie vysokoelasticheskih materialov [Strength and fracture of highly elastic materials]. Moscow: Chemistry. 1964. 387 p.

For citation: Bondarev B.A., Storodubtseva T.N. Creep of composite materials and mathematical interpretation of experimental studies results. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 76–82. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-76-82

https://www.traditionrolex.com/10