Log in

Modification Of WPC Materials By Introduction Of Dioctylphthalate Plasticizer

Number of journal: 8-2019
Autors:

Askadskii A.A.
Matseevich T.A.
Kondrashchenko V.I.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-54-59
УДК: 676. 022

 

AbstractAbout AuthorsReferences
The properties of materials of wood-polymer composites (WPC), modified with mineral filler and plasticizer were studied. The modified materials modified with mineral filler possess very low water absorption of 0.013% compared with 1.25% for ordinary material based on the WPC. The stress relaxation of a modified material was investigated and it was found that the master relaxation curve of the modified sample is located in the stress range from 900 to 1300 MPa, which is higher than for the standard sample. Thermal expansion of samples containing the dioctylphthalate plasticizer (DOP) is in the range from 26 to 68·10-6 K-1; the same range is characteristic and for the control sample free of mineral filler. The water absorption of the samples plasticized with DOP is 0.013% that is also at the level of the samples containing the mineral filler, and significantly less than the water absorption of the control sample. Specific impact toughness is 5.8 kJ/m2, bending strength is 32 MPa.
A.A. ASKADSKII1, 2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.A. MATSEEVICH2, Doctor of Sciences (Physics and Mathematics), (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.I. KONDRASHCHENKO3, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federation)
3 Russian University of Transport (9, Build. 9, Obraztsova Street, Moscow, 127994, Russian Federation)

1. Moroz P.A., Askadskiy Al.A., Matseyevich T.A., Solovyova E.V., Askadskiy A.A. Use of secondary polymers for production of wood and polymeric composites. Plasticheskie massy. 2017. No. 9–10, pp. 56–61. (In Russian).
2. Matseyevich T.A., Askadskiy A.A. Mechanical properties of a terrace board on the basis of polyethylene, polypropylene and polyvinylchloride. Stroitel’stvo: nauka i obrazovanie. 2017. Vol. 7. No. 3, pp. 48–59. (In Russian).
3. Abushenko A.V., Voskoboinikov I.V., Kondratyuk V.A. Production of products from WPC. Delovoi zhurnal po derevoobrabotke. 2008. No. 4, pp. 88–94. (In Russian).
4. Yershova O.V., Chuprova L.V., Mullina E.R., Mishurina O.A. Research dependence of properties the wood and polymeric composites from the chemical composition of a matrix. Sovremennye problem nauki i obrazovaniya. 2014. No. 2, p. 26. https://www.science-education.ru/ru/article/view?id=12363 (In Russian).
5. Klesov A.A. Drevesno-polimernye kompozity / per. s angl. A.Chmelya. [Wood and polymeric composites. Translation from English A.Chmel.]. Saint Petersburg. Scientific bases and technologies. 2010. 736 p.
6. Walcott M.P., Englund K.A. A technology review of wood-plastic composites; 3 ed. N.Y.: Reihold Publ. Corp., 1999. 151 p.
7. Rukovodstvo po razrabotke kompozitsii na osnove PVKh. [The guide to development of compositions on the basis of PVC]. Under edition R.F. Grossman; translation from English under the editorship of V.V. Guzeev. Scientific bases and technologies. 2009. 608 p.
8. Kickelbick G. Introduction to hybrid materials. Hybrid Materials: Synthesis, Characterization, and Applications / G. Kickelbick (ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007. 498 p.
9. Wilkie Ch., Summers J., Daniyels of H. Polivinilkhlorid / per. s angl. pod red. G.E. Zaikova. [The polyvinylchloride / translation from English under the editorship of G.E. Zaikov]. Saint Petersburg. Professiya. 2007. 728 p.
10. Kokta B.V., Maldas D., Daneult C., Bland P. Composites of polyvinyl chloride-wood fibers. Polymer-plastics Technology Engineering. 1990. V. 29, pp. 87–118.
11. Nizamov R.K. Polyvinylchloride compositions of construction appointment with multifunctional fillers. Diss. Doct. (Engineering). Kazan. 2007. 369 p. (In Russian).
12. Stavrov V.P., Spiglazov A.V., Sviridenok A.I. Rheological parameters of molding thermoplastic composites high-filled with wood particles. International Journal of Applied Mechanics and Enginnering. 2007. Vol. 12. No. 2, pp 527–536.
13. Burnashev A.I. The high-filled polyvinylchloride construction materials on the basis of the nano-modified wood flour. Diss. Cand. (Engineering). Kazan. 2011. 159 p. (In Russian).
14. Figovsky O., Borisov Yu., Beilin D. Nanostructured binder for acid-resisting building materials. Scientific Israel – Technological Advantages. 2012. Vol. 14. No. 1, pp. 7–12.
15. Matseyevich T.A., Askadskiy A.A. Terrace boards: structure, production, properties. Part 1. Mechanical properties. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 101–105. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-101-105
16. Matseyevich T.A., Askadskiy A.A. Terrace boards: structure, production, properties. Part 2. Thermal properties, water absorption, abrasion, hardness, resistance to climatic influences, the use of recycled polymers. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 55–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-757-3-55-61
17. Matseyevich T.A., Askadskii A.A. Kondrashchenko V.I. Water absorption of wood-polymer composites based on PVC with partial replacement of wood filler by mineral one. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 62–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-62-66

For citation: Askadskii A.A., Matseevich T.A., Kondrashchenko V.I. Modification of WPC materials by introduction of dioctylphthalate plasticizer. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 54–59. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-54-59

Durability of Concretes with Compensated Chemical Shrinkage

Number of journal: 8-2019
Autors:

Panchenko A.I.
Harchenko I.Ya.
Vasiliev S.V.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-48-53
УДК: 666.972

 

AbstractAbout AuthorsReferences
The durability of concrete under atmospheric impact to a significant extent depends on the level of defects in its structure. In turn, the degree of defectiveness is a consequence of its own deformations and the nature of the resulting own stresses. The ability to control the processes of its own deformations, and in particular chemical shrinkage, provides an opportunity to reduce the level of defectiveness of concrete and ensure its required durability. In the given classification of own deformations, special attention is paid to chemical contraction and chemical expansion. The method for determining the values of general and external contraction is described. It is shown that it is possible to reduce or eliminate the negative effects of chemical contraction by using sulfoaluminate expansion additives to cement when preparing the concrete. By changing the amount of the expanding additive from 8% to 11% by weight of Portland cement, it is possible not only to significantly reduce the external contraction, but also to provide a small expansion of the cement stone, which will lead to the appearance, albeit small values, own compressive stresses. The use of sulfoaluminate expansion additives provides a significant reduction in tensile stresses in the structure of concrete, which helps to reduce the level of defectiveness of concrete, and this in turn provides an increase in the quality of the contact zone of the cement stone with the filler, an increase in frost resistance by two and more times and water impermeability by more than three times.
A.I. PANCHENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.Ya. HARCHENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.V. VASILIEV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Nekrasov V.V. Change in system volume during hardening of hydraulic binders. Izvestiya AN SSSR. 1945. No. 6, pp. 162–165. (In Russian).
2. Brykov A.S. Morozostoikost’ portlandtsementnogo betona i sposoby ee povysheniya [Frost resistance of Portland cement concrete and methods for increasing it]. Saint Petersburg: SPbGTI(TU). 2017. 38 p.
3. Shtark I., Vikht B. Dolgovechnost’ betona [Durability of concrete]. Kiev: Oranta. 2004. 301 p.
4. Panchenko A. Frost resistance and other properties of concrete with expansive additives. 13 ibausil. Internationale Baustofftagung. Band 2. Weimar. 1997, pp. 269–276.
5. Popov D.Yu., Lesovik V.S., Meshcherin V.S. Chemical shrinkage of cement stone at an early stage of hardening. Vestnik of BSTU named after V.G. Shukhov. 2016. No. 8, pp. 6–12. (In Russian).
6. Lura P. Autogenous deformation and internal curing of concrete. Netherlands: Delft University Press. 2003. https://www.researchgate.net/publication/27347573_Autogenous_Deformation_and_Internal_Curing_of_Concrete
7. Hela, Rudolf & Bodnárová, Lenka & Krakowska. Wydział Budownictwa Lądowego, Politechnika & Stavebná fakulta Technická univerzita (Košice, Slovensko. (2019). New generation cement concretes: ideas, design, technology and applications 2: LLP - Erasmus 8203-0519/IP/Košice 03/REN/.
8. Yang Y., Sato R., Kawai K. Autogenous shrinkage of high-strength concrete containing silica fume under drying at early ages. Cement and Concrete Research. 2005. Vol. 35. No. 3, pp. 449–456. DOI: 10.1016/j.cemconres.2004.06.006
9. Holt E., Leivo M. Cracking risks associated with early age shrinkage. Cement and Concrete Composites. 2004. Vol. 26. No. 5, pp. 521–530. DOI: 10.1016/S0958-9465(03)00068-4
10. Lura P., Couch J., Jensen O.M., Weiss J. Early-age acoustic emission measurements in hydrating cement paste: Evidence for cavitation during solidification due to self-desiccation. Cement and Concrete Research. 2009. Vol. 39. pp. 861–867. DOI: 10.1016/j.cemconres.2009.06.015
11. Bouasker M., Mounanga P., Turcry P., Loukili A., Khelidj A. Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions. Cement and Concrete Composites. 2008. Vol. 30. pp. 13–22. DOI: 10.1016/j.cemconcomp.2007.06.004
12. Zhang T., Gao P., Luo R., Guo Yi., Wei Ji., Yu Q. Measurement of chemical shrinkage of cement paste: Comparison study of ASTM C 1608 and an improved method. Construction and building materials. 2013. Vol. 48, pp. 662–669. https://doi.org/10.1016/j.conbuildmat.2013.07.086
13. Standard test method for chemical shrinkage of hydraulic cement paste. Designation: C1608– 07.
14. Panchenko A., Bazhenov Yu., Kharchenko I. Durability of the concrete based on a sulphate-aluminate cement. Durability and sustainability of concrete structures. DSCS-2018. Proceedings 2nd International Workshop. June 6–7, 2018. Moscow, Russia. SP-326. 33.1–33.9.
15. Ivashina M.A., Krivoborodov Yu.R. The use of industrial waste in the technology of sulfoaluminate clinker. Uspekhi v khimii i khimicheskoi tekhnologii. 2017. Vol. 31, pp. 22–24. (In Russian).
16. Konnova L.S. Expanding cements based on alumina-containing sludge. Traditions and innovations in construction and architecture. Construction technologies – collection of articles / Ed. M.I. Balzannikova, K.S. Galitskova, A.K. Strelkova. Samara: Samara State University of Architecture and Civil Engineering. 2016, pp. 94–97. (In Russian).
17. Kuznetsova T.V. Composition, properties and application of sulfoaluminate cement. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2018. Vol. 4. No. 1, pp. 22–28. (In Russian).

For citation: Panchenko A.I., Harchenko I.Ya., Vasiliev S.V. Durability of concretes with compensated chemical shrinkage. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 48–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-48-53

Innovative Composite Materials for Strengthening Lime-based Mortars in Traditional Masonry Structures

Number of journal: 8-2019
Autors:

Abdelmegeed M.
Kassab M.
Shoukry H.
Taha S.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-42-47
УДК: 666.971

 

AbstractAbout AuthorsReferences
The need for new innovative lime-based mortar suitable for restoring and repairing historical buildings has recently become the subject of many research studies. The new mortar should, however, fulfill the following requirements: (a) to have the same physical and mechanical properties as that of the pre-existent old mortar; (b) the pore-size distribution is comparable with that of old lime-sand mortar, and finally; (c) the mortar should set rapidly in both dry and moist environment. The main goal of our study is to find an innovative lime-based mortar which is good enough to be used in the field of restoration of the ancient structures. In order to achieve this goal, two different sets of lime-based mortars tagged as S1 and S2, have been prepared. Each set consists of four different mixtures. The test or the reference set S1, consists of four different (sand : lime : gypsum : white cement : homra*) mortar compositions. If a constant amount of pozzolanic material such as fly ash (FA) is add to each mortar composition in set S1 we then get the other set S2. Each composition can be defined in terms of its constituents as (r1:r2:r3:r4:r5:r6), where these r’s stand for the volume ratio of each component material (sand: lime: gypsum: cement: homra: FA). These eight mortars were tested for the compressive strength. Moreover, the physical properties such as the bulk density, the porosity ratio, and the water absorption ratio were obtained for each mortar. The obtained results for the physical properties of these mortar compositions revealed that the mortar B0 (3:2:2:0:0:0), i.e. without fly ash, has good physical characteristics and high strengths as well. This is related to the rate of hydrate lime, carbonation kinetic, and the speed of setting mechanism for gypsum. For those mortar compositions with fly ash as an additive, it was found the mortar composition D (3:1:1:0:0.25:0.5) has very good physical and mechanical characteristics. This is attributed to the high surface energy of the fly ash, and to the large content of silicate and aluminum oxides in both the fly ash and homra. These two effects lead to a high potential hydration reaction in the D system. Thus, it can be concluded that, the mortar system D is a good and a substantially innovative mortar which can be utilized as a restoration mortar in repairing old buildings and structures.
M. ABDELMEGEED1, Dr., Lecturer, Restoration Department, Faculty of Archaeology (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M. KASSAB1, Dr., Lecturer, Department of Engineering Physics, Faculty of Engineering
H. SHOUKRY2, Researcher
S. TAHA1, Prof., Department of Physics, Faculty of Science

1 Fayoum University, Egypt (http://www.fayoum.edu.eg/english/)
2 Housing &Building National Research Center, Egypt (http://www.hbrc.edu.eg/)

1. Andrejkovicova S., Ferraz Z., Velosa A.L., Silva S., Rocha S. Fine sepiolite addition to air lime-metakaolin mortars. Clay Minerals. 2011. Vol. 46 (4), pp. 621–635. DOI: 10.1180/claymin.2011.046.4.621
2. Isaia G.C., Gastaldini A.L.G., Moraes R. Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and Concrete Composites. 2003. Vol. 25, pp. 69–76. https://doi.org/10.1016/S0958-9465(01)00057-9Get
3. Kearsley E.P., Wainwright P.J. The effect of high fly ash content on the compressive strength of foamed concrete. Cement and Concrete Research. 2001. Vol. 31 (1), pp. 105–112. https://doi.org/10.1016/S0008-8846(00)00430-0
4. Escalant-Garcia J.I., Sharp J.H. The chemical composition and microstructure of hydration products in blended cements. Cement and Concrete Composites. 2004. Vol. 26 (8), pp. 967–976. https://doi.org/10.1016/j.cemconcomp.2004.02.036.
5. Turanli L., Uzal B., Bektas F. Effect of large amounts of natural pozzolan addition on properties of blended cements. Cement and Concrete Research. 2005. Vol. 35 (6), pp. 1106–1111. https://doi.org/10.1016/j.cemconres.2004.07.022
6. Arizzi A., Cultron G. Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: A mineralogical, textural and physical-mechanical study. Construction and Building Materials. 2012. Vol. 31, pp. 135–142. DOI:10.1016/j.conbuildmat.2011.12.069
7. Morsy M.S. Physico-mechanical studies on thermally treated concrete. Diss… Ph.D. 1996. Physics Department, Faculty of Science, Ain Shams University.
8. Hussein A., Russlan A. Performance of modified lime mortars for conservation of ancient building. Proceedings of 2nd International Conference on Innovative Building Materials. Dec. 2–4, 2018. Cairo, Egypt.
9. Hemalatha T., Ramaswamy A. A review on fly ash characteristics towards promoting high volume utilization in developing sustainable concrete, 2017. Journal of Cleaner Production. Vol. 147, pp. 546–559.
10. Al-Salami A.E., Al-Hajry A., Ahmed M.A., Taha S. The effect of temperature and pozzolanic materials on the electrical conductivity of blended cement pastes at different porosities. Silicates Industriels. 2006. Vol. 71 (5), pp. 81–87.
11. Lanas J., Alvarez-Galindo J.I. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cement and Concrete Research. 2003. Vol. 33 (11), pp. 1867–1876. https://doi.org/10.1016/S0008-8846(03)00210-2
12. Lea F.M. The chemistry of cement and concrete. 3rd edition. London, UK: Edward Arnold Ltd. 1970. 740 p.
13. Heikal M., Helmy I., Eldidamony H., Abd EL-Raoof F. Electrical conductivity, physico-chemical and mechanical characteristics of fly ash pozzolanic cement. Silicates Industriels. 2004. Vol. 69 (11–12), pp. 93–102.
14. Khalaf M.K., Abdelmegeed M.M. Assessment of physical and mechanical characteristics of masonry building materials in historic military towers in Alexandria-Egypt: A case study. International Journal of Conservation Science. 2018. Vol. 9 (4), pp. 677–688.
15. Singh N.B., Singh S.P., Sarvahi R., Shukla A.K. The effect of coal dust-fly ash mixture on the hydration of Portland cement. Cemento. 1993. Vol. 90 (4), pp. 231–238.

For citation: Abdelmegeed M., Kassab M., Shoukry H., Taha S. Innovative composite materials for strengthening lime-based mortars in traditional masonry structures. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 42–47. (In English). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-42-47

Design Specialties of Load Bearing and Separating Silicate Units Masonry Structures

Number of journal: 8-2019
Autors:

Ponomarev O.I.
Gorbunov A.M.
Kornev M.V.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-39-41
УДК: 624.011.78

 

AbstractAbout AuthorsReferences
The article presents the main provisions concerning the calculation and design of structures built of silicate brick and block. The features of masonry wall products of a new generation of silicate concrete, allowing the use of these products in the basements and foundations of buildings. Noted some of the features that you need to consider technical solutions in the design and support of floor slabs in upper floors of buildings. Explanations are given to the section of the Code of Rules for the design of stone and reinforced block structures and GOST on the Foundation blocks in terms of the use of full-bodied silicate blocks in the construction of foundations. The calculated values of masonry strength on adhesive compositions are given. The requirements for the use of silicate masonry products in the structures of buildings located above the coating are given. The provisions specified in the Amendments to the set of rules regarding the requirements for the use of full-bodied silicate bricks in the facing layer with a mark for frost resistance F25 and higher grades are specified. The article emphasizes that Changes to the Codes of practice, in contrast to the Codes of practice included in the government Decree of 26.12.14 № 1521, are not mandatory, which allows designers to make the most optimal design decisions.
O.I. PONOMAREV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.M. GORBUNOV1, Engineer
M.V. KORNEV2, Candidate of Sciences (Engineering)

1 Central Research Institute named after A.V. Kucherenko “Research and Development Center “Stroitel’stvo” AO (6, 2-nd Institutskaya Street, Moscow, 109428, Russian Federation)
2 Non-profit partnership Association of Silicate Product Manufacturers (111, Lenina Avenue, Dzerzhinsk, Nizhny Novgorod Region, 606000, Russian Federation)

For citation: Ponomarev O.I., Gorbunov A.M., Kornev M.V. Design specialties of load bearing and separating silicate units masonry structures. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 39–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-39-41

Influence of Porosity of Autoclaved Gas Concrete on Its Thermal Conductivity and Ways of Its Change Due To Improvement in Selection of Raw Components

Number of journal: 8-2019
Autors:

Vylegzhanin V.P.
Pinsker V.A.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-36-38
УДК: 691.327.332

 

AbstractAbout AuthorsReferences
A model of autoclaved gas concrete, which makes it possible to take into account the characteristic parameters of its porous structure (coefficients of density and porosity, pore diameters and distances between them), as well as the dependence of these parameters on the density coefficient of gas concrete, is proposed. The dependence of the thermal conductivity coefficient on the density of gas concrete only is justified. It is established that with the increase in the density of microporous cement stone, which is achieved due to the selection of the composition of raw components, the volume of microporous cement stone in the gas concrete decreases. It is shown that the increase or decrease in the diameter of the pores in the gas concrete, for example, due to selection of the grain size of the aluminum powder, at a constant porosity of gas concrete, its coefficient of thermal conductivity does not change. A method for determining the minimum pore diameter in the gas concrete based on the permissible distance between them, the determining parameter of which is the grain size obtained by grinding raw components, is proposed.
V.P. VYLEGZHANIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.A. PINSKER, Candidate of Sciences (Engineering)

Center of Cellular Concrete (1/3, office 308, Zodchego Rossi Street, Saint-Petersburg, 191023, Russian Federation)

1. STO 501-52-01-2007 Design and construction of building envelopes for residential and public buildings using cellular concrete in the Russian Federation. Moscow. 2008. (In Russian).
2. Fedorov E.S. Nachalo ucheniya o figurakh [Beginning of the doctrine of the figures]. Moscow: Publishing House of the Academy of Sciences of the USSR. 1953. 420 p.
3. Vylegzhanin V.P., Romanov V.P. Fiber-concrete reinforcement structure and its influence on ultimate values of breaking loads. Calculation and design of spatial structures of civil buildings and structures: Collection of scientific papers. Leningrad: LenZNIIEP. 1975. (In Russian).
4. Pinsker V.A. Some questions of the physics of cellular concrete. Collection of articles “Residential buildings made of cellular concrete”. Moscow: Gosstroyizdat, 1963.
5. Zhukov A.D., Chkunin A.S., Karpova A.O. Variatropiya davlenii v tekhnologi vysokoporistykh materialov [Variatropia of pressure in the technology of highly porous materials]. Moscow: NIU MGSU. 2015.176 p.
6. GOST 7076–99. Building materials and products. Method for determination of thermal conductivity and thermal resistance under stationary thermal conditions. Moscow: Gosstroy of Russia. 2000. (In Russian).
7. GOST 31359–2007. Autoclaved cellular concrete. Moscow: Standartinform. 2008. (In Russian).

For citation: Vylegzhanin V.P., Pinsker V.A. Influence of porosity of autoclaved gas concrete on its thermal conductivity and ways of its change due to improvement in selection of raw components. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 36–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-36-38

Production of Silicate Materials with Addition of Fine-Ground Open-Hearth Furnace Slag

Number of journal: 8-2019
Autors:

Stolboushkin A.Yu.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-26-32
УДК: 666.965.4

 

AbstractAbout AuthorsReferences
The necessity of expanding the local raw material base for the production of silicate building materials due to anthropogenic alumino-silicate raw materials is shown. The chemical-mineralogical composition and the possibility of fine grinding of open-hearth furnace slag of steelmaking are investigated. The major mineral phases of the slag are melilite, kirschsteinite, magnesioferrite, wustite, periclase and forsterite. According to the sieve analysis it was found that 50–58% of the slag falls on the fraction of more than 5 mm. The optimal parameters of two-stage slag grinding, including coarse crushing to a fraction of less than 10 mm and fine grinding for 50–60 minutes to a fraction of 100–300 microns are determined. By chemical composition (about 50% of alkaline earth oxides) and the presence of hydraulically active minerals it is proposed to use the slag as the main component of lime-silica binder in the technology of silicate bricks. The influence of the addition of fine slag in the autoclave binder on the physical and mechanical properties of silicate samples was revealed. It is established that the introduction of 15–25% of crushed open-hearth furnace slag instead of calcium air lime into the autoclave binder composition provides an increase in the compressive strength of silicate samples by 15–20%. The optimum composition of the autoclaved binder with the use of a finely ground open-hearth furnace slag which provides the strength of silicate compacted material not below 25–30 MPa is experimentally established.
A.Yu. STOLBOUSHKIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Siberian State Industrial University (42, Kirova Street, Novokuznetsk, 654007, Russian Federation)

1. Russian Market of Ceramic Wall Materials in 2016. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 4–5. (In Russian).
2. Gagarin V.G., Kozlov V.V. Requirements for thermal protection and energy efficiency in the draft of the updated SNiP «Thermal Protection of Buildings». Zhilishchnoe stroitel’stvo [Housing Construction]. 2011. No. 8, pp. 2–6. (In Russian).
3. Semenov A.A. Trends in development of brick industry and brick housing construction in Russia. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 49–51. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-49-51 (In Russian).
4. State report «About the state and environmental protection of the Russian Federation in 2009». Russian Federation. Ministry of Natural Resources and Ecology. Moscow: Minprirody of Russia. 2010. http://www.mnr.gov.ru/upload/iblock/2b1/6158_osdoklad_-2009.zip (дата обраще-ния 25.04.2019). (In Russian).
5. Petrov I.V., Savon D.Yu. Ecological and economic approach in the field of waste management in the region. Ecology. Nature management. Economics: Proceedings of the Moscow State University for the Humanities. Moscow: MSMU. 2013. pp. 43–56. (In Russian).
6. Lyashenko V.I., Dyatchin V.Z. Environmental protection in the regions of ore mining and processing. Ekologiya proizvodstva. 2013. No. 3, pp. 56–59. (In Russian).
7. Rakhimov R.Z., Magdeev U.Kh., Yarmakovsky V.N. Ecology, scientific achievements and innovations in the production of building materials based on and with the use of technogenic raw materials. Stroitel’nye Materialy [Construction Materials]. 2009. No. 12, pp. 8–11. (In Russian).
8. There are two plants of the full metallurgical cycle in Novokuznetsk city. Municipal website of the city of Novokuznetsk. Section 17. Ecological situation in the city of Novokuznetsk. Characteristics of air pollution. 2019. http://admnkz.ru/actionDocument.do?id=51922. (Date of access 25.04.2019).
9. Mamaev K.A., Mitrofanov A.M. Osnovy agrohimii i primenenie yadohimikatov [Fundamentals of agrochemistry and chemical pesticides appliance]. Moscow: Vysshaya shkola. 1975. 168 p.
10. Evtushenko E.I. Kompleksnaya pererabotka metallosoderzhashchih othodov [Complex processing of metal-containing waste]. Belgorod: BelGATASM. 1996. 60 p.
11. Lesovik V.S., Sheychenko M.S., Alfimova N.I. Composite binders using high magnesian waste from the Kovdorsky deposit. Vestnik of BSTU named after V.G. Shukhov. 2011. No. 1, pp. 10–14. (In Russian).
12. Panfilov M.I. et al. Kompleksnaya pererabotka metallosoderzhashchih othodov [Slag processing and waste-free technology in metallurgy]. Moscow: Metallurgiya. 1987. 238 p.
13. Khobotova E.B., Kalmykova Yu.S. Ecological and chemical justification for the disposal of waste blast furnace slag in the production of binders. Ekologicheskaya himiya. 2012. No. 21 (1), pp. 27–37. (In Russian).
14. Shapovalov N.A., Zagorodniuk L.Kh., Tikunova I.V., Shekina A.Yu. Rational ways of using steelmaking slag. Fundamental’nye issledovaniya. Tekhnicheskie nauki. 2013. No. 1, pp. 439–443. (In Russian).
15. Shevchenko V.V., Akst D.V., Stolboushkin A.Yu. Investigation of dump open-hearth slag before and after activation in a rod-type mill to obtain building materials. Prospects for the development of basic sciences: Materials of the XIV international conference of students, graduate students and young scientists. Tomsk: TPU. 2017. pp. 77–79. (In Russian).
16. Perepelitsyn V.A. Osnovy tekhnicheskoj mineralogii i petrografii [Fundamentals of technical mineralogy and petrography]. Moscow: Nedra. 1987. 256 p.

For citation: Stolboushkin A.Yu. Production of silicate materials with addition of fine-ground open-hearth furnace slag. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 26–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-26-32

Crushing of lime in the production of lime-silica binder at operating plants of silicate bricks

Number of journal: 8-2019
Autors:

Kuznetsova G.V.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-14-17
УДК: 666.973.6

 

AbstractAbout AuthorsReferences
The issue of own production of lump lime and the correct location of technological equipment, in particular crushers, at existing production facilities at silicate plants is considered. Lime crushing before or after storage has an impact on its safety, unreasonable energy costs and deterioration of transportation conditions and its cost. Production of lime-silica binder requires preparation of lime and fine crushing. Comparative characteristics of crushers of different types according to the final result and the consumed power are given. New crushing capabilities and their impact on the operation of the ball mill can improve the quality of grinding and productivity of mills. Replacement of crushers requires both replacement of unsuitable ones in this case and disc feeders of feed hoppers of the grinding section, which old factories are equipped. The technological schemes of the lime storage and binder production with the arrangement of crushing and grinding equipment are presented.
G.V. KUZNETSOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, Republic of Tatarstan, 420043, Russian Federation)

1. Semjonov A.A. Tendencies of development of the russian commodity lime market // Stroitel’nye Materialy [Construction Materials]. 2017. No. 8, pp. 4–6. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-751-8-4-6
2. Havkin L.M. Tehnologija silikatnogo kirpicha. Reprintnoe vosproizvedenie izdanija 1982. [Silicate brick technology. Reproduction of a publication 1982]. Moscow: JeKOLIT. 2011. 384 p.
3. Volodchenko A.N. The use of unconventional clay raw material for produced silcate materials on energy saving technologies. Uspehi sovremennogo estestvoznanija. 2015. No. 1–4, pp. 644–647 (In Russian).

For citation: Kuznetsova G.V. Crushing of Lime in the Production of Lime-Silica Binder at Operating Plants of Silicate Bricks. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 14–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-14-17

Technology of Silicate Pressed Materials. Review of Innovations for the Development of Production

Number of journal: 8-2019
Autors:

Nelubova V.V.
Strokova V.V.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-6-13
УДК: 666.965

 

AbstractAbout AuthorsReferences
The review shows that pressed silicate materials are among the leaders of piece products for the construction of walls of buildings, especially in low-rise construction. This is due to the optimal indicators of technical and operational characteristics of materials at a low cost compared to materials of similar quality. It is noted that the currently observed decline in production and consumption of these materials is largely due to the general economic crisis and the slowdown in the pace of construction, rather than the fall in the competitiveness of silicate materials. This conclusion is confirmed by a significant amount of scientific and practical research in the areas of technical re-equipment, expansion of raw materials base and range of products of silicate production, this is a prerequisite for improving the efficiency of production and using pressed products and, as a result, an increase in demand for products in the near future.
V.V. NELUBOVA, Candidate of Sciences (Engineering)
V.V. STROKOVA, Doctor of Sciences (Engineering)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Technical report on the use of large silicate blocks in various operating conditions. Available at: http://apsi–rf.ru/assets/files/doc/tehnicheskoe_zaklyuchenie_ob_ispolzovanii_krupnyh_silikatnyh_blokov_v_razlichnyh_usloviyah_ekspluatacii.zip
2. Cherepanov V.I., Nekrasova E.V., Chernykh N.A., Panchenko Yu.F. Water resistance of silicate brick. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 10–11. (in Russian)
3. Kornev M.V., Korneva T.P. Resistance of silicate materials in water and aggressive media Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 8–9. (In Russian).
4. Kornev M.V., Korneva T.P. Resistance of silicate materials to hot water. results of researches of silicate products manufacturers. Stroitel’nye Materialy [Construction Materials]. 2016. No. 12, pp. 12–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-744-12-12-13
5. Babkov V.V., Samofeev N.S., Chuikin A.E. A silicate brick in external walls constructions of apartment houses: condition analysis, durability forecast and methods of its increasing. Inzhenerno-stroitel’nyj zhurnal. 2011. No. 8 (26), pp. 35–40. (In Russian).
6. Babkov V.V., Samofeev N.S. The state of silicate brick in the external walls of residential buildings after prolonged use. Inzhenernye sistemy. 2011. No. 5, pp. 25–28. (In Russian).
7. Babkov V.V., Samofeev N.S., Kuznetsov D.V. The state of residential buildings in silicate brick and the implementation of the program of rehabilitation of objects of this category in the Republic of Bashkortostan Stroitel’nye Materialy [Construction Materials]. 2011. No. 11, pp. 7–11. (In Russian).
8. Fedosov S.V., Ibragimov A.M., Gnedina L.Yu., Smirnov A.Yu. Fire situation in buildings of silicate brick Stroitel’nye Materialy [Construction Materials]. 2008. No. 11, pp. 60–61. (In Russian).
9. Fedosov S.V., Ibragimov A.M., Gnedina L.Yu., Smirnov A.Yu. Silicate brick under conditions of high-temperature effects Stroitel’nye Materialy [Construction Materials]. 2009. No. 9, pp. 48–49. (In Russian).
10. Nelyubova V.V., Zhernovsky I.V., Strokova V.V., Bezrodnykh M.V. Silicate materials of autoclave hardening with a nanostructured modifier under high temperature conditions. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 8–9. (In Russian).
11. Khvostenkov S.I. Development of production of a silicate brick in Russia Stroitel’nye Materialy [Construction Materials]. 2007. No. 10, pp. 4–9. (In Russian).
12. Semenov A.A. Development trends of the domestic silicate industry. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 25–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-766-12-25-26
13. Kuznetsova G.V., Morozova N.N. Problems of replacing the traditional technology of silicate brick with the preparation of lime–silica binder with direct technology. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 14–17. (In Russian).
14. Kuznetsova G.V., Shinkarev A.A., Morozova N.N., Gazimov A.Z. Additives for direct technology of silicate brick production Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 12–16. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-763-9-12-16
15. Kuznetsova G.V., Gainutdinova G.Kh. Effect of sand fineness on selection of a lime binder type. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 33–37. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-755-12-33-37
16. Kuznetsova G.V. Lime and its effect on the technical re–equipment of silicate brick factories. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 9–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-741-9-9-13
17. Kuznetsova G.V., Zigangaraeva S.R., Morozova N.N. Influence of calc –kremnezem binder on the properties of the molding material mixture in the production of silica brick. Vestnik nauki i obrazovanija Severo-Zapada Rossii. 2015. Vol. 1. No. 1, pp. 77–82. (In Russian).
18. Ponomarev O.I., Gorbunov A.M., Chigrina O.S., Mukhin M.A., Pestritsky A.V., Kozlov V.V., Kornev M.V. About development of guidance manual for design of bearing and enclosing structures with the use products on the basis of modified silicate concrete. Stroitel’nye Materialy [Construction Materials]. 2016. No. 12, pp. 18–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-744-12-18-21
19. Fedoseeva E.N., Zanozina V.F., Zorin A.D., Samsonova L.E. Production of iron oxide pigment from dust of metallurgical production for usage in building. Metallurg. 2015. No. 5, pp. 31–35. (In Russian).
20. Fedoseeva E.N., Zorin A.D., Zanozina V.F., Samsonova L.E., Markova M.L., Goryacheva N.M. Iron oxide pigment from wastes of metallurgical industries for silicate brick. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 21–25. (In Russian).
21. Fedoseeva E.N., Zorin A.D., Zanozina V.F., Kuznetsova N.V., Kabanova L.V., Samsonova L.E. Pigment for coloring lime–and–sand brick and cement concrete based on dust metallurgical wastes. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013. No. 4-1, pp. 103–108. (In Russian).
22. Nelyubova V.V., Cherevatova A.V., Strokova V.V., Goncharova T.Yu. Features of structure formation of colored silicate materials in the presence of a nanostructured binder. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2010. No. 3, pp. 25–28. (In Russian).
23. Yeshenko L.S., Mechay A.A., Novik D.M., Borodina K.V. Obtaining of pigment material in the system FeSO4 – CaO – H2O for coloring of silicate bricks. Trudy BGTU. Serija 2: Himicheskie tehnologii, biotehnologija, geojekologija. 2018. No. 2 (211), pp. 113–117. (In Russian).
24. Volodchenko A.N., Lesovik V.S. Perspectives of expanding nomenclature of silicate materials of autoclave hardening. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9. pp. 34–37. (In Russian) DOI: https://doi.org/10.31659/0585-430X-2016-741-9-34-37
25. Babel A. Dosing and feeding of pigments when staining silicate brick at Bor Silicate Plant LLC. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 18–20. (In Russian).
26. Kuznetsova G.V., Nugmanov R.M. The role of technological factors in the formation of color of silicate colored bricks. Stroitel’nye Materialy [Construction Materials]. 2014. No. 9, pp. 37–41. (In Russian).
27. Kuznetsova G.V., Khozin V.G. The effect of pigments on the properties of hydrated silicate molding mix. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 25–27. (In Russian).
28. Schlegel I.F., Shaevich G.Ya., Rukavitsyn A.V., Andrianov A.V., Albutov A.V., Sherstobitov Yu.M. Rod mixer of SHL series in silicate production. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 20–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-741-9-20-23
29. Kuznetsova G.V., Morozova N.N. Pigments and volumetric coloring. Stroitel’nye Materialy [Construction Materials]. 2016. No. 12, pp. 14–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-744-12-14-17
30. Slavcheva G.S., Chernyshov E.M. Controlling the intensity of interaction of structures of building materials with water vapor and water. Academia. Arhitektura i stroitel’stvo. 2008. No. 2, pp. 77–83. (In Russian).
31. Ermak O.V., Shestakov N.I. Heat and mass transfer in thermal–treated silica brick with mud additives. Stroitel’stvo unikal’nyh zdanij i sooruzhenij. 2014. No. 4 (19), pp. 75–82. (In Russian).
32. Kuznetsova G.V. Steam curing of silicate brick in autoclave. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 10–14. (In Russian).
33. Shmitko E.I., Verlina N.A. Press–molding processes and their influence on adobe brick quality. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 5–7. (In Russian).
34. Dzhandullaeva M.S., Atakuziev T.A. The possibility of using heat–treated tuffite as hydraulically active additives in the production of silicate products. Himicheskaja Promyshlennost’. 2017. Vol. 94. No. 1, pp. 27–30. (In Russian).
35. Kuldeev E.I., Bondarenko I.V., Temirova S.S., Tastanov E.A., Nurlybaev R.E. Composition and properties of Kazakhstani diatomaceous minerals and synthesis on their base calcium silicates for building production. Kompleksnoe ispol’zovanie mineral’nogo syr’ja. 2018. No. 4 (307), pp. 149–157. (In Russian).
36. Zimakova G.A., Solonina V.A., Zelig M.P., Orlov V.S. Role of aleuropelites in formation of properties of lime–silicate materials of autoclaved hardening. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-763-9-4-9
37. Leontiev S.V., Titova L.N. The use waste of production of soda ash to obtain building materials. Sovremennye tehnologii v stroitel’stve. Teorija i praktika. 2018. Vol. 2, pp. 315–324. (In Russian).
38. Dzhandullaeva M.S., Atakuziev T.A.U. Intensification methods of the hardening process and improving the quality of limestone on the barchan sands. Himija i himicheskaja tehnologija. 2016. Vol. 52. No. 2, pp. 10–14. (In Russian).
39. Wolf A.V., Bozhok E.V., Ermolaev A.A. Influence of mineral additives on the properties of silica brick. Polzunovskij al’manah. 2016. No. 1, pp. 68–72. (In Russian).
40. Tikhomirova I.N., Makarov A.V., Karpenko M.A. Autoclave silicate materials based on wastes of molding masses of foundry. Stroitel’nye Materialy [Construction Materials]. 2017. No. 8, pp. 28–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-751-8-28-31
41. Goncharova M.A., Ivashkin A.N., Simbaev V.V. Development of optimal compositions of silicate concrete using local raw materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 6–8. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-741-9-6-8
42. Kuznetsova G.V., Morozova N.N., Klokov V.V., Zigangaraeva S.R. Silicate brick and autoclaved gas concrete with the use of waste of own production. Stroitel’nye Materialy [Construction Materials]. 2016. No. 4, pp. 76–79. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-736-4-76-79
43. Urkhanova L.A., Khardaev P.K., Zayakhanov M.E. The building materials with the usage of natural raw materials of the Transbaikalian region. Stroitel’nye materialy, oborudovanie, tehnologii XXI veka. 2011. No. 1 (144), pp. 26–27. (in Russian)
44. Ukolova A.V., Chernushkin O.A., Turchenko A.E. Research of possibility of use glass wastes of mineral-cotton production obtaining the silicate brick. Nauchnyj vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. Serija: Fiziko-himicheskie problemy i vysokie tehnologii stroitel’nogo materialovedenija. 2014. No. 1 (8), pp. 36–43. (In Russian).
45. Ukolova A.V., Turchenko A.E. Use tseolitsoderzhashashchikh opalovidnykh of silicic breeds by production of silicate autoclave materials. Nauchnyj vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. Serija: Vysokie tehnologii. Jekologija. 2014. No. 1, pp. 81–83. (In Russian).
46. Volodchenko A.N., Lesovik V.S. Siilicate autoclave materials using nanodispersed raw materials. Stroitel’nye Materialy [Construction Materials]. 2008. No. 11, pp. 42–44. (In Russian).
47. Volodchenko A.N., Lesovik V.S. Perspectives of expanding nomenclature of silicate materials of autoclave hardening. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 34–37. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-741-9-34-37
48. Volodchenko A.N., Strokova V.V. Improving the efficiency of autoclaved silicate cellular materials. Vestnik Severo-Vostochnogo federal’nogo universiteta im. M.K. Ammosova. 2017. No. 2 (58), pp. 60–69. (In Russian).
49. Volodchenko A.N., Strokova V.V. Development of scientific bases for production of silicate autoclave materials using clay raw materials. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 25–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-763-9-25-31
50. Khusainov A.K., Gurova E.V. The use of the ash CHP in the production of silicate brick. Tehnika i tehnologii stroitel’stva. 2019. No. 2 (18), pp. 41–45. (In Russian).
51. Akhmadov Sh.I., Shodiev G.G. Utilization of coal ash from the Fon-Yagnob deposit in the composition of silicate brick. Politehnicheskij vestnik. Serija: Inzhenernye issledovanija. 2017. Vol. 1. No. 4 (40), pp. 181–186. (In Russian).
52. Gilmiyarov D.I., Mikhailenko A.A., Ovcharenko G.I. New technology of processing ash and slag waste from heat and power plant into silica bricks. Vestnik Juzhno-Ural’skogo gosudarstvennogo universiteta. Serija: Stroitel’stvo i arhitektura. 2014. Vol. 14. No. 1, pp. 42–45. (In Russian).
53. Ovcharenko G.I., Fomichev Yu.Yu. Processing technology the high calcium ashes and slag from thermal power station in silicate brick. Izvestija vysshih uchebnyh zavedenij. Stroitel’stvo. 2012. No. 11–12 (647–648), pp. 47–53. (In Russian).
54. Kotlyar V.D., Kozlov A.V., Zhivotkov O.I., Kozlov G.A. Calcium-silicate brick on the basis of microspheres and lime. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 17–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-763-9-17-21

For citation: Nelubova V.V., Strokova V.V. Technology of silicate pressed materials. Review of innovations for the development of production. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 6–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-6-13

Silicate Brick and Gas Silicate. Some Trends at the Market in 2018–2019

Number of journal: 8-2019
Autors:

Semenov A.A.

DOI: https://doi.org/10.31659/0585-430X-2019-773-8-3-5
УДК: 666.965

 

AbstractAbout AuthorsReferences
The data on the state and main trends in the development of the domestic market of silicate wall materials (brick, large and medium-sized silicate blocks and partition plates), as well as autoclaved gas silicate (aerated concrete) are presented. It is shown that at a significant common technology and about the same number of operating enterprises (silicate – 59, aerated concrete – 66), the production of silicate blocks is developing significantly more successfully. The decrease in the output of silicate bricks in 2018 was about 6.3% compared to the previous year, while the production of gas silicate is comparable to the level of 2017 (a drop of only -0.2%). Comparative data on the dynamics of production, average prices, profitability of the sub-sectors of the building materials industry are presented. It is revealed that at the end of 2018, the share of silicate bricks in the total structure of consumption of piece wall materials decreased to 13%, the consumption of gas silicate increased to 44%. It is concluded that since 2017 gas silicate is the most demanded wall material in Russia. The forecast is given until the end of 2019.
A.A. SEMENOV, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.) OOO «GS-Expert»

(18, 1-st Tverskoy-Yamskoy Pereulok, Moscow, 125047, Russian Federation)

For citation: Semenov A.A. Silicate brick and gas silicate. Some trends at the market in 2018–2019. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 3–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-3-5

Microbial Сarbonate Biomineralisation as a Tool of Natural-like Technologies in Construction Material Science

Number of journal: 7-2019
Autors:

Strokova V.V.
Vlasov D.Yu.
Frank-Kamenetskaya O.V.

DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
УДК: 625.041.2:691.3

 

AbstractAbout AuthorsReferences
The processes and mechanisms of microbial carbonate biomineralization as a tool of nature-like technologies in construction are considered. The interdisciplinary direction and features of research in the field of microbial biomineralization, technological mineralogy and materials science as an applied aspect of the use of biogenic mineral formation to control the processes of structure formation in order to change the properties of different types of materials are shown. The existing approaches, existing problems are indicated, and problems the solution of which will make it possible to expand the fields of using technologies of biomineralization in building materials science are outlined.
V.V. STROKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.Yu. VLASOV2, Doctor Sciences (Biology)
O.V. FRANK-KAMENETSKAYA2, Doctor Sciences (Geology and Mineralogy)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Saint Petersburg University (7/9, University Embankment, St. Petersburg, 199034, Russian Federation)

1. Осипов В.И. Адаптационный принцип природопользования // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2017. № 5. С. 3–12.
1. Osipov V.I. The adaptation principle of nature management. Geoekologiya. Inzhenernaya geologiya, gidrogeologiya, geokriologiya. 2017. No. 5, pp. 3–12. (In Russian).
2. Пинчук Л.С. и др. Введение в систематику умных материалов. Минск: Беларус. навука, 2013. 399 с.
2. Pinchuk L.S. Vvedenie v sistematiku umnykh materialov [Introduction to the systematics of smart materials]. Minsk: Belarus. Navuka. 2013. 399 p.
3. Basha S., Lingamgunta L.K., Kannali J., Gajula S.K., Bandikari R., Dasari S., Dalavai V., Chinthala P., Gundala P.B., Kutagolla P., Balaji V.K. Subsurface endospore-forming bacteria possess bio-sealant properties. Scientific Reports. 2018. Vol. 8. А. 6448. DOI: 10.1038/s41598-018-24730-3
4. Krajewska В. Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research. 2018. Vol. 13, pp. 59–67. https://doi.org/10.1016/j.jare.2017.10.009
5. Dhami N.K., Reddy M.S., Mukherjee А. Biomineralization of calcium carbonates and their engineered applications. Frontiers Microbiol. 2013. Vol. 4 (314), pр. 1–13. doi:10.3389/fmicb.2013.00314
6. Пэйн К.А., Алажари М., Шарма Т., Купер Р., Хит А. Разработка бетона, самозалечивающегося при помощи бактерий // Цемент и его применение. 2017. № 5. С. 81–85.
6. Payne K.A., Alajari M., Sharma T., Cooper R., Hit A. Development of concrete self-healing using bacteria. Tsement i ego primenenie. 2017. No. 5, pp. 81–85. (In Russian).
7. Степанов Н.А., Ефременко Е.Н., Бруяко М.Г., Григорьева А.И. Изменение свойств строительных материалов при введении в них биомассы бактерий с уреазной активностью // Вестник МГСУ. 2017. Т. 12. № 7 (106). С. 788–796.
7. Stepanov N.A., Efremenko E.N., Bruyako M.G., Grigorieva A.I. Changes in the properties of building materials with the introduction of the biomass of bacteria with urease activity. Vestnik MGSU. 2017. Vol. 12. No. 7 (106), pp. 788–796. (In Russian).
8. De Muynck W., De Belie N., Verstraete W. Microbial carbonate precipitation in construction materials: a review. Ecological engineering. 2010. Vol. 36, pр. 118–136. DOI: 10.1016/j.ecoleng.2009.02.006
9. Day T. Computability, Gödel’s incompleteness theorem, and an inherent limit on the predictability of evolution. Journal of the Royal Society Interface. 2012. Vol. 9 (69), pр. 624–639. DOI: 10.1098/rsif.2011.0479
10. Кораго А.А. Введение в биоминералогию. СПб.: Недра, 1992. 280 с.
10. Korago A.A. Vvedenie v biomineralogiyu. [Introduction to biomineralogy]. Saint Petersburg: Nedra. 1992. 280 p.
11. Юшкин Н.П. Теория и методы минералогии (избранные проблемы). Л.: Наука, 1977. 291 с.
11. Yushkin N.P. Teoriya i metody mineralogii (izbrannye problemy) [Theory and methods of mineralogy (selected issues)]. Leningrad: Nauka. 1977. 291 p.
12. Сивков С.П., Логинова Т.В., Мымрина А.К. Биодобавки для сухих строительных смесей // Сухие строительные смеси. 2017. № 5. С. 15–18.
12. Sivkov S.P., Loginova T.V., Mymrina A.K. Bioadditives for dry building mixes. Sukhie stroitel’nye smesi. 2017. No. 5, pp. 15–18. (In Russian)
13. Al-Salloum Y., Abbas H., Sheikh Q.I., Hadi S., Alsayed S., Almusallam T. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi Journal of Biological Sciences. 2017. Vol. 24. No. 2, pp. 286–294. DOI: 10.1016/j.sjbs.2016.01.016
14. De Muynck W., Cox K., De Belie N., Verstaete W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials. 2008. Vol. 22, pp. 875–885. DOI: org/10.1016/j.conbuildmat.2006.12.011
15. Yoosathaporn S., Tiangburanatham P., Bovonsombut S., Chaipanich A., Pathom-aree W. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties. Microbiological Research. 2016. Vol. 186–187, pр. 132–138. DOI: org/10.1016/j.micres.2016.03.010
16. Tingting Z., Lin Y., Lu X., Dittrich M. Assessment of cyanobacterial species for carbonate precipitation on mortar surface under different conditions. Ecological Engineering. 2018. Vol. 120, pр. 154–163. DOI: 10.1016/j.ecoleng.2018.05.038
17. Rodriguez-Navarro С., Jroundi F., Schiro M., Ruiz-Agudo E., Gonzalez-Muñoz M.T. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: Implications for stone conservation. Accepted Environ Microbiology. 2012. Vol. 78, pр. 4017–4029. DOI: 10.1128/AEM.07044-11.
18. Métayer-Levrel G., Castanier S., Orial G., Loubière J.-F., Perthuisot J.-P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology. 1999. Vol. 126, pр. 25–34. DOI: 10.1016/S0037-0738 (99) 00029-9
19. Stuckrath C., Serpell R., Valenzuela LM., Lopez M. Quantification of chemical and biological calcium carbonate precipitation: performance of self-healing in reinforced mortar containing chemical admixtures. Cement Concrete Composites. 2014. No. 50, pр. 10–15. DOI: org/10.1016/j.cemconcomp.2014.02.005
20. Rodriguez-Navarro C., Rodriguez-Gallego M., ChekrounK.B., Gonzalez-Munoz M.T. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied and Environmental Microbiology. 2013. Vol. 69, pр. 2182–2193. DOI: 10.1128/AEM.69.4.2182-2193.2003
21. Лапо В.А. Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого. М.: Знание, 1987. 213 с.
21. Lapo V.A. Sledy bylykh biosfer, ili Rasskaz o tom, kak ustroena biosfera i chto ostalos’ ot biosfer geologicheskogo proshlogo [Traces of bygone biospheres, or the story about how the biosphere is arranged and what remains of the biological spheres of the geological past]. Moscow: Znanie. 1987. 213 p. 22. Blondeau M., Sachse M., Boulogne C., Gillet C., Guigner J.M., Skouri-Panet F., Poinsot M., Ferard C., Miot J., Benzerara K. Amorphous calcium carbonate granules form within an intracellular compartment in calcifying cyanobacteria. Frontiers in Microbiology. 2018. Vol. 9. А. 1768. DOI: org/10.3389/fmicb.2018.01768
23. Otlewska А., Gutarowska В. Еnvironmental parameters conditioning microbially induced mineralization under the experimental model conditions. Acta Biochimica Polonica. 2016. Vol. 63. No. 2, pр. 343–351. DOI: 10.18388 / abp.2015_1172
24. De Muynck W., Verbeken К., De Belie N., Verstraete W. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering. 2010. Vol. 36 (2), pр. 99–111. DOI: 10.1016/j.ecoleng.2009.03.025 25. Ramachandran S.K., Ramakrishnan V., Bang S.S. Remediation of concrete using microorganisms. ACI Materials Journal. 2001. Vol. 98 (1), pр. 3–9. DOI: 10.14359/10154
26. Boquet E., Boronat A., Ramos-Cormenzana A. Production of calcite (calcium carbonate) crystals by soil bacteria is a common phenomenon. Nature. 1973. Vol. 246, pр. 527–529.
27. Castanier S., Le Metayer-Levrel G., Perthuisot J.P. Ca-carbonates precipitation and limestone genesis – the microbiogeologist point of view. Sedimentary Geology. Vol. 126. Iss. 1, pp. 9–23. DOI:10.1016/S0037-0738(99)00028-7
28. Achal V., Mukherjee A., Reddy M.S. ORIGINAL RESEARCH: Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source. Industrial Biotechnology. 2010. Vol. 6 (3), pp. 170–174. DOI: 10.1089/ind.2010.6.170
29. Minto J.M., Tan Q., Lunn R.J., El Mountassir G., Guo H., Cheng X. Microbial mortar-restoration of degraded marble structures with microbially induced carbonate precipitation. Construction and Building Materials. 2018. Vol. 180, pр. 44–54. DOI: org/10.1016/j.conbuildmat.2018.05.200
30. Yang Т., Jho J. Y., Kim I.W. Epitaxial relationships between calcium carbonate and inorganic substrates. International Journal of Molecular Sciences. 2014. Vol. 15, pр. 16320–16330. DOI: 10.3390/ijms150916320
31. Вернадский В.И. Биосфера. М.: Мысль, 1967. 280 с.
31. Vernadsky V.I. Biosfera [Biosphere]. Moscow: Mysl’. 1967. 280 p.
32. Самойлов Я.В., Пустовалов Л.В. К литологии карбонатовых осадочных пород. Известняки и мергеля Поволжья Тверской губернии. М.: Научно-технический отдел Высшего совета народного хозяйства РСФСР, 1926. 72 с.
32. Samoilov Ya.V., Pustovalov L.V. K litologii karbonatovykh osadochnykh porod. Izvestnyaki i mergelya Povolzh’ya Tverskoi gubernii [To the lithology of carbonate sedimentary rocks. Limestone and marl in the Volga region of Tver province]. Moscow: Scientific and Technical Department of the Supreme Council of the National Economy of the RSFSR. 1926. 72 p.
33. Жабин А.Г. Введение в биоминералогию (памяти А.А. Кораго) // Записки Всероссийского минералогического общества. 1993. № 3. С. 125–128.
33. Zhabin A.G. Introduction to biomineralogy (In Memory of A. Korago). Zapiski vsesoyuznogo mineralogicheskogo obshchestva. 1993. No. 3, pp. 125–128. (In Russian).
34. Яхонтова Л. К., Грудев А. П., Зуев В. В. Проблемы изучения системы Минеральный субстрат – микроорганизм // Вестник МГУ. 1994. Сер. 4. № 5. С. 80–92.
34. Yakhontova L.K., Grudev A.P., Zuev V.V. Problems of studying the system Mineral substrate – a microorganism. Vestnik MGU. 1994. Part 4. No. 5, pp. 80–92. (In Russian).
35. Мак-Коннелл Дж., Патнис А. Основные черты поведения минералов. М.: МИР, 1983. 304 с.
35. Mc Connell J., Putnice A. Osnovnye cherty povedeniya mineralov [Principles of mineral behaviour]. Moscow: MIR. 1983. 304 p.
36. Lonsdale K., Robertson J. M., Lipson H., Powell H.M. Crystallography. Annual Reports on the Progress of Chemistry. 1941. Vol. 38, pр. 91–110.
37. Sutor D.J., Percival J.M. The effect of bile on the crystallisation of calcium carbonate, a constituent of gallstones. Clinica Chimica Acta. 1978. No. 89 (3), pр. 479–484. DOI: 10.1016/0009-8981(78)90413-8
38. Лоуэнстам Х. Процессы и продукты биоминерализации и эволюция биоминерализации. 27-й Международный геологический конгресс: Тезисы докладов. Москва. 1984. Т. 2. C. 51–56.
38. Lowenstam H. The processes and products of biomineralization and the evolution of biomineralization. The 27-th International Geological Congress: Abstracts. Moscow. 1984. Vol. 2, pp. 51–56. (In Russian).
39. Seifan M., SamaniA.K., Berenjian A. Bioconcrete: next generation of self-healing concrete. Applied Microbiology and Biotechnology. 2016. Vol. 100. No. 6, pр. 2591–2602. DOI: 10.1007/s00253-016-7316-z
40. Van Tittelboom K., De Belie N., De Muynck W., Verstraete W. Use of bacteria to repair cracks in concrete. Cement and Concrete Research. 2010. Vol. 40. No. 1, pр. 157–166. DOI: org/10.1016/j.cemconres.2009.08.025
41. Dhami N.K., Reddy M.S., Mukherjee А. Application of calcifying bacteria for remediation of stones and cultural heritage. Frontiers in Microbiology. 2014. Vol. 5. DOI: 10.3389/fmicb.2014.00304
42. Gower L.B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chemical reviews. 2008. Vol. 108 (11), pр. 4551–4627. DOI: org/10.1021/cr800443h
43. Плюснина Л.П. Минералогенезис и правило ступеней Оствальда в самоорганизующихся геологических системах. Вестник ДВО РАН. 2007. № 2. С. 117–122.
43. Plusnina L.P. Mineralogenesis and the rule of Ostwald steps in self-organizing geological systems. Vestnik of the Far East Branch of the Russian Academy of Sciences. 2007. No. 2, pp. 117–122. (In Russian).

For citation: Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V. Microbial сarbonate biomineralisation as a tool of natural-like technologies in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72

Hydrophobic Coatings Based on Low Quality Silica-Containing Raw Materials

Number of journal: 7-2019
Autors:

Danilov V.E.
Turobova M.A.
Ayzenshtadt A.M.
Rusinova Ya.M.

DOI: https://doi.org/10.31659/0585-430X-2019-772-7-61-65
УДК: 66.022.34

 

AbstractAbout AuthorsReferences
Information on the methods of obtaining hydrophobic coatings based on a suspension of finely dispersed silicon dioxide (particle size is 195±95 nm) is given. The suspension was obtained by mechanical activation on a colloidal mill of low-quality (silicon dioxide content is less than 90%) polymineral quarry sand of “Kholmogorskoe” deposit (Arkhangelsk region). Glass substrates and wood samples (Scots pine) were used as the basis for the synthesized coating. Obtaining superhydrophobic coating was performed in two ways. The first method consisted in active spontaneous sedimentation of solid phase particles of suspension on the substrate surface by breaking the aggregate stability of the system due to changes in the protolytic properties of the dispersion medium. The second method differed from the first in that the resulting surface layer of finely dispersed particles of silica-containing raw materials was additionally treated with a paraffin-containing aqueous emulsion. The hydrophobicity of the surface was characterized by the wetting angle. The obtained results showed that for the formation of a stable hydrophobic coating with an contact angle of 90–120о, the use of fine silica is sufficient, for increasing the wetting angles (>120о), it is possible to use a hydrophobisator based on a paraffin emulsion. The greatest limiting wetting angle (156о) is obtained on wood with a layer-by-layer coating with a suspension of the following composition: fine silica – paraffin.
V.E. DANILOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.A. TUROBOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.M. AYZENSHTADT, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
Ya.M. RUSINOVA, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)

1. Salamianski A.E., Zhavnerko G. K., Agabekov V. E., Sinkevich Y. V. Superhydrophobic coatings from nanoparticles of silicon dioxide. Doklady of the National Academy of Sciences of Belarus: scientific Internet-journal. 2013. Vol. 57. No. 1, pp. 63–67. (In Russian).
2. Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: principles of design, properties and applications. Uspehi himii. 2008. Vol. 77. Iss. 7, pp. 619–638. (In Russian).
3. Prasad G, Anand Prabu A. A short review on hybrid PVDF-nanomaterials based super-hydrophobic coatings. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. No. 7 (2), pp. 1808–1818.
4. Ogihara H., Xie J., Saji T. Controlling surface energy of glass substrates to prepare superhydrophobic and transparent films from silica nanoparticle suspensions. Journal of Colloid and Interface Science. 2015. No. 437, pp. 24–27.
5. Kousaalya A.B., Garg N., Kumar R. Silica-based superhydrophobic coating by a single-step process. Surface Innovations. 2013. Vol. 1, Iss. 3, pp. 173–180. https://doi.org/10.1680/si.12.00014
6. Kozhukhova M.I., Chulkova I.L., Kharkhardin A.N., Sobolev K.G. Estimation of application efficiency of hydrophobic water-based emulsions containing nanoand micro-sized particles for modification of fine grained concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 92–97. DOI: https://doi.org/10.31659/0585-430X-2017-748-5-92-97. (In Russian).
7. Kozhuhova M.I., Flores-Vivian I., Rao S., Strokova V.V., Sobolev K.G. Complex siloxane coating for super-hydrophobicity of concrete surfaces. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 26–30. (In Russian).
8. Manafi S., Nasab M.M. Hydrophobic coating production with its hydrophobic properties and pollution selfremoved by concentrations of silica nanoparticles. Bulgarian Chemical Communications. 2015. Vol. 49. Special Issue J, pp. 266–272. http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Special_J_2017/BCC-49-J-2017-266-272-Manafi-37.pdf
9. Jean-Denis Brassard, D.K. Sarkar and Jean Perron, Fluorine based superhydrophobic coatings. Applied Sciences. 2012. No. 2, pp. 453–464. DOI: 10.3390/app2020453
10. Junpeng Liu, Zaid A. Janjua, Martin Roe, Fang Xu, Barbara Turnbull, Kwing-So Choi and Xianghui Hou. Super-hydrophobic/icephobic coatings based on silica nanoparticles modified by self-assembled monolayers. Nanomaterials (Basel). 2016. No. 6(12), pp. 232. doi: 10.3390/nano6120232
11. Tureshova G. O. Creation of superhydrophobic surfaces. Gorenie i plazmokhimiya: nauchnyi internet-zhurnal. 2016. Vol. 14. No 3, pp. 226–236. (In Russian).
12. Klishin A.V., Mironyuk A.V., Dudko V.A., Baklan D.V., Chashka-Ratushnyi V.P., Tarasenko D.V. Surface structure of superhydrophobic coatings based on silica. Scientific Journal «ScienceRise». 2016. No. 10/2 (27), pp. 61–66. (In Russian).
13. Danilov V.E., Ayzenshtadt A.M.. Protolytic properties influence of the dispersion medium on the process of silicic acid polycondensation. Journal of Physics: Conference Series. 2018. Vol. 1038. Nо. 1 (012140). DOI: 10.1088/1742-6596/1038/1/012140

For citation: Danilov V.E., Turobova M.A., Ayzenshtadt A.M., Rusinova Ya.M. Hydrophobic coatings based on low quality silica-containing raw materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 61–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-61-65

Dry Mixtures on the Basis of Nano-Modified Cement

Number of journal: 7-2019
Autors:

Yudovich B.E.
Zvezdov A.I.
Dzhantimirov Kh.A.

DOI: https://doi.org/10.31659/0585-430X-2019-772-7-57-60
УДК: 666.946

 

AbstractAbout AuthorsReferences
The properties of dry mixtures consisting of nano-modified cement (NMC) (produced according to the pre-standard of the Russian Federation PST 19-2014) and fiberglass materials are presented. A new concept of fibrous NMC-stone as a composite material is introduced in contrast to the granular material on conventional cement. Recommendations about the sizes of fibers of the reinforcing material depending on the sizes of cement particles are made. An explanation of the absence of corrosion of vitreous materials in the NMC-stone is presented. The possibility of using glass fiber production waste and heat-insulating materials from non-alkali-resistant products as a reinforcing component in the composition of dry mixtures is shown. An explanation of the effect of a sharp (several times) increase in tensile strength and, as a consequence, reducing the brittleness of the new material is given. The method of manufacturing dry mixtures based on fibrous NMC is described in detail. The data of laboratory and production studies confirming the predicted positive effects are presented. It is shown that the fibrous NMC obtained by this method meets all the requirements of the latest standard for cements for transport construction GOST R 55224-2012 “Cements for transport construction. Technical conditions” with a reduced cost of production.
B.E. YUDOVICH1, Candidate of Sciences (Engineering) (yudbor@)gmail.com)
A.I. ZVEZDOV2, Doctor of Sciences (Engineering) (zvezdov@)list.ru)
Kh.A. DZHANTIMIROV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 “Intechstrom” JSC (24, Territory Production Zone, Skoropuskovsky Village, Sergievo-Posadsky District, Moscow Region, 141364, Russian Federation)
2 Research Center “Stroitel’stvo” JSC (Build. 1, 6, 2-nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. Yudovich B.E., Dmitriyev A.M., Zubekhin S.A. Cements of low water demand – knitting new generation. Tsement i ego primenenie. 1997. No. 1, pp. 13–16. (In Russian).
2. Khokhryakov O.V., Khozin V.G., Kharchenko I.YA., Gazdanov D.V. Cements of low water demand – the way of effective use of clinker and mineral aggregates in concrete. Vestnik MGSU. 2017. Vol. 12. No. 10 (109), pp. 1145–1152. (In Russian).
3. Zinchenko S.M., Peshkova D.A. Prospects for the use of low water cement. Resursoenergoeffektivnye tekhnologii v stroitel’nom komplekse regiona. 2016. No. 7, pp. 136–139. (In Russian).
4. Yudovich B.E., Zubekhin S.A. Cements with low water demand and portland cement with a dense contact area. Alitinform. 2010. No. 4–5, pp. 22–26. (In Russian).
5. Patent RU2441853C2 Dobavka k tsementu, smesi na yego osnove i sposob yeye polucheniya (varianty) [Additive to cement, mixtures based on it and how to obtain it (versions)]. Yudovich B.E., Zubekhin S.A. Declared 21.04.2010. Published 10.02.2012 (In Russian).
6. Patent RU2577340C2 Nanotsement i sposob yego izgotovleniya [Nanocement and method of its manufacture]. Yudovich B.E., Zubekhin S.A. Declared 15.07.2013. Published 20.03.2016 (In Russian).
7. Yudovich B.E., Zubekhin S.A., Falikman V.R., Bashlykov N.F. Cement low water demand: new results and prospects. Tsement i ego primeneniye. 2006. No. 3, pp. 80–84. (In Russian).
8. Kholmyanskiy M.M. Beton i zhelezobeton. Deformativnost’ i prochnost’ [Concrete and reinforced concrete. Deformability and strength]. Moscow: Stroyizdat. 1997. 569 p.
9. Rabinovich F.N. Kompozity na osnove dispersnoarmirovannykh betonov. Voprosy teorii i proyektirovaniya, tekhnologiya, konstruktsii. Izd. 3-ye, pererab i dop. [Composites based on disperso-reinforced concretes. Questions of theory and design, technology, design. 3-rd. edition. Moscow: ASV. 2004. 560 p.
10. Huang Z.-M. Zhou Y.-X. Strength of fibrous composites. Springer-Verlag Berlin Heidelberg. 2012. 300 p. DOI: 10.1007/978-3-642-22958-9
11. Ulm F.-J. What’s the matter with concrete? Convegno Nazionale IGF XX, Torino 24–26 giugno 2009; ISBN 978-88-95940-25-0. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.561.8116&rep=rep1&type=pdf
12. Kravchenko I.V., Vlasova M.T., Yudovich B.E. High strength and especially fast-hardening Portland cement. Moscow: Stroyizdat. 1971. 208 p.
13. Yudovich B.E., Zvezdov A.I., Dzhantimirov Kh.A., Zubekhin S.A. Mineral reinforcement in nano-modified portland cement matrix. Beton i zhelezobeton. 2016. No. 3, pp. 9–12. (In Russian).
14. Patent RU2595284C1 Voloknistyy nanotsement i sposob yego izgotovleniya [Fiber nanocement and method of its manufacture] Yudovich B.E., Zubekhin S.A., Dzhantimirov Kh.A. Declared 26.05.2015. Published 27.08.2016. Bulletin No. 24. (In Russian).

For citation: Yudovich B.E., Zvezdov A.I., Dzhantimirov Kh.A. Dry mixtures on the basis of nano-modified cement. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 57–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-57-60

https://www.traditionrolex.com/10