Building Materials as Disperse Systems: Multiscale Modeling with Dedicated Software

Number of journal: №1-2-2019
Autors:

Smirnov V.A.
Korolev E.V.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53
УДК: [544.77:691-404.8]:004.942:004.416.6

 

AbstractAbout AuthorsReferences
No doubt, the majority of modern building materials are – at every single stage of their existence – disperse systems. Thus, to investigate the structure formation and to reveal peculiarities in influence of control factors to structure and properties, it is possible to employ vast amount of theoretical and semi-empirical methods from interface and colloids science and physical chemistry – the interdisciplinary intersections of physics, nanoscience, chemistry and many other fields. With computational experiments in mind, the particle systems can be considered as the most reasonable representations of both compositions and composites. Modeling of particles’ motion under internal and external forces is the particle dynamics method, and it is dated back to XIX century. As of now, there are numerous software packages available for modeling of particle dynamics. Unfortunately, many of the packages are targeted only to nano- and, on rare occasions, to micro-scale spatial levels. Some specific functionality for macro-scale modeling, along with simplified pairwise potentials, but complicated initial distributions and topology analysis methods, still require adequate implementation for the R&D in construction material science. The present article devoted to three simultaneous goals: i) to shortly describe the problem of numerical modeling the building materials by means of particle dynamics, ii) to briefly discuss the distinctive features of our software, and iii) to perform the modeling of nanoscale dispersion and to demonstrate the amount of informative parameters that can be obtained with help of our software.
V.A. SMIRNOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.V. KOROLEV, Doctor of Engineering, Professor, Director of the Research and Educational Center “Nanomaterials and Nanotechnology”

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Gladkikh V.A., Korolev E.V., Smirnov V.A., Sukhachev I. Modeling the rutting kinetics of the sulfur-extended asphalt. Procedia Engineering. 2016. Vol. 165, pp. 1417–1423.
2. Grishina A.N., Korolev E.V. Zhidkostekol’nye stroitel’nye materialy spetsial’nogo naznacheniya [Special-purpose building materials based on water glass]. Moscow: Moscow State University of Civil Engineering. 2015. 223 p. (In Russian).
3. Bernal J.D., Finney J.L. Random close-packed hard-sphere model. II. Geometry of random packing of hard spheres. Discussions of the Faraday Society. 1967. Vol. 43, p. 62.
4. Scott G.D., Kilgour D.M. The density of random close packing of spheres. Journal of Physics D: Applied Physics. 1969. Vol. 2, p. 863.
5. Xu R., Yang X.H., Yin A.Y., Yang S.F. A Three-dimensional aggregate generation and packing algorithm for modeling asphalt mixture with graded aggregates. Journal of Mechanics. 2011. Vol. 26 (2), pp. 165–171.
6. Stroeven P., Stroeven M. Assessment of packing characteristics by computer simulation // Cement and Concrete Research. 1999. Vol. 29 (8), pp. 1201–1206.
7. Jodrey W.S., Tory E.M. Computer simulation of isotropic, homogeneous, dense random packing of equal spheres. Powder Technology. 1981. Vol. 30 (2), pp. 111–118.
8. Mos´cin´ski J., Bargiel M., Rycerz Z.A., Jacobs P.W.M. The force-biased algorithm for the irregular close packing of equal hard spheres. Molecular Simulation. 1989. Vol. 3 (4), pp. 201–212.
9. Bezrukov A., Stoyan D., Bargiel M. Spatial statistics for simulated packings of spheres. Image Analysis and Stereology. 2001. Vol. 20, pp. 203–206.
10. Fu G., Dekelbab W. 3-D random packing of polydisperse particles and concrete aggregate grading. Powder Technology. 2003. Vol. 133 (1–3), pp. 147–155.
11. Korolev E.V., Proshin A.P., Smirnov V.A. Investigation of stability of aggregates in composites. Izvestija Vuzov. Stroitelstvo. 2002. No. 4, pp. 40–45 (In Russian).
12. Proshin A.P., Danilov A.M., Korolev E.V., Smirnov V.A. Dynamic models for investigation of cluster forming in disperse systems. Extreme cases. Izvestija Vuzov. Stroitelstvo. 2003. No. 3, pp. 32–38 (In Russian).
13. Proshin A.P., Danilov A.M., Korolev E.V., Smirnov V.A. Kinetic model of flocculation in disperse systems. Izvestija Vuzov. Stroitelstvo. 2003. No. 4, pp. 53–57. (In Russian).
14. Korolev E.V., Proshin A.P., Danilov A.M., Smirnov V.A. Modeling of the liophobic disperse systems. Izvestija Vuzov. Stroitelstvo. 2004. No. 1, pp. 40–47 (In Russian).
15. Proshin A.P., Korolev E.V., Danilov A.M., Smirnov V.A. Method of numerical investigation of structure forming of disperse systems. Vestnik otdeleniya stroitel’nykh nauk RAASN. 2004. No. 6, pp. 336–346. (In Russian).
16. Proshin A.P., Danilov A.M., Korolev E.V., Bormotov A.N., Smirnov V.A. Modeling of structure formation of disperse systems. Proc. of the 4th International Conference “System Identification and Control Problems”. Moscow: Institute of Control Sciences. 2005, pp. 700–724 (In Russian).
17. Korolev E.V., Smirnov V.A., Inozemtcev A.S. Dynamic modeling of nanoscale systems. Nanotekhnologii v stroitel’stve. 2012. No. 3, pp. 26–34 (In Russian).
18. Smirnov V.A., Evstigneev A.V., Korolev E.V. Multiscale material design in construction. MATEC Web of Conferences. 2017. Vol. 106. Article 03027. https://doi.org/10.1051/matecconf/201710603027
19. Derjaguin B., Landau L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica U.R.S.S. 1941. Vol. 14, pp. 633–662.
20. Kinetics of Aggregation and Gelation. Ed. by Family F., Landau D.P. Amsterdam: North Holland, 1984. 294 p.
21. Smoluchowski M. Versuch einer mathematischen theorie der koagulationskinetik kolloider losungen. Zeitschrift f. Physik. Chemie. 1917. Vol. 92, pp. 129–168.
22. Berendsen H.J.C, van der Spoel D., van Drunen R. GROMACS – a message-passing parallel molecular-dynamics implementation. Computer Physics Communications. 1995. Vol. 91, pp. 43–56.
23. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics. 1995. Vol. 117, pp. 1–19.
24. Plimpton S., Hendrickson B. A new parallel method for molecular dynamics simulation of macromolecular systems // Journal of Computational Chemistry. 1996. Vol. 17, pp. 326–337.

For citation: Smirnov V.A., Korolev E.V. Building materials as disperse systems: multiscale modeling with dedicated software. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 43–53. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53 (In Russian).


Print   Email