Degradation of Reinforced Concrete Structures of Marine Works from the Combined Impact of Carbonation and Chloride Aggression

Number of journal: 5-2019
Autors:

Shalyi E.E.
Leonovich S.N.
Kim L.V.

DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
УДК: 691.328.1

 

AbstractAbout AuthorsReferences
Corrosion of reinforcement of marine and coastal hydraulic structures due to chloride aggression and carbonation of concrete leads to a sharp decrease in the safety of the structure. The existing design methods do not fully reflect the actual operating conditions of hydraulic structures. This is particularly evident in areas where the simultaneous impact of such factors as low air temperatures and a large number of clear days in the winter with strong solar radiation, leads to a sharp change in the actual operating conditions compared to the calculated. Concretes of many structures and installations experience a greater number of aggressive impacts than provided for by the design standards. As a result of these effects, the reinforcement is subjected to the depassivation process as soon as the chloride concentration on its surface exceeds the threshold concentration, or the pH value in the protective layer of concrete decreases to the threshold value as a result of carbonation. When oxygen penetrates to the surface of the reinforcement, electrochemical reactions are implemented with formation of corrosion products. This leads to cracking of the protective layer of concrete, reducing the cross-sectional area of the reinforcement. The paper proposes a method for predicting the complex degradation of reinforced concrete structures of coastal structures with due regard for the various mechanisms of corrosion wear, which makes it possible to develop effective ways to improve the durability and maintainability of structures operated in the marine environment.
E.E. SHALYI1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.N. LEONOVICH2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
L.V. KIM1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Far Eastern Federal University (E920, 12, Ajax Bay, Russky Island, Vladivostok, 690091, Russian Federation)
2 Belarusian National Technical University (220013, Belarus, Minsk, Nezavisimosty Ave., 65)

1. Huang T. The experimental research on the interaction between concrete carbonation and chloride ingress under loading: MSc thesis. Zhejiang University. 2013.
2. Bazant Z.P., Physical model for steel corrosion in concrete sea structures theory. Journal of the structural division. ASCE 105 (ST6), 1979: 1137–1153. http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/119.pdf
3. Andrade C., Prieto M., Tanner P. et al. Testing and modelling chloride penetration into concrete. Construction and Building Materials. 2011. Vol. 39, pp. 9–18. DOI: 10.1016/j.conbuildmat.2012.08.012
4. Apostolopoulos C., Papadakis V.,Consequences of steel corrosion on the ductility properties of reinforcement bar. Construction and Building Materials. 2008. Vol. 22 (12), pp. 2316–2324. DOI: 10.1016/j.conbuildmat.2007.10.006
5. Yuan C., Niu D., Luo D. Effect of carbonation on chloride diffusion in fly ash concrete. Disaster Advances. 2012. Vol. 5 (4), pp. 433–436.
6. Cairns J.W. State of the art report on bond of corroded reinforcement. Tech. Report No. CEB-TG-2/5. 1998.
7. Cao C., Cheung M. Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Construction and Building Materials. 2014. Vol. 51, pp. 75–81. https://doi.org/10.1016/j.conbuildmat.2013.10.042
8. Ho D.W.S., Lewis R.K. Carbonation of concrete and its prediction. Cement and Concrete Research. 1987. Vol. 17 (3), pp. 489–504. DOI: 10.1016/0008-8846(87)90012-3
9. Glass G.K., Buenfeld N. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corrosion Science. 2000. Vol. 42 (2), pp. 329–344. DOI: 10.1016/S0010-938X(99)00083-9
10. Böhni H. Corrosion in reinforced concrete structures. England: Woodhead Publishing Limited. 2005. 264 p.
11. Chindaprasirt P., Rukzon S., Sirivivatnanon V. Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended portland cement mortar. Construction and Building Materials. 2008. Vol. 22. Iss. 8, pp. 1701–1707. https://doi.org/10.1016/j.conbuildmat.2007.06.002
12. Rahman M., Al-Kutti W., Shazali M., Baluch M., Simulation of chloride migration in compression-induced damage in concrete. Journal of Materials in Civil Engineering. 2012. Vol. 24 (7), pp. 789–796. DOI: 10.1061/(ASCE)MT.1943-5533.0000458
13. Ozbolt J., Balabanic G., Kuster M. 3D numerical modelling of steel corrosion in concrete structures. Corrosion Science. 2011. Vol. 53 (12), pp. 4166–4177. DOI: 10.1016/j.corsci.2011.08.026
14. Yoon I. Deterioration of concrete due to combined reaction of carbonation and chloride penetration: experimental study. Key English Materials. 2007. Vol. 348–349, pp. 729–732. https://doi.org/10.4028/www.scientific.net/KEM.348-349.729
15. Yoon I. Simple approach to calculate chloride diffusivity of concrete considering carbonation. Computers and Concrete. 2009. Vol. 6 (1) DOI: 10.12989/cac.2009.6.1.001
16. Backus J., Mcpolin D., Basheer M. et al. Exposure of mortars to cyclic chloride ingress and carbonation. Advances in Cement Research. 2013. Vol. 25 (1), pp. 3–11. https://doi.org/10.1680/adcr.12.00029
17. Zhu, X., Zi, G., Cao, Z., & Cheng, X. Combined effect of carbonation and chloride ingress in concrete. Construction and Building Materials. 2016. Vol. 110, pp. 369–380. https://doi.org/10.1016/j.conbuildmat.2016.02.034
18. Wan X., Wittmann F., Zhao T., Fan H. Chloride content and pH value in the pore solution of concrete under carbonation. Journal of Zhejiang University SCIENCE A. 2013. Vol. 14. Iss. 1, pp. 71–78. https://doi.org/10.1631/jzus.A1200187
19. Алексеев С.Н., Иванов Ф.М., Модры С., Шиссль П. Долговечность железобетона в агрессивных средах. М.: Стройиздат, 1990. 320 с.
19. Alekseev S.N., Ivanov F.M., Modry S., Shissl’ P. Dolgovechnost’ zhelezobetona v agressivnykh sredakh [The durability of reinforced concrete in aggressive environments]. Moscow: Stroyizdat. 1990. 320 p.
20. Алексеев С.Н., Розенталь Н.К. Коррозионная стойкость железобетонных конструкций в агрессивной производственной среде. М.: Стройиздат, 1976. 205 с.
20. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ zhelezobetonnykh konstruktsii v agressivnoi proizvodstvennoi srede [Corrosion resistance of reinforced concrete structures in an aggressive production environment]. Moscow: Stroyizdat, 1976. 205 p.
21. Расчет срока службы железобетонных конструкций в условиях коррозии карбонизации. Перспективы развития новых технологий в строительстве и подготовке инженерных кадров: Cб. науч. ст. Гродн. гос. ун-та им. Я. Купалы. Гродно: ГрГУ, 2010. С. 369–375.
21. Calculation of the service life of reinforced concrete structures under carbonization corrosion conditions. Prospects for the development of new technologies in the construction and training of engineering personnel: A collection of scientific schools of the Grodno State University I. Kupala. Grodno: GrSU. 2010, pp. 369–375. (In Russian).
22. Aveldano R.R., Ortega N.F. Behavior of concrete elements subjected to corrosion in their compressed or tensed reinforcement. Construction and Building Materials. 2013. Vol. 38, pp. 822–828. DOI: 10.1016/j.conbuildmat.2012.09.039
23. Lee M.K., Jung S.H., Oh B.H. Effects of carbonation on chloride penetration in concrete. Aci Materials Journal. 2013. 110 (5), pp. 559–566.

For citation: Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72


Print   Email