About the Size of Control Samples of Concrete

Number of journal: 6-2019
Autors:

Varlamov A.A.
Rimshin V.I.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-3-7
УДК: 624.072.31

 

AbstractAbout AuthorsReferences
Methods for determining the basic physical and mechanical characteristics of concrete are based on tests of standard concrete samples. The smallest size of such samples is determined by five sizes of filler. Extraction of such samples from finished products is hindered. Previously, dependences making it possible to determine the modulus of elasticity of the samples, knowing the ratio of the solution to the filler were obtained. This ratio is determined by the side surfaces of the sawn samples. Concrete samples obtained by sawing standard samples were tested. The results of complex comparative tests of standard and small samples are presented. As a result of the study it is revealed that the strength of small samples does not exceed the strength of the standard. The behavior diagrams of the standard samples practically coincide with the averaged diagrams of the work of samples of small sizes. Test results show the opportunity to move from tests of standard samples of concrete to concrete samples of small sizes.
A.A. VARLAMOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.I. RIMSHIN2, Doctor of Sciences (Engineering), Corresponding Member of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Nosov Magnitogorsk State Technical University (11, Uritskogo Street, Magnitogorsk, 455000, Russian Federation)
2 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Neville A. Core tests: easy to perform, not easy to interpret. Concrete International. 2001. November, pp. 59–68. https://sefindia.org/forum/files/ci2311neville_186.pdf
2. Bazhenov Y.M., Erofeev V.T., Rimshin V.I., Markov S.V., Kurbatov V.L. Changes in the topology of a concrete porous space in interactions with the external medium. Engineering Solid Mechanics. Vol. 4 (4), pp. 219–225.
3. Oller S., Onate E., Miquel J., Botello S. A plastic damage constitutive model for composite materials. International Journal of Solids and Structures. 1996. Vol. 33. Iss. 17, pp. 2501–2518.
4. Varlamov A.A. Model the elastic behavior of the concrete. Izvestiya KGASU. 2014. No. 3 (29), pp. 19–26. (In Russian).
5. Rimshin, V.I., Varlamov, A.A. Three-dimensional model of elastic behavior of the composite. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti. 2018. No. 3 (375), pp. 63–68. (In Russian).
6. Varlamov A.A., Gavrilov V.B., Sagadatov A.I. Comprehensive evaluation method of stress-strain state and durability of reinforced concrete structures. Byulleten’ stroitel’noj tehniki. 2017. No. 11, pp. 29–37. (In Russian).
7. Rimshin V.I., Gavrilov V.B., Varlamov A.A. Evaluation of mechanical and macrostructural properties of concrete by method of local destruction. Byulleten’ stroitel’noj tehniki. 2018. No. 12 (1012), pp. 24–26. (In Russian).
8. Krucilyak Yu.M., Krucilyak M.M., Varlamov A.A. The method of determining the characteristics of crack resistance of concrete. Beton i zhelezobeton. 2008. No. 1, pp. 20. (In Russian).
9. Pangaev V.V. Onina M.M., Serdyuk V.M., Molokov D.V. The study of scale factors to determine prochnosti cement mortars under compression. Izvestiya vuzov. Stroitel’stvo. 2012. No. 2, pp. 102–108. (In Russian).
10. Il’nickaya E.I., Protod’yakonov M.M. The influence of the scale effect in determining the fortress of rocks on irregular shapes. Resistance of rocks to breaking when procuring. Moscow: Izd. Akad. Nauk SSSR. 1962, pp. 214–224. (In Russian).
11. Lermit R. Problemy tekhnologii betona [Problems of concrete technology]. Moscow: Izdatel’stvo LKI. 2007. 296 p.
12. Shejnin A.M. Ekkel’ S.V. Quality assessment of in-situ concrete in road and airfield construction, when testing of the cores. Stroitel’nye Materialy [Construction Materials]. 2009. No. 5, pp. 17–20. (In Russian).
13. Sokolov B.S., Zagidullin M.R. Determination of concrete strength on the test results of cylindrical specimens whose dimensions differ from those regulated by standards. Stroitel’nye Materialy [Construction Materials]. 2010. № 8, pp. 70–73. (In Russian).
14. Parfenov A.A., Sivakova O.A., Gusar’O.A., Balakireva V.V. Selection of optimal methods for determining the strength of concrete when inspecting buildings and structures. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 60–63. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-60-63 (In Russian)
15. Varlamov A.A., Tverskoi S.Y., Gavrilov V.B. Samples of concrete of small sizes. Topical Problems of Architecture, Civil Engineering and Environmental Economics (TPACEE 2018). Moscow. E3S Web of Conferences. Vol. 91. Doi.org/10.1051/e3sconf/20199102043

For citation: Varlamov A.A., Rimshin V.I. About the size of control samples of concrete. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 3–7. (In Russian).
DOI: https://doi.org/10.31659/0585-430X-2019-771-6-3-7


Print   Email