Log in

Environmental and Climate Declarations as Tools for Exporting Russian Construction Materials

Number of journal: 11-2020
Autors:

Derbenev A.V.,
Vadivasov D.M.

DOI: https://doi.org/10.31659/0585-430X-2020-786-11-47-53
УДК: 691:332.142.6

 

AbstractAbout AuthorsReferences
Environmental protection, climate change, and the protection of the planet’s biodiversity are becoming top priorities in modern society. Environmental agreements, while important and necessary, including for achieving sustainable development goals, impose additional restrictions on products and producers of these products. These restrictions can be used by countries to create barriers to the import of construction materials. Countries that have ratified environmental agreements may restrict the import of products that do not meet environmental requirements or criteria in one way or another. International environmental management tools are described, in particular environmental and climate declarations, which can serve as tools for solving the problem of possible restrictions and barriers in the export of construction materials produced in the Russian Federation.
.V. DERBENEV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.M. VADIVASOV, Engineer-Ecologist (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Association “Non-profit Partnership “Coordination and Information Center of the CIS Member States on the Convergence of Regulatory Practices” (Association “NP KITS SNG”) (36, bldg. 1, Lyusinovskaya Street, Moscow, 115093, Russian Federation)

1. Lin D. et al. Ecological footprint accounting for countries: updates and results of the national footprint accounts, 2012–2018. Resources. 2018. Vol. 7. No.  3. 58 p.
2. Marmul L., Krukovskaya E. Certification of agrarian enterprises-producers of organic products in order to enter European markets. Baltic Journal of Economic Studies. 2018. Vol. 4. No.  4, pp. 209–216.
3. Prieto-Sandoval V. et al. Challenges for Еco labeling growth: lessons from the EU Ecolabel in Spain. The International Journal of Life Cycle Assessment. 2019, pp. 1–12.
4. Strazza C. et al. Using environmental product declaration as source of data for life cycle assessment: a case study. Journal of Cleaner Production. 2016. Vol. 112, pp. 333–342.
5. Hauschild M.Z. et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment. 2013. Vol. 18. No. 3, pp. 683–697.
6. Esnouf A. et al. A tool to guide the selection of impact categories for LCA studies by using the representativeness index. Science of the Total Environment. 2019. Vol. 658, pp. 768–776.
7. Ingrao C. et al. How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. Journal of cleaner production. 2018. Vol. 201, pp. 556–569.
8. Gundes S. The use of life cycle techniques in the assessment of sustainability. Procedia-Social and Behavioral Sciences. 2016. Vol. 216, pp. 916–922.
9. Evangelista P.P.A. et al. Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Construction and Building Materials. 2018. Vol. 169, pp. 748–761.
10. Najjar M.K. et al. Life cycle assessment methodology integrated with BIM as a decision-making tool at early-stages of building design. International Journal of Construction Management. 2019. DOI: 10.1080/15623599.2019.1637098
11. Curran M.A. (ed.). Goal and scope definition in life cycle assessment. Springer, 2016.
12. Hauschild M.Z., Rosenbaum R.K. & Olsen S.I. (Eds.), Life Cycle Assessment. Theory and Practice. Springer International Publishing AG. 2018. 1216 р.
13. Francart N. et al. Requirements set by Swedish municipalities to promote construction with low climate change impact. Journal of Cleaner Production. 2019. Vol. 208, pp. 117–131.

For citation: Derbenev A.V., Vadivasov D.M. Environmental and climate declarations as tools for exporting russian construction materials. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 47–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-786-11-47-53

Resistance of Binding Systems of Various Compositions to the Action of Molds

Number of journal: 11-2020
Autors:

Strokova V.V.,
Nelubova V.V.,
Sivalneva M.N.,
Rykunova M.D.,
Shapovalov N.A.

DOI: https://doi.org/10.31659/0585-430X-2020-786-11-41-46
УДК: 630*381.2: 677.019.382

 

AbstractAbout AuthorsReferences
The dynamic development of urbanization contributes to an increase in emissions of industrial waste, which is the cause dysfunction of the ecosystem balance and leads to the development of biological corrosion on building materials associated with the products of the vital activity of microorganisms. In this regard, it is necessary to assess the resistance of composites to predict the durability of building structures under conditions of biological influence of microorganisms. Binder systems of various compositions were studied: cementless nanostructured binders (NB) based on quartz sand and granodiorite, gypsum, Portland cement and alumina cement. The toxicity of binders was assessed by biotesting on living organisms – cladocerans Daphnia Magna – according to the criteria of the intensity of their growth and viability. As a result, the high environmental safety of NB is substantiated, and the ranking of the studied binders according to the degree of increase in their toxicity to test objects is presented. Fungal resistance was assessed by the ability of molds for growing and reproduction on the studied samples. It was found that the most active in terms of the development of binders were representatives of the genus Aspergillus, the intensity of growing of which in all variants did not decrease below 3 points. Gypsum and NB were especially vulnerable, where the degree of fouling repeatedly reached 5 points. Even the initially biostable cement, after the aging process, lost its stability at different extent. The obtained results indicate the need to increase the resistance of composites for various purposes under conditions of biocorrosion at the stage of design and updating of regulatory documents, including tests for fungal resistance in the list of mandatory.
V.V. STROKOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. NELUBOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.N. SIVALNEVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.D. RYKUNOVA, Engineer (graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.A. SHAPOVALOV, Doctor of Sciences (Engineering)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Erofeev V.T., Rodin A.I., Suraeva E.N., Bogatov A.D., Kaznacheev S.V. Biocidal portland cement. Stroi-tel’stvo i rekonstruktsiya. 2016. No. 1 (63), pp. 83–90. (In Russian).
2. Suraeva E.N., Erofeev V.T., Korolev E.V. Investigation of bioresistant dry building mixes modified by carbon nanotubes. Vestnik MGSU. 2015. No. 4, pp. 104–114. (In Russian).
3. Erofeev V.T., Kaznacheev S.V., Bogatov A.D., Spirin V.A., Svetlov D.A., Bogatova S.N. Research of the concrete composites resistance modified by guanidine based biocidal preparations in the model environment of filamentous fungi. Internet-Vestnik VolgGASU. 2012. Iss. 1 (20), pp. 31. (In Russian).
4. Stroganov V.F., Sagadeev E.V. Biodamage building materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 5–9. (In Russian).
5. Stroganov V.F., Sagadeev E.V., Boichuk V.A., Stoyanov O.V., Moukhametova A.M. Polymer protective coatings against biocorrosion. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. Vol. 17. No. 18, pp. 149–154. (In Russian).
6. Zalepkina S.А., Smirnov V.F., Borisov А.V., Matsulevich Z.V., Smirnova О.N., Artemeva M.M. Bactericidal and fungicidal activities of Se(S), N-containing heterocyclic compounds and their influence on growth rate of micromycete – industrial material decomposers. Fundamental’nye issledovaniya. 2015. No. 10, pp. 25–30. (In Russian).
7. Kozhukhova N.I., Zhernovskii I.V., Strokova V.V. Assessment of the bio-positivity of geopolymer binders based on low-calcium fly ash. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 84–85. (In Russian).
8. Grishina A.N., Korolev E.V. Chemical composition of silica-based biocidal modifier. Vestnik MGSU. 2016. No. 11, pp. 58–67. DOI: 10.22227/1997-0935.2016.11.59-67 (In Russian).
9. Grishina A.N., Korolev E.V. Strength of gypsum stone containing biocidal modifier. Evraziiskii Soyuz Uchenykh (ESU). 2016. No. 30, pp. 21–24. (In Russian).
10. Sivalneva M.N., Nelubova V.V., Kobzev V.A. Evolution of zero-cement nanostructured binders of different topogenetic belonging. Stroitel’stvo i tekhnogennaya bezopasnost’. 2019. No. 14 (66), pp. 73–83. (In Russian).
11. Zhernovskii I.V., Osadchaya M.S., Cherevatova A.V., Strokova V.V. Aluminosilicate nanostructured binder based on granite raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 38–41. (In Russian).
12. Cherevatova A.V., Zhernovskaya I.V., Alehin D.A., Kozhukhova M.I., Kozhukhova N.I., Yakovlev E.A. Theoretical aspects of development of composite nanostructured gypsum binder characterized by increased heat resistance. Stroitel’nye materialy i izdeliya. 2019. Vol. 2. No. 4, pp. 5–13. (In Russian).
13. Kobzev V.A., Sivalneva M.N., Nelubova V.V. highly-concentrated aluminosilicate binder suspension from granodiorite. Vestnik BGTU im. V.G. Shukhova. 2018. No. 1, pp. 12–18. DOI: 10.12737/article_5a5dbd2cae9c28.43666650 (In Russian).
14. Strokova V.V., Nelubova V.V., Sivalneva M.N., Kobzev V.A. Phytotoxicity analysis of different compositions of nanostructured binder. Key Engineering Materials. 2017. Vol. 761, pp. 189. DOI: 10.4028/www.scientific.net/KEM.761.189
15. Strokova V.V., Nelyubova V.V., Rykunova M.D., Danakin D.N. Toxicity of binders as an element of the urban ecosystems. Stroitel’stvo i tekhnogennaya bezopasnost’. 2018. No. 12 (64), рр. 167–178. (In Russian).
16. Strokova V.V., Goncharova E.N., Nelubova V.V., Rykunova M.D. Biocoenosis of construction objects of live stockbreeding complexes with due account for industrial profile. Advances in Engineering Research. 2018. Vol. 151, pp. 601–605. DOI: https://doi.org/10.2991/agrosmart-18.2018.112.

For citation: Strokova V.V., Nelubova V.V., Sivalneva M.N., Rykunova M.D., Shapovalov N.A. Resistance of binding systems of various compositions to the action of molds. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-786-11-41-46

Design of the Blast Furnace Wall Structure Made of Efficient Materials. Part 4. Calculation Examples

Number of journal: 11-2020
Autors:

Ibragimov A.M.,
Gnedina L.Yu.

DOI: https://doi.org/10.31659/0585-430X-2020-786-11-30-34
УДК: 669.162.212

 

AbstractAbout AuthorsReferences
This work is part of a series of articles under the general title “The structural design of the blast furnace wall from efficient materials” [1–3]. In part 1, “Problem statement and calculation prerequisites”, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, “Solving boundary value problems of heat transfer”, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.
A.M. IBRAGIMOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.Yu. GNEDINA, Candidate of Sciences (Engineering)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Ibragimov A.M., Lipenina A.V. Design of the blast furnace wall structure made of efficient materials. Part 1. Statement of a problem and calculation prerequisites. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 70–74. DOI: http://10.31659/0585-430X-2018-757-3-70-74 (In Russian).
2. Ibragimov A.M., Lipenina A.V., Gnedina L.Yu. Design of the blast furnace wall structure made of efficient mate-rials. Part 2. Solution of boundary problems of heat transfer. Stroitel’nye Materialy [Construction Mate-rials]. 2018. No. 5, pp. 73–76. DOI: https://doi.org/doi.org/10.31659/0585-430X-2018-759-5-73-76 (In Russian).
3. Fedosov S.V., Ibragimov A.M., Gnedina L.Yu. Design of the blast furnace wall structure made of efficient materials. Part 3. Mathematical model of heat transfer process. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 71–75. DOI: https://doi.org/10.31659/0585-430X-2018-766-12-71-75 (In Russian).
4. Fedosov S.V. Analytical description of heat and moisture transport in the process of drying dispersed materials in the presence of thermal diffusion and internal evaporation of moisture. Zhurnal prikladnoy khimii. 1986. Vol. 59. No. 3, pp. 2033–2038. (In Russian).
5. Fedosov S.V., Kiselnikov V.N. Heat transfer in a spherical particle with convective drying in a suspended state. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 1985. Vol. 28. No. 2, pp. 14–15. (In Russian).
6. Fedosov S.V., Zaitsev V.A., Shmelev A.L. Calculation of temperature fields in a cylindrical reactor with an unevenly distributed heat source. The state and prospects for the development of electrical technology. Abstracts of reports of the all-Union scientific and technical conference. Ivanovo. 1987, p. 28. (In Russian).
7. Fedosov S.V., Kisel’nikov V.N., Shertayev T.U. Primeneniye metodov teorii teploprovodnosti dlya modelirovaniya protsessov konvektivnoy sushki [Application of the methods of the theory of heat conductivity for modeling the processes of convective drying]. Alma-Ata: Gylym. 1992. 168 p.
8. Fedosov S.V., Gnedina L.Yu. Non-stationary heat transfer in a multilayered enclosing structure. Problems of construction thermophysics of microclimate and energy-saving systems in buildings: Collection of reports of IV scientific-practical conference. Moscow. April 27–29, 1999, pp. 343–348. (In Russian).
9. Chizilskiy E. Ventilated structures of external walls. Zhilishchnoe Stroitel’stvo [Housing Construction]. 1996. No. 10, pp. 25–27. (In Russian).
10. Shmelev A.L. Fedosov S.V., Zaytsev V.A., Sokol’s-kiy A.I., Kisel’nikov V.N. Modelirovanie nestatsionarnogo teploperenosa v reaktore gidroliza tsiansoderzhashchikh polimerov [Modeling of non-stationary heat transfer in the reactor of hydrolysis of cyanide-containing polymers]. Ivanovo Chemical Technology Institute. 1988. Dep. In the NIITEKhIM. N1076–XII88.
11. Shmelev A.L. A continuous method for producing watersoluble polymers based on polyacrylonitrile with a highcontent of the basic substance. Cand. Diss. (Engineering). Ivanovo. 1998. (In Russian).
12. Lykov A.V., Mikhaylov Yu.A. Teoriya perenosa energii i veshchestva [Theory of energy and matter transfer]. Minsk: AN BSSR Publishing. 1959. 330 p.
13. Fedosov S.V., Ibragimov A.M., Gnedina L.Yu., Gushchin A.V. Mathematical model of non-stationary heat transfer in a multilayered enclosing structure. Reports of the XII Russian-Polish seminar “Theoretical Foundations of Construction”. Warsaw: 2003, pp. 253–261. (In Russian).
14. Bol’shakova N.V. Energy and resource saving in hightemperature furnaces with a false casing. Izvestiya MGTU «MAMI». 2013. No. 3 (17). Vol. 2, pp. 79–85. (In Russian).
15. Chudnovsky A.F. Teplofizicheskiye kharakteristiki dispersnykh materialov. [Thermophysical characteristics of dispersed materials]. Moscow: Fizmatgiz. 1962. 456 p.
16. Fedosov S.V., Ibragimov A.M., Gnedina L.Yu., Ignatiev S.A. Calculation of the thickness of the heat-insulating (middle) layer of three-layer wall panels (wall 2). Certificate of industry registration of development No. 4977. State Coordinating Center for Information Technologies. Industry fund of algorithms and programs. Moscow. 2005. (In Russian).

For citation: Ibragimov A.M., Gnedina L.Yu. Design of the blast furnace wall structure made of efficient materials. Part 4. Calculation examples. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 30–34. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-786-11-30-34

Effect of Long-Term Storage of Silicate Brick in Water on its Strength

Number of journal: 11-2020
Autors:

Panchenko Yu.F.,
Panchenko D.A.,
Nizovskikh A.P.,
Khafizova E.N.

DOI: https://doi.org/10.31659/0585-430X-2020-786-11-24-29
УДК: 391.316

 

AbstractAbout AuthorsReferences
The article is devoted to the study of long-term storage of silicate brick in stationary water conditions on its strength and phase composition. The relevance of these studies is due to the fact that there are a lot of opinions that silicate materials have low water resistance which significantly limits their application range and reduces their popularity among builders. It has been found that after nine years storage in water and followed drying the silicate brick’s strength is practically equal to the initial strength. The data on the phase composition of newgrowths in silicate brick newly made in different production periods and the phase composition of silicate hydrates of bricks water conditioned are presented in the article. Comparison of the X-ray and differential thermal analyzes results of silicate bricks samples after 9 years of water conditioning and samples of newly made silicate bricks showed that highly basic calcium silicate hydrates predominate in a newly made sample, and in a 9-year-old sample silicate hydrates are mainly represented by tobermorite, while the total content of the СSH phase is the same. The content of calcium hydroxide in a newly made sample is higher but this may be due to the completeness of Ca(OH)2 binding in a particular sample but not to its leaching. The fact that leaching of Ca(OH)2 from silicate brick in still water does not occur also can be proved because the water of brick samples storage does not turn pink when phenolphthalein is added. These results allow us to conclude that long-term storage of silicate products in still water does not have any effect on the deterioration of silicate bricks.
Yu.F. PANCHENKO1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. PANCHENKO1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.P. NIZOVSKIKH2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.N. KHAFIZOVA1, Candidate of Sciences (Engineering)

1 Industrial University of Tyumen (38, Volodarsky Street, Tyumen, 625000, Russian Federation)
2 JSC “Invest-silicate-construction services” (1, Vokzalnaya Street, industrial settlement Vinzili, Tyumen region, 625530, Russian Federation)

1. Skramtaev B.G., Jakub I.A., Koroleva A.T. About water and acid resistance of silicate materials. Stroitel’nye Materialy [Construction Materials]. 1963. No. 12, pp. 31–32. (In Russian).
2. Cherepanov V.I., Nekrasova E.V., Chernyh N.A., Panchenko Ju.F. Water resistance of silicate brick. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 10–11. (In Russian).
3. Volodchenko A.A. Influence of the hydrothermal treatment regime on the properties of silicate materials. Fundamental’nye issledovanija. 2013. No. 6–6, pp. 1333–1337. (In Russian).
4. Tkachik P. P. Kamennye konstrukcii iz silikatnyh izdelij. Proektirovanie, konstruktivnye reshenija, proizvodstvo rabot. [Stone structures made of silicate products. Design, constructive solutions, work execution] Minsk: Strinko, 2012. 376 p.
5. Gorshkov V.S., Timashev V.G., Savel’ev V.G. Metody fiziko-himicheskogo analiza vjazhushhih veshhestv. [Physical and chemical analysis methods of binders] Moscow: Vysshaja shkola. 1981. 335 p.
6. Omarova S.D. Hardening of silicate bricks during autoclave curing. Stroitel’nye materialy, oborudovanie, tehnologii XXI veka. 2016. No. 7–8, pp. 27–29. (In Russian).
7. Babkov V.V., Samofeev N.S., Chujkin A.E. Silicate brick in the outer walls of buildings: analysis of the state, forecast of durability and methods of its increase. Magazine of Civil Engineering. 2011. No. 8, pp. 35–40. (In Russian).
8. Reshetnikova K.V., Rashhupkina M.A. Structural studies of silicate bricks. Materials of the International scientific-practical conference “Actual problems of science and technology through the eyes of young scientists” 2016, pp. 177–181. (In Russian).
9. Reshetnikova K.V., Rashhupkina M.A. Regulation of the silicate bricks’ properties by finely ground additives. In the collection: Architecture, construction, transport materials of the International Scientific and Practical Conference to the 85th anniversary of “SibADI”. 2015, pp. 545–549. (In Russian).
10. Volodchenko A.N., Lesovik V.S. Prospects for expanding the range of autoclave-hardened silicate materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 34–37. (In Russian).
11. Atakuziev T.A., Dzhandullaeva M.S., Bekmuratova M.G., Lutfullaeva N.B. Silicate brick of improved quality using solid waste of soda production. Proceedings of conferences SIC Sociosphere. 2016. No. 10, pp. 162–166. (In Russian).
12. Kuznecova G.V., Morozova N.N., Zigangaraeva S.R. Silicate wall materials using screenings of igneous rocks crushing. Regional’naja arhitektura i stroitel’stvo. 2016. No. 3 (28), pp. 38–44. (In Russian).
13. Goncharova M.A., Ivashkin A.N., Simbaev V.V. Development of optimal silicate concretes compositions with local raw materials. Stroitel’nye Materia-ly [Construction Materials]. 2016. No. 9, pp. 6–8. (In Russian).
14. Zimakova G.A., Solonina V.A., Zelig M.P., Orlov V.S. The role of aleuropelites in the formation of autoclaved lime-silicate materials’ properties. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 4–9. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-4-9 (In Russian).
15. Kotljar V.D., Kozlov A.V., Zhivotkov O.I., Kozlov G.A. Silicate brick based on ash microsphe-res and lime. Stroitel’nye materialy [Construction Materials]. 2018. No. 9, pp. 17–21. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-17-21 (In Russian).
16. Tayfun Cicek, MehmetTanrıverdi. Lime based steam autoclaved fly ash bricks. Construction and Building Materials. Vol. 21. Iss. 6. June 2007, pp. 1295–1300. DOI: https://doi.org/10.1016/j.conbuildmat.2006.01.005
17. Sastry B.S.R. Investigations on Sand Lime Bricks- Part I // Transactions of the Indian Ceramic Society. Vol. 10. 1951. Iss. 1. 26 Aug 2014, pp. 62–67. DOI: https://doi.org/10.18720/MPM.4252019_4
18. Dachowski R., Komisarczyk K. Determination of microstructure and phase composition of sand-lime brick after autoclaving process. Procedia Engineering. 2016. Vol. 161, pp. 747–753. DOI: https://doi.org/10.1016/j.proeng.2016.08.762
19. Zhiwei Zhang, Jueshi Qian, Chao You, Changhua Hu. Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick. Construction and Building Materials. 2012. Vol. 35, pp. 109–116. DOI: https://doi.org/10.14359/51686910
20. Lesovik V.S. Construction Materials. Present and future. Vestnik MGSU. 2017. Vol. 12. No. 1 (100), pp. 9–16. DOI: https://doi.org/10.22227/1997-0935.2017.1.9-16

For citation: Panchenko Yu.F., Panchenko D.A., Nizovskikh A.P., Khafizova E.N. Effect of long-term storage of silicate brick in water on its strength. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 24–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-786-11-24-29

Biological Corrosion of Concrete

Number of journal: 11-2020
Autors:

Erofeev V.T.,
Al-Dulaimi Salman Davud Salman,
Fedortsov A.P.,
Bogatov A.D.,
Fedortsov V.A.

DOI: https://doi.org/10.31659/0585-430X-2020-786-11-13-23
УДК: 666.972 : 620.194.2

 

AbstractAbout AuthorsReferences
The article considers the results of studies to determine the causes, mechanisms and features of biological corrosion of cement concrete. It has been found that the intensive growth of microorganisms on the surface and in the pores of concrete leads to the formation of corrosive biogenic substances and, as a result, the reduction of alkalinity of cement stone with its subsequent decomposition. The influence of certain types of biogenic substances on the components of cement concrete (biogenic organic acids, biogenic carbon dioxide, biogenic nitric acid, biogenic hydrogen sulphide and sulfuric acid) is considered. Methods for increasing the biological resistance of concrete are described, such as: adding additives that can form buffer systems capable of reducing the impact on cement concretes of acids produced by microorganisms; treating the surface of composites with substances capable of repelling microorganisms and environments necessary for their vital activity; use of active media capable of forming dense and inert layers on the surface of the material. Despite the available methods of increasing the biological resistance of cement concrete, it is not possible to fully guarantee their safety from biocorrosion, at least because microorganisms can adapt to the environment and suspend the effect of protection. In this regard, the work attempts to assess and predict the biological resistance of the material.
V.T. EROFEEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Al-DULAIMI SALMAN DAVUD SALMAN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. FEDORTSOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.D. BOGATOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. FEDORTSOV, Engineer

National Research Ogarev Mordovia State University (68, Bolshevik Street, Saransk, 430005, Russian Federation)

1. Алексеев С.Н., Розенталь Н.К. Коррозионная стойкость железобетонных конструкций в агрессивной промышленной среде. М.: Стройиздат, 1976. 205 с.
1. Alekseev S.N., Rosenthal N.K. Korrozionnaya stoykost’ zhelezobetonnykh konstruktsiy v agressivnoy promyshlennoy srede [Corrosion resistance of reinforced concrete structures in aggressive industrial environments]. Moscow: Stroyizdat. 1976. 205 p.
2. Алмазов В.О. Проектирование железобетонных конструкций по Евронормам. М.: АСВ, 2011. 215 с.
2. Almazov V.O. Proyektirovaniye zhelezobetonnykh konstruktsiy po Yevronormam [Design of reinforced concrete structures according to Euronorms]. Moscow: ASV, 2011. 215 p.
3. Бенин А.В., Семенов А.С., Семенов С.Г. Модели-рование процессов разрушения железобетонных транспортных конструкций с учетом наполнения повреждений. Бетон и железобетон – взгляд в будущее: Науч. тр. III Всерос. (II Междунар.) конф. по бетону и железобетону. Москва, 12–16 мая 2014. В 7 т. Т. 4. С. 129–139.
3. Benin A.V., Semenov A.S., Semenov S.G. Modeling the processes of destruction of reinforced concrete transport structures taking into account the filling of damage. Concrete and reinforced concrete – a look into the future: scientific works of the III All-Russian (II International) conference on concrete and reinforced concrete. Moscow. May 12–16, 2014. Vol. 4, pp. 129–139. (In Russian).
4. Железобетонные изделия и конструкции: Науч.-техн. справ. / Под ред. Ю.В. Пухаренко, Ю.М. Ба-женова, В.Т. Ерофеева. СПб.: НПО «Профессио-нал», 2013. 1048 с.
4. Zhelezobetonnyye izdeliya i konstruktsii: nauch.-tekhn. spravochnik / Pod red. Yu.V. Pukharenko, Yu.M. Bazhenova, V.T. Yerofeeva [Reinforced concrete products and structures: scientific and technical reference book / Ed. by Yu.V. Pukharenko, Yu.M. Bazhenov, V.T. Erofeev]. Saint-Petersburg: NPO Professional. 2013. 1048 p.
5. Карпенко Н.И. Теория деформирования железобетона с трещинами. М.: Стройиздат, 1976. 208 с.
5. Karpenko N.I. Teoriya deformirovaniya zhelezobe-tona s treshchinami [The theory of deformation of reinforced concrete with cracks]. Moscow: Stroyizdat. 1976. 208 p.
6. Москвин В.М., Иванов Ф.М., Алексеев С.Н., Гузеев Е.А. Коррозия бетона и железобетона, методы их защиты. М.: Стройиздат, 1980. 536 с.
6. Moskvin V.M., Ivanov F.M., Alekseev S.N., Guzeev E.A. Korroziya betona i zhelezobetona, metody ikh zashchity [Corrosion of concrete and reinforced concrete, methods of their protection]. Moscow: Stroyizdat. 1980. 536 p.
7. Белов Н.Н., Дзюба П.В., Кабанцев О.В. Матема-тическое моделирование процессов динамического разрушения бетона // Механика твердого тела. 2008. № 2. С. 124–133.
7. Belov N.N., Dzyuba P.V., Kabantsev O.V. Mathe-matical modeling of the processes of dynamic destruction of concrete. Mekhanika tverdogo tela. 2008. No. 2, pp. 124–133. (In Russian).
8. Овчинников И.И., Мигунов В.Н. Долговечность железобетонной балки в условиях хлоридной агрессии // Строительные материалы. 2012. № 8. С. 76–84.
8. Ovchinnikov I.I., Migunov V.N. Durability of reinforced concrete girders in conditions of chloride aggression. Stroitel’nye Materialy [Building Materials]. 2012. No. 8, pp. 76–84. (In Russian).
9. Розенталь Н.К., Чехний Г.В. Вопросы коррозионной стойкости бетона при воздействии биологически активных сред. Бетон и железобетон – взгляд в будущее: Науч. тр. III Всерос. (II Междунар.) конф. по бетону и железобетону. Москва, 12–16 мая 2014. Т. 3. С. 367–376.
9. Rosenthal N.K., Chekhny G.V. Issues of corrosion resistance of concrete when exposed to biological active environment. Concrete and reinforced concrete – a look into the future: scientific works of the III All-Russian (II International) conference on concrete and reinforced concrete. Moscow. May 12–16, 2014. Vol. 3, pp. 367–376. (In Russian).
10. Степанова В.Ф., Фаликман В.Р. Современные проблемы обеспечения долговечности железобетонных конструкций. Бетон и железобетон – взгляд в будущее: Науч. тр. III Всерос. (II Междунар.) конф. по бетону и железобетону. Москва, 12–16 мая 2014. Т. 3. С. 275–289.
10. Stepanova V.F., Falikman V.R. Modern problems of ensuring the durability of reinforced concrete structures. Concrete and reinforced concrete – a look into the future: scientific works of the III All-Russian (II International) conference on concrete and reinforced concrete. Moscow. May 12–16, 2014. Vol. 3, pp. 275–289. (In Russian).
11. Соломатов В.И., Ерофеев В.Т., Смирнов В.Ф. и др. Биологическое сопротивление материалов. Саранск: Изд-во Мордов. ун-та, 2001. 196 с.
11. Solomatov V.I., Erofeev V.T., Smirnov V.F. and other. Biologicheskoye soprotivleniye materialov [Biological resistance of materials]. Saransk: Publishing house of Mordovian University. 2001. 196 p.
12. Sand W. Microbial corrosion and its inhibition. In: Rehm H.J. (Ed.), Biotechnology, Vol. 10, 2nd ed., Wiley-VCH Verlag, Weinheim, 2001. p. 267–316.
13. PCA; Types and causes of concrete deterioration. Portland Cement Association, IS536, 2002; p. 1–16.
14. Cwalina B., Dzierżewicz Z.; Korozja biologiczna konstrukcji żelbetowych (Biological corrosion of reinforced concrete constructions). XXI Polish Conference “Warsztat Pracy Projektanta Konstrukcji”, Szczyrk, T. 1, Wyd. PZITB, O/Gliwice, 2006; pp. 79–108 (In Polish).
15. Sand W., Heitz E., Flemming H.C. Microbial mechanisms. Microbially Influenced Corrosion of Materials. Springer: Berlin, Heidelberg, 1996, pp. 15–25.
16. De Belie N., Richardson M., Braam C.R., Svennerstedt B., Lenehan J.J., Sonck B.; Durability of building materials and components in the agricultural environment: Part I, The agricultural environment and timber structures. Journal of Agricultural Engineering Research. 2000. Vol. 75, pp. 225–241.
17. Mori T., Koga M., Hikosaka Y., Nonaka T., Mishina F., Sakai Y., Koizumi J.; Microbial corrosion of concrete sewer pipes, H2S production from sediments and determination of corrosion rate. Water Science and Technology. 1991. Vol. 23, pp. 1275–1282. https://doi.org/10.2166/wst.1991.0579
18. Herb S., Stair J.O., Ringelberg D.B., White D.C., Flemming H.C. Characterization of biofilms on corroded concrete surfaces in drinking water reservoirs. Water Science and Technology. 1995. Vol. 32, pp. 141–147.
19. Kaltwasser H. Destruction of concrete by nitrification. European Journal of Applied Microbiology. 1976. No. 3, pp. 185–192. https://doi.org/10.1007/BF01385433

For citation: Erofeev V.T., Al-Dulaimi Salman Davud Salman, Fedortsov A.P., Bogatov A.D., Fedortsov V.A. Biological corrosion of concrete. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 13–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-786-11-13-23

Increasing the Monolithic Nature of Masonry Made of Cellular Concrete Blocks by Using Polyurethane Foam Glue as a Masonry Mortar

Number of journal: 11-2020
Autors:

Dzhamuev B.K.

DOI: https://doi.org/10.31659/0585-430X-2020-786-11-4-9
УДК: 624.6.012.2

 

AbstractAbout AuthorsReferences
This study is a continuation of previously published work [1]. The results of experimental determination of the strength of normal adhesion (under axial tension) in masonry made of autoclave–hardened cellular concrete blocks of compressive strength classes B1,5-B3,5 on cement mortars and polyurethane foam adhesives are presented. The tests were carried out in the laboratory of the Department “Reinforced Concrete and Stone Structures” of the Moscow State University of Civil Engineering (National Research University). The experiment was carried out on samples-cubes with a size of 150x150x150 mm, which were cut out of cellular concrete blocks, fastened (glued) together using masonry (binding) compositions. In the course of the study, it was found that when using various polyurethane foam glue compositions in masonry made of cellular concrete blocks of compressive strength classes B1,5–B3,5, the resistance to axial stretching over an unbound section (normal adhesion) of the masonry increases by approximately 9–25%. It was also found that the nature of the destruction of samples made on polyurethane foam adhesives (destruction occurs along the body of concrete), indicates the monolithic nature of the masonry. The analysis of the results obtained makes it possible to conclude that the resistance to axial tension along the unbound section of the masonry depends on the strength of the material from which the block is made, and not on the compressive strength of the masonry (binder) mortar used, as indicated in table 11 of SP 15.13330.2012 “Stone and reinforced masonry structures”. This factor must be taken into account when calculating masonry from autoclave-hardened cellular concrete blocks on polyurethane foam compositions.
B.K. DZHAMUEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Dzhamuev B.K. Polymer cement mortars in masonry of cellular concrete blocks of autoclave hardening as one of the methods of increasing the normal adhesion. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 11, pp. 46–50. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-11-46-50
2. Polyakov S.V. Stseplenie v kirpichnoi kladke [Clutch in masonry]. Moscow: Stroyizdat. 1959. 84 p.
3. Izmailov Yu.V., Mitin A.R. Stseplenie v kladke iz legkobetonnykh blokov [Clutch in masonry of lightweight concrete blocks.]. Kishinev: TsK KP Moldavii. 1971. 89 p.
4. Konovodchenko V.I. and other. Effective ways to increase adhesion in the masonry of silicate brick. Stroitel’stvo i arkhitektura Uzbekistana. 1976. No. 5, pp. 11–14. (In Russian).
5. Derkach V.N. Strength of normal adhesion of cement mortars in masonry. Magazine of Civil Engineering. 2012. No. 7, pp. 6–13.
6. Gorshkov A.S., Vatin N.I. Properties of wall constructions from cellular concrete products of autoclave hardening on polyurethane glue. Magazine of Civil Engineering. 2013. No. 5, pp. 5–19.
7. Gorshkov A. S., Mishin V. E., Vatin N. I. Increasing the thermal uniformity of walls made of cellular concrete products by using polyurethane glue in masonry. Stroitel’nye Material [Construction Materials]. 2014. No. 5, pp. 57–64. (In Russian).
8. Glumov A. Laying on polyurethane structures: how to eliminate cold bridges. Stroitel’nye materialy, oborudovaniye i tekhnologii XXI veka. 2014. No. 4, pp. 30–31. (In Russian).
9. Granovsky A.V., Dzhamuev B.K. Tests of wall structures made of cellular concrete blocks for seismic effects. Modern production of autoclaved aerated concrete: Collection of reports of a scientific and practical confe-rence. St. Petersburg. 2011, pp. 104–108. (In Russian).
10. Granovsky A.V., Dzhamuev B.K., Vishnevsky A.A., Grinfeld G.I. Experimental determination of normal and tangential adhesion of masonry from aerated concrete blocks of autoclave hardening on various adhesive compositions. Stroitel’nye Materialy [Construction Materials]. 2015. No. 8, pp. 22–25. (In Russian).
11. Greenfeld G.I., Kharchenko A.P. Comparative tests of masonry fragments from autoclaved aerated concrete with various designs of masonry seam. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 11, pp. 30–34. (In Russian).
12. Derkach V.N. Strength and Deformability of Stone Masonry Made of Cellular Concrete Blocks of Autoclaved Hardening with Polyurethane Joints. Part 1. Strength and Deformability under Compression. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 29–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-748-5-29-32.
13. Derkach V.N. Strength and deformability of stone masonry made of cellular concrete blocks of autoclaved hardening with polyurethane joints. Part 2. Bending tensile strength. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 30–33. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-750-7-30-33.
14. Derkach V.N., Demchuk I.E. Strength and deformability of stone masonry made of cellular concrete blocks of autoclaved hardening with polyurethane joints. Part 3. Strength and deformability at shear. Stroitel’nye Materialy [Construction Materials]. 2017. No. 8, pp. 32–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-751-8-32-35.
15. Lu S., Kasa M., Habian E. Innovation on masonry glued with on-site PU-adhesive. 8th International Masonry Conference 2010. Dresden, 2010.
16. Graubohm M, Brameshuber W. Investigation on the gluing of masonry units with polyurethane adhesive. 8th International Masonry Conference 2010. Dresden, 2010.
17. Lazar I.I., Dzhamuev B.K. The increase in the monolithicity of masonry walls made of cellular concrete blocks when using polymer-cement mortars in joints. The collection of materials of the seminar for young scientists of the XXII International scientific conference «Construction – the formation of the living environment». Tashkent. 2019, pp. 333–335.
18. Dzhamuev B.K. Comparative analysis of the strength of normal adhesion of a masonry from aerated concrete blocks of autoclave hardening, performed on various cement and polymer-cement mortars. Journal of Physics Conference Series. 1425:012040. DOI: 10.1088/1742-6596/1425/1/012040

For citation: Dzhamuev B.K. Increasing the monolithic nature of masonry made of cellular concrete blocks by using polyurethane foam glue as a masonry mortar. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-786-11-4-9

Composite Underrail Basements. Constructions

Number of journal: 10-2020
Autors:

Kondrashchenko V.I.,
Savin A.V.,
Chuang Wang

DOI: https://doi.org/10.31659/0585-430X-2020-785-10-52-76
УДК: 625.1

 

AbstractAbout AuthorsReferences
The article summarizes the world experience in the use of sub-rail bases (sleepers, bridge and switch ties), including their traditional structures made of wood, steel and reinforced concrete, as well as innovative composite structures (plastic, composite) based on polymer binders. The types of structures of composite sub-rail bases that have found application or are at the stage of practical implementation, their features of operation on the railway, the types of fasteners used, as well as typical defects of such structures are generalized. A classification of structures of composite sub-rail bases is proposed. The history of evolution and trends in their development, which can serve as a valuable guide for optimizing structures, expanding their production and application in railway transport, are discussed. Based on the analysis of more than 120 literature sources, it is concluded about the advantages of composite sub-rail bases in technical, economic and environmental aspects as the resource and environmental crisis worsens, in which the use of composite sub-rail bases becomes a promising direction for the development of the railway industry.
V.I. KONDRASHCHENKO, Doctor of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. SAVIN, Doctor of Science (Engineering),
Chuang WANG, graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Russian university of transport (MIIT) (9, b. 9, Obraztsova Street, Moscow, 127994, Russian Federation)

1. Esveld C. Modern Railway Track (2nd Editon). Delft: MRT Proctions. 2001. 740 p.
2. Koike Y., Nakamura T., Hayano K., et al. Numerical method for evaluating the lateral resistance of sleepers in ballasted tracks. Soils and Foundations. 2014. Vol. 54. Iss. 3, pp. 502–514. DOI: https://doi.org/10.1016/j.sandf.2014.04.014
3. Трынкова О.Н. Биография дорог: конструкции твердых покрытий // Мир транспорта. 2010. № 1. C. 176–182.
3. Trynkova O.N. Road Biography: Hard Pavement Structures. World of transport. 2010. No. 1, pp. 176–182. (In Russian).
4. Железнодорожный транспорт: Энциклопедия / Гл. ред. Н.С. Конарев. М.: Большая Российская энциклопедия, 1995. 560 с.
4. Zheleznodorozhnyi transport: Entsiklopediya [Railway transport: Encyclopedia]. Ch. ed. N.S. Konarev. Moscow: Great Russian Encyclopedia, 1995. 560 p.
5. Першин С.П. Развитие строительно-путейского дела на отечественных железных дорогах. М.: Транспорт, 1978. 296 с.
5. Pershin S.P. Razvitie stroitel'no-putejskogo dela na otechestvennyh zheleznyh dorogah [The development of construction and railway business on domestic railways]. Moscow: Transport, 1978. 296 p.
6. fib-bulletin-37. Precast concrete railway track systems, state-of-art report. 2006: International Federation for Structural Concrete.
7. The future of rail, opportunities for energy and the environment. https://www.iea.org/reports/the-future-of-rail (Date of access 22.05.2020).
8. АКСИОН РУС. Композитные шпалы. https://axionrus.ru/kompozitnayashpala/ (Дата обращения 22.05.2020).
8. AKSION RUS. Composite sleepers. https://axionrus.ru/kompozitnayashpala/ (Date of access: 22.05.2020). (In Russian).
9. TieTek сomposite ties. http://www.tietek.net/product.asp (Date of access 22.05.2020)
10. IntegriCo. IntegriTies. https://www.integrico.com/integrities (Date of access 22.05.2020).
11. Greenrail. Composite sleeper product. http://www.greenrailgroup.com/en/the-product/ (Date of access 22.05.2020).
12. Network Rail to recycle rubbish into sleepers. https://www.theguardian.com/environment/2009/feb/16/rail-recycling-plastic (Date of access 22.05.2020).
13. SICUT. Plastic Composite Railway Mainline Sleepers. http://www.sicut.co.uk/standard-sleeper-tie/ (Date of access 22.05.2020).
14. Duratrack® Composite Recycled Plastic Railway Sleepers. http://www.integratedrecycling.com.au/ railway-sleepers/ (Date of access 22.05.2020).
15. Fraunhofer ICT. Mixed Plastic Waste (MPW) Sleeper. https://nachhaltigwirtschaften.at/en/fdz/projects/susprise/railwaste-production-of-railway-sleepers-by-mixed-plastic-waste.php (Date of access 22.05.2020).
16. KEBOS. Fiber Reinforced Foamed Urethane Sleeper, http://www.kebos.cn/item/5.html (Date of access 22.05.2020)
17. Pattamaprom C., Dechojarassri D., Sirisinha C., et al. Natural rubber composites for railway sleepers: a feasibility study. Thailand: Thammasat University, 2005. 350 p.
18. Manalo A., Aravinthan T. Behavior of full-scale railway turnout sleepers from glue-laminated fiber composite sandwich structures. Journal of composites for construction. 2012. Vol. 16(6), pp. 724–736.
19. FFU. FFU synthetic railway sleepers, Sekisui Chemical GmbH, Access Date: 11 Oct 2017, Available from: http://www.sekisui-rail.com/en/home_en.html
20. Патент РФ 2179923. Способ изготовления литой шпалы для железных дорог широкой колеи / Занегин Л.А., Селиванов Н.Ф., Петров Ю.Л. Заявл. 30.03.2000. Опубл. 27.01.2002.
20. Patent RF 2179923. Sposob izgotovleniya litoi shpaly dlya zheleznykh dorog shirokoi kolei [Cast method for manufacturing sleepers for broad gauge railways]. Zanegin L.A., Selivanov N.F., Petrov Yu.L. Declared 30.03.2000. Published 27.01.2002. (In Russian).
21. Hu X.Q., Xu Y.X. The application research of basalt fiber reinforced concrete in railway sleeper. Proceedings of the 12th National Fiber Concrete Conference. China Civil Engineering Society. 2009. pp 48–53. (In Chinese).
22. Patent CN202954271. Wang S.H. Reconsolidated bamboo sleeper for mine railway. (In Chinese).
23. Soehardjo K.A., Basuki A. Utilization of bagasse and coconut fibers waste as fillers of sandwich composite for bridge railway sleepers. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 223. Conference 1. 012036. DOI: https://doi.org/10.1088/1757-899X/223/1/012036
24. Khalil A.A. Mechanical testing of innovated composite polymer material for using in manufacture of railway sleepers. Journal of Polymers and the Environment. 2018. No. 26. Iss. 1, pp. 263–274. DOI: https://doi.org/10.1007/s10924-017-0940-6
25. Lampo R. Recycled plastic composite railroad crossties. Construction Innovation Forum US Army ERDC-CERL. Champaign, IL, USA. 2002. http://www.cif.org/noms/2002/13_-_Recycled_Plastic_Composite_Crossties.pdf (Date of access 22.05.2020).
26. Xiao S.L., Chen Y.X. Characteristics of Railway Sleeper Composite and Its Impacts. Forest Engineering. 2007. Vol. 23. Iss. 1, pp. 85–87. (In Chinese).
27. Стородубцева Т.Н., Федянина Н.В. Композиционный материал на основе отходов лесного комплекса для железнодорожных шпал // Современные наукоемкие технологии. 2011. № 5. С. 49–52.
27. Storodubceva T.N., Fedjanina N.V. Composite material based on forest waste for railway sleepers. Sovremennye naukoemkie tehnologii. 2011. No. 5. pp. 49–52. (In Russian).
28. Rahul S., Garish P., Gaurav K., et al. Composite railway sleeper. International Research Journal of Engineering and Technology (IRJET). 2018. Vol. 5. Iss. 9, pp. 1416-1419. https://www.irjet.net/archives/V5/i9/IRJET-V5I9257.pdf
29. Hameed A.S., Shashikala A.P. Suitability of rubber concrete for railway sleepers. Perspectives in Science. 2016. No. 8, pp. 32–35. DOI: https://doi.org/10.1016/j.pisc.2016.01.011
30. Van Erp G. M. A railway sleeper: U.S. Patent Application 14/652,806. 2015-11-19.
31. Ferdous W., Manalo A., Van Erp G., et al. Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load. Journal of Composites for Construction. 2017. Vol. 22, Iss. 2. 04017050. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000833
32. Kaewunruen S., You R., Ishida M.. Composites for timber-replacement bearers in railway switches and crossings. Infrastructures. 2017. Vol. 2(4), p. 13. DOI: 10.3390/infrastructures2040013
33. Kondrashchenko V.I., Jing G.Q., Wang C. Wood-polymer composite for the manufacture of sleepers. Materials Science Forum. Trans Tech Publications. 2019. Vol. 945, pp. 509-514. https://doi.org/10.4028/www.scientific.net/MSF.945.509
34. London & Birmingham railway. https://tringhistory.tringlocalhistorymuseum.org.uk/Railway/c10_construction_(IV).htm (Date of access 27.05.2020).
35. Rothlisberger E. History and development of wooden sleeper https://www.traverses-chemin-de-fer-bois.ch/files/4/Timber_sleeper-history_and_development.pdf
36. Скрепление рельсов: стыковые и промежуточные крепления на ЖД пути. http://promputsnab.ru/poleznoe/253-skreplenie-relsov-promezhutochnye-krepleniya-na-zhd-puti-vidy-i-naznacheniya-soedineniya-so-shpalami.html (Дата обращения: 22.05.2020).
36. Rail fastening: butt and intermediate fastenings on the railway track. http://promputsnab.ru/poleznoe/253-skreplenie-relsov-promezhutochnye-krepleniya-na-zhd-puti-vidy-i-naznacheniya-soedineniya-so-shpalami.html (Date of access: 22.05.2020). (In Russian).
37. Виртуальная фотогалерея «МЕТРО»: Врезка стрелочного перевода на Петровско-Разумовской. http://metro-photo.ru/post10440 (Дата обращения: 22.05.2020).
37. Virtual photo gallery of "SUBWAY": embedment of switch at Petro-Umumovskaya Station. http://metro-photo.ru/post10440 (Date of access: 22.05.2020). (In Russian).
38. Baulk road crossing. https://commons.wikimedia.org/wiki/File:Baulk_road_crossing.jpg (Date of access: 29.05.2020).
39. Из чего состоит стрелочный перевод: устройство и конструкция элементов, описание, неисправности. https://promputsnab.ru/poleznoe/254-iz-chego-sostoit-strelochnyy-perevod-ustroystvo-i-konstrukciya-elementov-osobennosti-stroeniya-usovika.html (Дата обращения: 22.05.2020).
39. What the switch consists of: device and structure elements, description, defects. https://promputsnab.ru/poleznoe/254-iz-chego-sostoit-strelochnyy-perevod-ustroystvo-i-konstrukciya-elementov-osobennosti-stroeniya-usovika.html (Date of access: 22.05.2020). (In Russian).
40. Infrastructure. completed projects. https://trainsinthevalley.org/infrastructure-completed-projects/ (Date of access 22.05.2020).
41. Wide Range Steel Sleepers from AGICO. http://www.railroadpart.com/rail-sleepers/steel-sleeper.html (Date of access 29.05.2020).
42. SOB – Y-steel sleeper. https://commons.wikimedia.org/wiki/File:SOB_-_Y-steel_sleeper_(29509777783).jpg (Date of access 22.05.2020).
43. Kenro the ‘in-bearer of good news’ for vossloh cogifer and rio tinto. https://kenrometal.com.au/portfolio_page/3295/ (Date of access: 20.05.2020).
44. Steel channel sleeper. https://www.indiamart.com/proddetail/steel-channel-sleeper-10632529062.html (Date of access 22.05.2020).
45. RailCorp. Timber Sleepers & Bearers; Engineering Specification SPC 231. RailCorp: Sydney, Australia, 2012.
46. Kaewunruen S., Remennikov A.M. Dynamic flexural influence on a railway concrete sleeper in track system due to a single wheel impact. Engineering Failure Analysis. 2009. Vol. 16, Iss. 3, pp. 705–712 https://doi.org/10.1016/j.engfailanal.2008.06.002
47. History of Steel Sleepers and the Latest Developments. https://www.nipponsteel.com/tech/report/nssmc/pdf/115-11.pdf (Date of access 22.05.2020).
48. Concrete sleepers. http://www.railroadpart.com/rail-sleepers/concrete-sleeper.html (Date of access 22.05.2020).
49. Heavyweight for the USA. https://www.railone.com/products-solutions/long-distance-and-freight-transport/freight-and-heavy-haul-rail-transport/usa (Date of access 22.05.2020).
50. Wide sleeper track. https://www.railone.com/products-solutions/long-distance-and-freight-transport/ballasted-track-systems (Date of access 22.05.2020).
51. RFI approves WEGH under-sleeper pads. https://www.railwaygazette.com/news/infrastructure/single-view/view/rfi-approves-wegh-under-sleeper-pads.html (Date of access 22.05.2020).
52. Austrak Vossloh. http://www.austrak.com/content/sleeper-technology/ (Date of access 22.05.2020).
53. Nederlands: NS duoblockdwarsliggers. https://commons.wikimedia.org/wiki/File:NS_dwarsliggers.JPG (Date of access 22.05.2020).
54. Riesberger K. Frame sleeper upgrade ballast track. WCRR paper. UIC. 2001. http://www.railway-research.org/IMG/pdf/035.pdf
55. Floating ladder tracks at Shinagawa Station. https://commons.wikimedia.org/wiki/File:FloatingLadder.JPG#/media/File:FloatingLadder.JPG (Date of access 22.05.2020).
56. Innovative high-speed sleeper keeps ballast in its place. https://www.railjournal.com/track/innovative-high-speed-sleeper-keeps-ballast-in-its-place/ (Date of access 22.05.2020).
57. Abetong. TCS (Tuned concrete sleeper) Information. https://www.abetong.se/en/product_portfolio (Date of access 22.05.2020).
58. Re-sleepering project. https://www.queenslandrail.com.au/Community/Projects/Pages/Re-sleeperingProject.aspx (Date of access 22.05.2020).
59. 蔡小培, 曲村, 高亮. 国内外高速铁路桥上有砟轨道轨枕结构研究现状分析. 铁道标准设计, 2011 (11): 5-10.
60. AGICO Group. How many types of railway turnouts there are? http://www.railroadfastenings.com/blog/railway-turnout-types.html (Date of access 22.05.2020).
61. Why do they have the two extra railway lines (in between the main lines) on bridges? https://www.quora.com/Why-do-they-have-the-two-extra-railway-lines-in-between-the-main-lines-on-bridges (Date of access 22.05.2020).
62. RAIL.ONE starts partnership with voestalpine VAE APCAROM. https://www.railwaypro.com/wp/rail-one-starts-partnership-with-voestalpine-vae-apcarom/ (Date of access 02.06.2020).
63. Все марки плит из обычного железобетона. http://ozjbk.by/produkciya/transportnoe-stroitelstvo/plity-bezballastnogo-mostovogo-polotna-iz-obychnogo-zhelezobetona-dlya-umerennyx-i-surovyx-klimaticheskix-uslovij/vse-marki-plit-iz-obychnogo-zhelezobetona/ (Дата обращения: 22.05.2020).
63. All grades of slabs made of ordinary reinforced concrete. http://ozjbk.by/produkciya/transportnoe-stroitelstvo/plity-bezballastnogo-mostovogo-polotna-iz-obychnogo-zhelezobetona-dlya-umerennyx-i-surovyx-klimaticheskix-uslovij/vse-marki-plit-iz-obychnogo-zhelezobetona/ (Date of access: 22.05.2020). (In Russian).
64. Андреева Л.А., Свинцов Е.С., Тарасевич Е.А. Об экономической оценке эффективности использования безбалластного верхнего строения пути [J]. Бюллетень результатов научных исследований. 2017. № 4. С. 63–69.
64. Andreeva L.A., Svincov E.S., Tarasevich E.A. On the economic evaluation of the use of ballastless track superstructure. Research Results Bulletin. 2017. No. 4, pp. 63–69. (In Russian).
65. Axion-EcoTrax. Axion EcoTrax composite railroad ties. Available from: http://www.axionsi.com/ (Date of access 22.05.2020).
66. Anne & Russ Evans. Rubber/plastic composite rail sleepers. UK: The waste & resources action programme. 2006. http://www.wrap.org.uk/sites/files/wrap/27%20-%20Rubber-Plastic%20Composite%20Rail%20Sleepers%20-%20May%202006.pdf
67. Clifton P. Plastic surgery. Rail Professional. 2009. Vol. 26.
68. Graebe G., Woidasky J., Fraunhofer J.V. Railway sleepers from mixed plastic waste-Railwaste project status information. Fraunhofer ICT, 2010. https://docplayer.net/21281128-Railway-sleepers-from-mixed-plastic-waste-railwaste-project-status-information-as-of-oct-2010.html
69. Tufflex. Sleepers. http://www.tufflex.co.za/Pages/ProductCatalogue2/SubCategoryPage/SubCategoryPage.asp?SubCategoryID=4391 (Date of access 22.05.2020).
70. Railway sleepers made from recycled plastic installed at Richmond Train Station. https://www.sustainability.vic.gov.au/About-us/Latest-news/2019/06/25/03/36/Recycled-plastic-railway-sleepers-installed-at-Richmond-Train-Station (Date of access 22.05.2020).
71. Thomas J. Nosker, Arya Tewatia. Development, testing and application of recycled plastic composite sleepers. https://www.thepwi.org/technical_hub_journal_technical_articles/pwi_journal_april_2017_vol_135_part_2/pwi_journal_0417_vol135_pt2_-_development_testing_and_application_of_recycled_plastic_composite_sleepers (Date of access 22.05.2020).
72. Plastic bridge transom from company Tianjin Yanwen Weiye. http://www.ibtwob.net/index.php?homepage=qs-yanwen1&file=sell&itemid=9280 (Date of access: 22.05.2020). (In Chinese).
73. 孙津生, 孙稳, 孙嫣. 一种塑胶铁路枕木配方工艺. CN103524923A.
74. В Москве начали использовать шпалы из одноразовой посуды и бутылок. http://naydem-vam.ru/viewtopic.php?id=25361 (Дата обращения: 22.05.2020).
74. In Moscow began to use sleepers from disposable dishes and bottles. http://naydem-vam.ru/viewtopic.php?id=25361 (Date of access: 22.05.2020). (In Russian).
75. Hunan Taohuajiang Bamboo Technology Co.,Ltd. http://www.chinathj.com/ (Дата обращения: 21.05.2020)
76. Zhong Y, Wu G, Ren H, et al. Bending properties evaluation of newly designed reinforced bamboo scrimber composite beams. Construction and Building Materials, 2017. Vol. 143, pp. 61-70. https://doi.org/10.1016/j.conbuildmat.2017.03.052
77. Lankhorst. Kunststof railway production, Access Date: 12 Dec 2018, Available from: https://www.lankhorstrail.com/en/composite-sleepers
78. Recycled plastic sleepers for main track. Access Date: 29 Aug 2019, Available from: https://www.lankhorstrail.com/en/recycled-plastic-sleepers
79. Ferdous W., Manalo A., Khennane A., et al. Geopolymer concrete-filled pultruded composite beams–concrete mix design and application. Cement and Concrete Composites. 2015. Vol. 58, pp. 1-13. https://doi.org/10.1016/j.cemconcomp.2014.12.012
80. Wood-core. Plastic composite wood core railroad ties 270lbs near indestructible, Southwest RV and Marine, Access Date: 12 Aug 2014, Available from: www.swrvandmarine.com Texas, USA.
81. 光亜式鉄枕木(Koa Iron Crosstie). http://www.koakensetsu.com/makuragi.htm (Date of access: 22.05.2020).
82. Van Erp G., Mckay M. Recent Australian developments in fibre composite railway sleepers. Electronic Journal of Structural Engineering. 2013. Vol. 13(1), pp. 62-66.
83. Кондращенко В.И. Оптимизация составов и технологических параметров получения изделий брускового типа методами компьютерного материаловедения. Дисс… д-ра техн. наук. Москва. 2005. 551 с.
83. Kondrashchenko V.I. Optimization of the compositions and technological parameters of the production of bar-type products by computational materials science methods. Diss… Doctor of Science (Engineering). Moscow. 2005. 551 p. (In Russian).
84. Кондращенко В.И., Харчевников В.И., Стородубцева Т.Н., и т.д. Древесностекловолокнистые композиционные шпалы. М.: Издательство "Спутник+". 2009. 311 c.
84. Kondrashchenko V.I., Kharchevnikov V.I., Storodubtseva T.N., etс. Drevesnosteklovoloknistye kompozitsionnye shpaly [Wood and Glass Fiber reinforced composite sleeper]. Moscow: "Sputnik+". 2009. 311 p.
85. FRP Composite Sleepers for Application on Rail Tracks and Support Spans. http://www.presentica. com/ppt-presentation/frp-composite-sleepers-for-application-on-rail-tracks-and-support-spans (Date of access 19.05.2020).
86. Hoger D.I. Fibre composite railway sleepers. Cand. Diss. University of Southern Queensland, Toowoomba, Queensland, Australia, 2000.
87. 赵继华. 复合木桥枕和轨距可调扣件的研制及其运用. 铁道勘察. 2016. No. 4, pp. 95–97.
87. Zhao Jihu. Development and application of composite wooden pillow and gauge adjustable fastener. Railway Investigation and Surveying. 2016. No. 4, pp. 95-97. (In Chinese).
88. Qiao P., Davalos J.F., Zipfel M.G. Modeling and optimal design of composite-reinforced wood railroad crosstie. Composite Structures. 1998. Vol. 41. Iss. 1, pp. 87–96. DOI: https://doi.org/10.1016/S0263- 8223(98)00051-8
89. Ahn S., Kwon S., Hwang Y.T., et al. Complex structured polymer concrete sleeper for rolling noise reduction of high-speed train system. Composite Structures. 2019. Vol. 223. 110944. DOI: https://doi.org/10.1016/j.compstruct.2019.110944
90. АпАТэК – прикладные перспективные технологии. http://www.apatech.ru/beam.html (Дата обращения: 22.05.2020).
90. ApATeK – applied advanced technologies. http://www.apatech.ru/beam.html (Date of access: 22.05.2020). (In Russian).
91. Патент РФ №2707435 по заявке № 2019105718. Композиционная шпала / Кондращенко В.И., Аскадский А.А., Аскадский А.А., Мороз П.А., ВАН Чжуан, ЦЗИН Гоцин. Заявл. 28.02.2019. Опубл. 26.11.2019. Бюл. №33.
91. Patent of Russian Federation. No. 2707435 by application No. 2019105718 Kompozitsionnaya shpala [Composite sleeper]. Kondrashchenko V.I., Askadskij A.A., Askadskij A.A., Moroz P.A., Wang Chuang, Jing Guoqing. Declared 28.02.2019. Published 26.11.2019. Bull. No. 33. (In Russian).
92. Chuang Wang, Guoqing Jing, Valery Kondrashchenko, Lu Zong, Qiang Zhou, Wei Lu. Bamboo reinforced composite railway sleeper. CN210315076U. (In Chinese)
93. Шахунянц Г.М. Железнодорожный путь. Изд. 3-е перер. и доп. М.: Транспорт, 1987. 479 с.
93. Shakhunyants G.M. Zheleznodorozhnyj put' [Railway track]. Ed. 3-re. and add. Moscow: Transport, 1987. 479 p.
94. Железнодорожный путь / Под редакцией Е.С. Ашпиза Изд. 2-е испр. и доп.: учебник. – М.: ФГБУ ДПО «Учебно-методический центр по образованию на железнодорожном транспорте», 2020. – 576 с.
94. Zheleznodorozhnyj put' [Railway track] Edited by E.S. Ashpisa: textbook. 2-nd ed. fix and add. Moscow: FGBU DPO «Training center for education in railway transport», 2020. 576 p.
95. Modular composite switch ties – a sustainable solution that streamlines installation. https://www.pandrol.com/us/insight/modular-composite-switch-ties-a-sustainable-solution-that-streamlines-installation/ (Date of access: 20.05.2020)
96. Walker S. Analysis of the behaviour of composite transom decks for railway bridges. 2015. https://eprints.usq.edu.au/29246/1/Walker_S_Manalo.pdf
97. Plastic railway sleepers for bridges. https://www.lankhorstrail.com/en/plastic-railway-sleepers (Date of access 25.05.2020)
98. Geng Hao,Zhao Jian,Shen Yu-ting,Yao Li. Analysis of temperature adaptability of composite sleeper ballastless track. Railway Standard Design. 2019.Vol. 63 No. 7. (In Chancie) DOI: 10.13238/j.issn.1004-2954.201809100007
99. Vu M., Kaewunruen S., Attard M. Nonlinear 3D finite-element modeling for structural failure analysis of concrete sleepers/bearers at an urban turnout diamond. Handbook of materials failure analysis with case studies from the chemicals, concrete and power industries. Butterworth-Heinemann. 2016, pp. 123–160.
100. Duan L, Chen W. F. Bridge engineering handbook. CRC Press. Boca Raton FL. 1999.
101. Bian X, Jiang J, Jin W, et al. Cyclic and postcyclic triaxial testing of ballast and subballast. Journal of Materials in Civil Engineering. 2016. Vol. 28(7). 04016032. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001523
102. Савин А.В. Безбалластный путь. М.: РАС, 2017. 192 с.
102. Savin A.V. Bezballastnyj put' [Ballastless railway]. Moscow: RAS. 2017. 192 p.
103. Shanghai Suyu Railway Material Co., Ltd. Elastic Rail Clip. http://ru.suyurailfastening.com/ShowProducts.asp?id=42 (Date of access: 21.05.2020)
104. Рельсовые скрепления при деревянных шпалах. https://helpiks.org/2-92600.html (Дата обращения: 28.05.2020).
104. Rail fastenings for wooden sleepers. https://helpiks.org/2-92600.html (Date of access: 28.05.2020). (In Russian).
105. Промежуточные рельсовые скрепления. http://vse-lekcii.ru/zheleznodorozhnyj-transport/zheleznodorozhnyj-put-i-putevoe-hozyajstvo/promezhutochnye-relsovye-skrepleniya (Дата обращения: 28.05.2020).
105. Intermediate rail fastenings. http://vse-lekcii.ru/zheleznodorozhnyj-transport/zheleznodorozhnyj-put-i-putevoe-hozyajstvo/promezhutochnye-relsovye-skrepleniya (Date of access: 28.05.2020). (In Russian).
106. Типовые промежуточные рельсовые скрепления. http://static.scbist.com/scb/uploaded/11386424285.pdf (Дата обращения: 21.05.2020)
106. Typical intermediate rail fasteners. http://static.scbist.com/scb/uploaded/11386424285.pdf (Date of access: 21.05.2020). (In Russian).
107. Требования к промежуточным рельсовым креплениям. http://stroiuniversal.ru/stati/relsovyie-krepleniya.html (Дата обращения: 22.05.2020).
107. Requirements for intermediate rail fasteners. http://stroiuniversal.ru/stati/relsovyie-krepleniya.html (Date of access: 22.05.2020). (In Russian).
108. Railpro Wooden Sleeper Repair Kit. https://www.hirdrail.com/wooden-sleeper-repair-kit.html (Date of access: 20.05.2020)
109. Северный путь. Экологичные шпалы от Российского производителя к Году Экологии в России! https://sevputspb.ru/ekologichnyie-shpalyi/ (Дата обращения: 22.05.2020).
109. The Northern Railway. Eco-friendly sleepers from the Russian manufacturer for the Year of Ecology in Russia! https://sevputspb.ru/ekologichnyie-shpalyi/ (Date of access: 22.05.2020). (In Russian).
110. One company is recycling plastic waste into railway sleepers. https://www.createdigital.org.au/one-company-recycling-plastic-waste-railway-sleepers/ (Date of access: 22.05.2020)
111. Lampo R., Nosker T., Sullivan H. Development, testing, and applications of recycled plastic composite cross ties. US Army Engineer R&D Centre, 2003.
112. Шпалы из бутылок. https://zen.yandex.ru/media/zaalan/shpaly-iz-butylok-5b5d97aa96f9b900a8f2488b (Дата обращения: 21.05.2020).
112. Crossties from bottles. https://zen.yandex.ru/media/zaalan/shpaly-iz-butylok-5b5d97aa96f9b900a8f2488b (Date of access: 21.05.2020). (In Russian).
113. Инструкция по содержанию деревянных шпал, переводных и мостовых брусьев железных дорог колеи 1520 мм ЦП-410. Утверждена Заместителем Министра путей сообщения В.Т. Семеновым 11.12.96.
113. Instructions for the maintenance of wooden sleepers, switches and bridge beams of railways of 1520 mm gauge CP-410. Approved by Deputy Minister of Trsansportation V. T. Semenov on 11.12.96. (In Russian).
114. Инструкция по ведению шпального хозяйства с железобетонными шпалами. Утверждена распоряжением ОАО "РЖД" от 12.02.2014 г. N 380р.
114. Instruction on sleeper management with reinforced concrete sleepers. Approved by the Order of Russian Railways “RZhD” fromт 12.02.2014 N 380р. (In Russian).
115. Lampo R. Summary of current state of practice for composite crossties. International crosstie and fastening system symposium. Urbana, IL(USA): University of Illinois. 2014.
116. The plastic composite ties in Brazil. Challenges and solutions in large scale installation. leonardo souza soares – consultant in railway engineering. 2014.
117. Zhao Zhenhang, Liu Zengjie, Jiang Wanhong, etc. Experimental study on temperature adaptability of composite sleeper ballast track. Journal of Railway Science and Engineering. 2019. Vol. 16(3), p. 606. (In Chinese).
118. Кондращенко В.И., Чжуан Ван. Композиционные подрельсовые основания. Материалы // Строительные материалы. 2020. № 1–2. С. 95–111. DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-95-111
118. Kondrashchenko V.I., Wang Ch. Composite Underrail Basements. Materials. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 95–111. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-95-111
119. Bian X, Jiang H, Chang C, et al. Track and ground vibrations generated by high-speed train running on ballastless railway with excitation of vertical track irregularities. Soil Dynamics and Earthquake Engineering. 2015. Vol. 76, pp. 29-43. DOI: 10.1016/j.soildyn.2015.02.009
120. Wolf H.E., Edwards J.R., Dersch M.S., et al. Flexural analysis of prestressed concrete monoblock sleepers for heavy-haul applications: methodologies and sensitivity to support conditions. Proceedings of the 11th International Heavy Haul Association Conference. 2015. https://core.ac.uk/download/pdf/158312257.pdf
121. Ferdous W., Manalo A. Failures of mainline railway sleepers and suggested remedies–review of current practice. Engineering Failure Analysis. 2014. Vol. 44, pp. 17-35. https://doi.org/10.1016/j.engfailanal.2014.04.020
122. Chen M.C., Wang K., Xie L. Deterioration mechanism of cementitious materials under acid rain attack. Engineering Failure Analysis. 2013. Vol. 27, pp. 272-285. https://doi.org/10.1016/j.engfailanal.2012.08.007
123. Lebreton L., Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Communications. 2019. Vol. 5(1), p. 6. https://doi.org/10.1057/s41599-018-0212-7
124. Kumar P., Imam B. Footprints of air pollution and changing environment on the sustainability of built infrastructure. Science of The Total Environment. 2013. Vol. 444, pp. 85-101. https://doi.org/10.1016/j.scitotenv.2012.11.056
125. Sanjay M.R., Madhu P., Jawaid M., et al. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Productio. 2018. Vol. 172, pp. 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101
126. Якунин В.И. Стратегия развития железнодорожного транспорта Российской Федерации до 2030 г. – инфраструктурный фундамент экономического роста и повышения качества жизни в стране // Железнодорожный транспорт. 2007. № 12. C. 2–6.
126. Jakunin V.I. Strategy for development of railway transport of the Russian Federation up to 2030 – infrastructure foundation for economic growth and improvement of life quality in the country. Zheleznodorozhnyj transport. 2007. No. 12, pp. 2-6. (In Russian).
127. Копыленко В.А., Быков Ю.А., Круглов В.М., Турбин И.В., Космин В.В. Северные и восточные районы России – важнейший полигон расширения сети железных дорог страны в ХХI веке // Транспортное строительство. 2008. № 4. С. 2–4.
127. Kopylenko V.A., Bykov Ju.A., Kruglov V.M., Turbin I.V., Kosmin V.V. Northern and eastern parts of Russia are the most important site for expanding the country 's railway network in the 21-st century. Transportnoe stroitel'stvo. 2008. No. 4, pp. 2–4. (In Russian).

For citation: Kondrashchenko V.I., Savin A.V., Chuang Wang. Composite underrail basements. Constructions. Stroitel’nye Materialy [Construction Materials]. 2020. No. 10, pp. 52–76. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-785-10-52-76

Mechanical Characteristics of Vacuum Thermal Insulation Panels: Deformation Diagrams, Strength, Deformation Modules

Number of journal: 10-2020
Autors:

Selyaev V.P.,
Kupriyashkina L.I.,
Kechutkina E.L.,
Kiselev H.H.,
Liyaskin O.V.

DOI: https://doi.org/10.31659/0585-430X-2020-785-10-44-51
УДК: 699.86

 

AbstractAbout AuthorsReferences
The results of studying the mechanical properties of vacuum insulation panels are presented. The compressive strength and deformation modules (elastic and secant) under compression and shear are determined. The dependence of the mechanical characteristics of vacuum insulation panels (VIP) on the type and quantitative ratio of fillers is shown. It is established that the diagram of deformation of the VIP under compression can be described by an analytical function. Experimental studies of the properties of VIP have established that the deformation diagram of VIP has the form characteristic for materials that self-strengthen during loading with a compressive load and is adequately described by the function of G. V. Bulfinger. A method is proposed for determining the coefficients α and β that makes it possible to verify the approximating function using experimental data. Polynomial models describing the dependence of the elastic modulus, strength, and thermal conductivity coefficient on the composition and quantitative ratio of fiber and powder fillers are developed. It is established that the numerical values of the strain modulus depend on the type, amount of powder filler, and their ratio to the fibrous filler. The values of strain and strength models increase with increasing content and size of filler particles. A method for determining the shear modulus for VIP has been developed. It has been experimentally established that the value of the shear modulus for VIP depends on both the filler composition and the characteristics of the panel film shell.
V.P. SELYAEV, Doctor of Sciences (Engineering), Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.I. KUPRIYASHKINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.L. KECHUTKINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.N. KISELEV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. LIYASKIN, Post-graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 430005, Republic of Mordovia, Russian Federation)

1. Selyaev V.P., Neverov V.A., Osipov A.K. and others. Teploizolyatsionnyye materialy i izdeliya na osnove vakuumirovannykh dispersnykh poroshkov mikrokremnezema i diatomita [Heat-insulating materials and products based on evacuated dispersed powders of silica fume and diatomite]. Saransk: Publishing house of the Mordovian university. 2013. 220 p.
2. Danilevsky L.N. Vacuum insulation and prospects for its use in construction. Arkhitektura i stroitel’stvo. 2006. No. 5, pp. 114–117. (In Russian).
3. Schwab H., Wachtel J., Heinemann U., Beck A., Fricke J. Vakuum isolations paneele unter baupraktischen Bedingungen. 1 Conference “VIP-Bau”, proceedings. Rostock-Warnemünde. 2003, pp. 68–76.
4. Simmler H., Brunner S., Heinemann U., Schwab H., Kumaran K., Mukhopadhyaya P., Quénard D., Sallée H., Noller K., Kücükpinar-Niarchos E., Stramm C., Tenpierik M.J., Cauberg J.J. M., Erb M. Vacuum insulation panels. Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A): IEA/ECBCS Annex 39 High Performance Thermal Insulation (HiPTI). 2005. 159 p.
5. Selyaev V.P., Neverov V.A., Nurlybaev R.E., Selyaev P.V., Kechutkina E.L., Liyaskin O.V. Synthesis of amorphous silicon dioxide nanopowders for the construction industry. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 15–25. (In Russian) DOI: https://doi.org/10.31659/0585-430X-2019-776-11-15-25
6. Selyaev V.P., Kupriyashkina L.I., Kiselev N.N., Selyaev P.V. Optimization of the filler composition of a vacuum thermal insulation panel based on fumed silica fume. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2017. No. 5 (701), pp. 36–42. (In Russian)
7. Simmler H., Brunner S. Aging and service life of VIP in buildings. 7th International Vacuum Insulation Symposium. Empa, Duebendorf–Zurich, Switzerland. September 28–29, 2005, pp. 15–22.
8. Liyaskin O.V., Kiselev N.N., Mashtaev O.G. Vacuum insulation panels. Effective building structures: theory and practice: collection of articles of the XV International scientific and technical conference. Penza. 2015, pp. 108–111. (In Russian).
9. Selyaev V.P., Osipov A.K., Kupriyashkina L.I., Sedova A.A., Kechutkina E.L., Suponina L.A. The possibility of creating heat-insulating materials based on nanostructured silica fume from diatomite. Nauka: 21 vek. 2011. No. 3 (15), pp. 76–86. (In Russian).
10. Caps R., Hetfleisch J., Rettelbach Th., Fricke J. Thermal conductivity of spun glass fibers as filler material for vacuum insulations. Thermal Conductivity 23. 1996, pp. 373–382.
11. Patent RF 2144595. Vakuumnoye teploizolyatsionnoye izdeliye [Vacuum thermal insulation product]. Kokoev M.N., Fedorov V.T. Declared 26.11.97. Published 20.01.00. (In Russian)
12. Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozitsionnykh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad: Energiya. 1974. 264 p.
13. Selyaev P.V., Kiselev N.N., Liyaskin O.V. Principles of creating powder thermal insulation based on silica fume. Regional’naya arkhitektura i stroitel’stvo. 2016. No. 3 (28), pp. 55–59. (In Russian).
14. Minevich V.E., Nikiforov E.A., Vinitsky A.L. and others. Highly effective heat-insulating materials based on diatomaceous earth. Stroitel’nye Materialy [Construction Materials]. 2012. No. 11 (695), pp. 18–22. (In Russian).
15. Dulnev G.N., Sigalova G.V. Thermal conductivity of mono- and polydisperse granular materials. Stroitel’naya teplofizika. 1966, pp. 40–47. (In Russian).

For citation: Selyaev V.P., Kupriyashkina L.I., Kechutkina E.L., Kiselev H.H., Liyaskin O.V. Mechanical characteristics of vacuum thermal insulation panels: deformation diagrams, strength, deformation modules. Stroitel’nye Materialy [Construction Materials]. 2020. No. 10, pp. 44–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-785-10-44-51

Method for Uniform Introduction of Fiber into a Bitumen Suspension for Arranging Springing Asphalt Concrete Layers

Number of journal: 10-2020
Autors:

Andronov S.Yu.,
Vasil’ev Yu.E.,
Kochetkov A.V.,
Alferov V.I.

DOI: https://doi.org/10.31659/0585-430X-2020-785-10-38-43
УДК: 691.168

 

AbstractAbout AuthorsReferences
Methods of uniform distribution of fibrous materials in asphalt materials with dispersed bitumen were studied. The key issue in this area is the technology of introducing reinforcing elements into the volume of asphalt concrete mix. Fiber from polyacrylonitrile fibers is considered as a reinforcing material. To achieve the maximum reinforcing effect for any materials, including asphalt, due to the introduction of short fibers and threads, their uniform distribution in semi-finished mixtures and in the formed structural material is necessary. The principal possibility of uniform distribution of reinforcing elements (in the form of short fibers of polyacrylonitrile fiber) in the volume of reinforced asphalt materials based on viscous dispersed bitumens is established. A method for the uniform introduction of fiber into the bitumen suspension for the arranging springing asphalt concrete layers has been developed. For the first time, a material from a bituminous suspension reinforced with polyacrylonitrile fiber, which is not destroyed in thin layers under the action of bending loads, but reversibly deformed, was obtained.
S.Yu. ANDRONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.E. VASIL’EV2, Doctor of Sciences (Engineering);
A.V. KOCHETKOV3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.I. ALFEROV4, Candidate of Sciences (Engineering), Deputy General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Saratov State Technical University named after Y.A. Gagarin (77, Politechnicheskaya Street, Saratov, 410054, Russian Federation)
2 Moscow Automobile and Road Construction State Technical University (MADI) (64, Leningradsky Avenue, Moscow, 125319, Russian Federation)
3 Perm National Research Polytechnic University (29, Komsomolsky Prospect, Perm, 614990, Russian Federation)
4 “ROSDORNII” Federal autonomous institution (2, Smolnaya Street, Moscow, 125493, Russian Federation)

1. Rab I.I. Research of powdered emulsifiers and bitumen pastes used in cold asphalt concrete. Dis ... Candidate of Sciences (Engineering). Omsk. 1975. 100 p. (In Russian).
2. Andronov S.Yu. Technology of dispersed-reinforced composite cold crushed stone-mastic asphalt. Vestnic of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 4, pp. 67–71. (In Russian).
3. Gornaev N.A. Investigation of asphalt concrete on bitumen emulsions. Dis ... Candidate of Sciences (Engineering). Kharkov. 1963. 200 p.
4. Gornayev N.A. Tekhnologiya asfal’ta s dispersnym bitumom: uchebnoye posobiye [Dispersed bitumen asphalt technology: a tutorial]. Saratov. 1997. 61 p.
5. Gornaev N.A., Kalashnikov V.P. Emulsifying ability of mineral powders. Problems of transport and transport construction. Interuniversity scientific collection. Saratov. 2004. 156–158. (In Russian).
6. Ivanov A.F. Technology, structure formation and properties of asphalt concrete with dispersed bitumen. Dis ... Candidate of Sciences (Engineering). Saratov. 1986. 172 p. (In Russian).
7. Gornaev N.A., Nikishin V.E., Kochetkov A.V. Cold reclaimed asphalt. Vestnik of the Saratov State Technical University. 2007. Vol. 3. No. 1 (26). 112–116. (In Russian).
8. Strachkov K.M. On the limiting content of bitumen in bitumen emulsions on solid emulsifiers. Transport and transport construction problems: interuniversity scientific collection. Saratov. 2006. 181–183. (In Russian).
9. Patent RF 2285707. Sposob izgotovleniya bitumosoderzhashchikh smesey s mineral’nym komponentom [Method of manufacturing bitumen-containing mixtures with a mineral component]. А.V. Svetenko, K.M. Strachkov, N.A.  Gornaev; Declared 16.05.2005. Published 20.10.2006. Bul. No. 29. 7 p. (In Russian).
10. Copyright certificate 883221 USSR. Sposob prigotovleniya bitumomineral’noy smesi [Method for preparing bitumen-mineral mixture]. N.A. Gornaev, V.P. Kalashnikov, A.F. Ivanov. Publ. in bul. No. 43. 1981. (In Russian).
11. Patent RF No. 2351703. Sposob prigotovleniya kholodnoi organomineral’noi smesi dlya dorozhnykh pokrytii [Method of preparation of cold organic-mineral mixture for road surfaces] / N.А. Gornaev, V.E. Nikishin, S.M. Evteeva et al. Publication of RU2351703C1 10.04.2009. (In Russian).
12. Patent RF No. 2662493 Sposob polucheniya bitumnoy emul’sii i bitumnaya emul’siya [A method for producing a bitumen emulsion and a bitumen emulsion] A.V. Kochetkov 2017. (In Russian).
13. Andronov S.Yu., Trofimenko Yu.A., Kochetkov A.V. Technology of production of cold composite crushed stone-mastic asphalt with dispersed bitumen. Internet-journal Naukovedenie. 2016. Vol. 8. No. 2. DOI: 10.15862 / 105TVN216. (In Russian).
14. Andronov S.Yu., Ivanov A.F., Kochetkov A.V. Technology of production and application of dispersed-reinforced asphalt concrete mixes with basalt fiber. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3. 70–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-70-75

For citation: Andronov S.Yu., Vasil’ev Yu.E., Kochetkov A.V., Alferov V.I. Method for uniform introduction of fiber into a bitumen suspension for arranging springing asphalt concrete layers. Stroitel’nye Materialy [Construction Materials]. 2020. No. 10, pp. 38–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-785-10-38-43

Features of the Technology of Construction of Road Pavements from Vacuum-Treated Asphalt Concrete Mix

Number of journal: 10-2020
Autors:

Nosov S.V.,
Bondarev B.A.,
Nosov I.S.

DOI: https://doi.org/10.31659/0585-430X-2020-785-10-31-37
УДК: 625

 

AbstractAbout AuthorsReferences
When changing the structural properties of road construction materials, their compaction technologies should be improved with the choice of the best compaction means and their technological modes of operation in specific conditions of work conduction. For a mixture evacuated at an asphalt concrete plant that has increased water and frost resistance characteristics, as well as changed rheological parameters, it is also necessary to determine the technological parameters of the compaction means used, taking into account the features of its rheological characteristics. The compaction technology of vacuum-treated hot asphalt-concrete mix by pneumatic wheel roller with the determination of the necessary number of passes on the trail, speed modes along the roller passages and the magnitude of the air pressure in the tires of the roller has been developed. Using a promising rheological approach, the dynamics of accumulation of the asphalt concrete mixture layer density along the roller passages was studied by simulation modeling, and the time when the pneumatic roller was finished and the compaction work was transferred to heavy smooth rollers was determined. Changing the rheological properties of the vacuum-treated asphalt mix increases the efficiency of its compaction, reducing material costs, increasing the productivity of compaction tools while improving the quality and durability of road asphalt pavements.
S.V. NOSOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
B.A. BONDAREV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. NOSOV, Master student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Lipetsk State Technical University (30, Moscovskaya Street, Lipetsk, 398055, Russian Federation)

1. Nosov I.S., Nosov S.V. Water resistance and frost resistance of asphalt concrete from the hot asphalt concrete mixture evacuated at the last stage of production. Effective designs, materials and technologies in construction. Materials of the international scientific and practical conference. October 3–4, 2019. Lipetsk. 2019, pp. 92–95. (In Russian).
2. Ryabova O.V., Nosov I.S. Evaluation of the physical and mechanical properties of asphalt concrete after evacuation of hot asphalt concrete mixture during its production. Nauchnyy zhurnal stroitel’stva i arkhitektury. 2019. No. 3 (55), pp. 62–71. (In Russian).
3. Vasiliev A.A., Ivanchenko S.N., Kharkhuta N.Ya. Road roller with pneumatic vacuum ballast device. Stroitel’nyye i dorozhnyye mashiny. 1984. No. 12, pp. 17–18. (In Russian).
4. Vasiliev A.A., Lozhechko V.P., Kharkhuta N.Ya., Shestopalov A.A. Compaction of asphalt concrete with simultaneous evacuation. Avtomobil’nyye dorogi. 1980. No. 8. рp. 17–18. (In Russian).
5. Patent RF 1832784. Dorozhnyy katok [Road roller]. Nosov S.V., Nosov V.V. Declared 10.16.89. Published 06.16.93. Bulletin No. 29. (In Russian).
6. Patent RF 2011728. Dorozhnyy katok [Road roller]. Nosov S.V., Nosov V.V., Lozhechko V.P. Declared 03.06.91. Published 04.30.94. Bulletin No. 8. (In Russian).
7. Shestopalov A.A. Compaction of asphalt concrete mixture with a roller with pneumatic vacuum ballast device. Avtomobil’nyye dorogi. 1980. No. 1, pp. 16–18. (In Russian).
8. Shestopalov A.A., Ivanchenko S.N., Nosov S.V. Influence of roller parameters and temperature on the compaction of asphalt-concrete mixtures by rolling with vacuuming. Working processes and dynamics of machines and mechanisms for development, soil compaction and vibration molding of products. Yaroslavl. 1986, pp. 57–61. (In Russian).
9. Shestopalov A.A., Ivanchenko S.N. Influence of the temperature of asphalt concrete mixture on the efficiency of its compaction by rolling with vacuuming. Izvestiya vuzov. Stroitel’stvo i arkhitektura. 1985. No. 11, pp. 112–116. (In Russian).
10. Nosov S.V., Goncharova M.A. Metodologiya sovershenstvovaniya tekhnologiy uplotneniya dorozhno-stroitel’nykh materialov: monografiya [Methodology for improving compaction technologies for road-building materials: monograph]. Lipetsk: LSTU. 2015. 166 p.
11. Nosov S.V. Development of compaction technologies for road asphalt-concrete mixtures and soils based on the development of their rheology. Doct. Diss. (Engineering). Voronezh. 2013. 366 p. (In Russian).
12. Podolsky, Vl.P., Ryabova OV, Nosov S.V. The development of the rheology of road-building materials on the way of improving the technologies of their compaction. Scientific Bulletin of the Voronezh State University of Architecture and Civil Engineering. Construction and architecture. 2011. Iss. 3 (23), pp. 99–108. (In Russian).
13. Nosov S.V. Generalized dynamic model of the interaction of compactors with road construction materials. Russian Journal of Building Construction and Architecture. 2017. No. 2 (34), pp. 35–44.
14. Nosov S.V. Determination of rational contact pressure under a roller when compacting asphalt concrete mixes. Russian Journal of Building Construction and Architecture. 2017. No. 2 (34), pp. 45–53.
15. Nosov S., Kuzmichev V., Repin S., Maksimov S. Methodology of ensuring road traffic safety with respect to road-building materials compaction efficiency factor. Transportation Research Procedia. Part of special issue: 12th International Conference “Organization and Traffic Safety Management in large cities”. 2017, Vol. 20, pp. 450–454. https://doi.org/10.1016/j.trpro.2017.01.073
16. Nosov S.V. Modeling the evolution of deformations end stresses in road-building materials based on rheological approach. Russian Journal of Building Construction and Architecture. 2018. No. 4 (40), pp. 61–72.
17. Podolsky Vl.P., Ryabova O.V., Nosov S.V. Development of rheology of road-building materials for perfection of their compaction technology. Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture. 2012. No. 2 (14), pp. 69–81.
18. Koltunov M.A. Polzuchest’ i relaksatsiya [Creep and Relaxation]. Moscow: Vysshaya Shkola, 1976. 278 р.
19. Gezentsvey L.B., Gorelyshev N.V., Boguslavsky A.M., Korolev I.V. Dorozhnyy asfal’tobeton [Road asphalt concrete]. Moscow: Transport, 1985. 350 p.
20. Nosov S.V., Nosov I.S. Development of a program for calculating the relative deformation of the layer of the evacuated asphalt concrete mixture during rolling with a pneumatic roller. Effective structures, materials and technologies in construction. Materials of the international. scientific-practical conference. October 3–4, 2019. Lipetsk. 2019, рр. 96–101.
21. Kharkhuta N.Ya., Kapustin M.I., Semenov V.P., Eventov I.M. Dorozhnyye mashiny. Teoriya, konstruktsiya i raschet [Road cars. Theory, design and calculation]. L.: Mashinostroenie, 1976. 472 p.
22. Zubkov A.F. Tekhnologiya ustroystva pokrytiy iz goryachikh asfal’tobetonnykh smesey s uchetom temperaturnykh rezhimov: monografiya [Technology of pavements from hot asphalt concrete mixtures taking into account temperature conditions: monograph]. Tambov, 2006. 152 p.
23. Vasiliev A.P., Maryshev B.S., Silkin V.V. Stroitel’stvo i rekonstruktsiya avtomobil’nykh dorog: Spravochnaya entsiklopediya dorozhnika (SED) [Construction and reconstruction of highways: Reference road builder encyclopedia (SED)]. Vol. 1. Moscow: Informavtodor, 2005. 654 p.

For citation: Nosov S.V., Bondarev B.A., Nosov I.S. Features of the technology of construction of road pavements from vacuum-treated asphalt concrete mix. Stroitel’nye Materialy [Construction Materials]. 2020. No. 10, pp. 31–37. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-785-10-31-37

Analysis of Deformative-Strength Characteristics of Concretes, Manufactured with Addition of Coarse Aggregate, Obtained from Concrete Rubbles

Number of journal: 10-2020
Autors:

Al-Khawaf A.F.Q.,
Nikulin A.I.

DOI: https://doi.org/10.31659/0585-430X-2020-785-10-22-30
УДК: 691.322

 

AbstractAbout AuthorsReferences
In the construction practice, various concretes are used which, depending on the purpose, meet different requirements in terms of reliability, resistance to external environmental factors and other equally important parameters. In this article, as a coarse aggregate, crushed stone obtained in the process of crushing concrete waste from fragments of destroyed buildings and structures is considered. The results of experimental studies by various scientists have shown that the use of concrete rubble as aggregate is a promising direction. Thus, the economic effect of the use of crushed concrete as a coarse aggregate for the production of various concretes can be very significant for the construction industry as a whole. The results of the experiments presented in this article show that the use of recycled concrete in the form of crushed stone is very necessary, since an increase in the volume of construction waste creates a huge environmental problem for all countries and its partial solution is connected, including with the scientific research presented here.
A.F.Q. AL-KHAWAF, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.I. NIKULIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostukova Street, Belgorod, 308012, Russian Federation)

1. Gholamreza Fathifazl, A. Razaqpur, O. Isgor, Abdelgadir Abbas, Benoit Fournier, Foo Simon. Creep and drying shrinkage characteristics of concrete produced with recycled concrete aggregate. Cement and Concrete Composites. 2011. Vol. 33. Iss. 10, pp. 1026–1037 https://doi.org/10.1016/j.cemconcomp.2011.08.004
2. Sagoe-Crentsil K.K., Brown T., Taylor A.H. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement and Concrete Research. 2001. Vol. 31. Iss. 5, pp. 707–712. https://doi.org/10.1016/S0008-8846(00)00476-2
3. Domingo-Cabo A., Lazaro C., Lopez-Gayarre F., Serrano-Lopez M.A., Serna P., Castano-Tabares J.O. Creep and shrinkage of recycled aggregate concrete, Construction and Building Materials. 2009. Vol. 23, pp. 2545–2553. DOI: 10.1016/j.conbuildmat.2009.02.018
4. Chakradhara Rao M., Bhattacharyya S.K., Barai S.V. Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures. 2011. Vol. 44, pp. 205–220. https://doi.org/10.1617/s11527-010-9620-x
5. Ryu J.S. Improvement on strength and impermeability of recycled concrete made from crushed concrete coarse aggregate. Journal of Materials Science Letters. 2002. Vol. 21 (20), pp. 1565–1567. DOI: 10.1023/A:1020349011716
6. Tam V.W., Gao X.F., Tam C.M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cement and Concrete Research. 2005. Vol. 35. Iss. 6, pp. 1195–1203. https://doi.org/10.1016/j.cemconres.2004.10.025
7. Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Materials and Structures. 1986. Vol. 19, pp. 201–246. https://doi.org/10.1007/BF02472036
8. Kwan W.H., Ramli M., Kam K.J., Sulieman M.Z. Influence of the amount of recycled coarse aggregate in concrete design and durability properties, Construction and Building Materials. 2012. Vol. 26. Iss. 1, pp. 565–573. https://doi.org/10.1016/j.conbuildmat.2011.06.059
9. Salau M.A., Ikponmwosa E.E., Adeyemo A.O. Shrinkage deformation of concrete containing recycled coarse aggregate. British Journal of Applied Science & Technology. 2014. Vol. 4 (12), pp. 1791–1807. https://doi.org/10.1007/s40069-013-0032-5
10. McNeil K., Kang T. Recycled concrete aggregates: a review. International Journal of Concrete Structures and Materials. 2013. Vol. 7, pp. 61–69.
11. Kisku N. et al., A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials. 2017. Vol. 131, pp. 721–740. http://dx.doi.org/10.1016/j.conbuildmat.2016.11.029
12. Дворкин О.Л., Дворкин Л.И. Строительные материалы из отходов промышленности: Учебно-справочное пособие. М.: Феникс, 2007. 368 с.
12. Dvorkin O.L., Dvorkin L.I. Stroitel’nyye materialy iz otkhodov promyshlennosti: Uchebno-spravochnoye posobiye [Building materials from industrial wastes: Study guide]. Moscow: Feniks. 2007. 368 p.
13. Ефименко А.З., Шумков А.И., Шевченко А.В. Оптимизация составов бетонных смесей на заполнителе из дробленого бетона и железобетона сносимых зданий. Бетон и железобетон – пути развития: Научные труды 2-й Всероссийской (международной) конференции по бетону и железобетону: В 5 т. Т. 3. М., 2005. С. 264–267.
13. Efimenko A.Z., Shumkov A.I., Shevchenko A.V. Optimization of concrete mixes based on crushed concrete and reinforced concrete aggregate of demolished buildings. Concrete and reinforced concrete – ways of development: Proceedings of the 2nd All-Russian (international) conference on concrete and reinforced concrete. Vol. 3. Moscow. 2005, pp. 264–267. (In Russian).
14. Пуляев С.М., Каддо М.Б., Пуляев И.С. Исследование процесса раннего структурообразования бетона на щебне из бетонного лома // Вестник МГСУ. 2012. № 1. С. 68–71.
14. Pulyaev S.M., Kaddo M.B., Pulyaev I.S. Investigation of the process of early structure formation of concrete on crushed stone from concrete scrap. Vestnik MGSU. 2012. No. 1, pp. 68–71. (In Russian).

For citation: Al-Khawaf A.F.Q., Nikulin A.I. Analysis of deformative-strength characteristics of concretes, manufactured with addition of coarse aggregate, obtained from concrete rubbles. Stroitel’nye Materialy [Construction Materials]. 2020. No. 10, pp. 22–30. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-785-10-22-30

Russian Cement Market (Results of 9 Months of 2020)

Number of journal: 10-2020
Autors:

Semenov A.A.

DOI: https://doi.org/10.31659/0585-430X-2020-785-10-6-7
УДК: 667.621.223

 

AbstractAbout AuthorsReferences
Information on the state and main trends in the development of the cement market in Russia in 2020 is presented. Data on the volumes and dynamics of production, consumption and foreign trade operations with cement are summarized.
A.A. SEMENOV, Candidate of Science (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

LLC “GS-Expert” http://www.gs-expert.ru/

For citation: Semenov A.A. Russian cement market (results of 9 months of 2020). Stroitel’nye Materialy [Construction Materials]. 2020. No. 10, pp. 6–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-785-10-6-7

https://www.traditionrolex.com/10