Log in

Road Pavements Made of Composite Materials

Number of journal: 4-5-2020
Autors:

Korochkin A.V.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-68-74
УДК: 625.8

 

AbstractAbout AuthorsReferences
An overview of the types of road pavements made of composite materials that have appeared recently is presented. Their production is based on raw materials obtained from the processing of used plastic products (plastic bottles, glasses, packaging, etc.). Examples of improving the properties of asphalt concrete mixtures with modifiers, the main components of which are recycled plastic are given. The experience of foreign countries in the construction and operation of roads with a pavement of plastic-modified asphalt concrete is shown. An analysis of the use of modified asphalt concrete in the Russian Federation and the reasons that limit the use of new technologies in the construction of roads in our country is given. The possibility of building roads, streets, foot walks and bike paths from ready-made hollow plastic plates that make it possible not only to organize the movement of cars and pedestrians, but also to lay communications under foot walks and roads, organize drainage, install sensors , and so on without additional costs, is considered. Information about mobile plastic coatings produced by Russian manufacturers is also provided. Conclusions are formulated about the need to organize the collection of plastic waste and create enterprises for their processing into raw materials suitable for use in the construction industry, as well as the need to conduct research to assess the use of non-traditional types of pavements in road construction.
A.V. KOROCHKIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow Automobile and Road Construction State Technical University (MADI) (64, Leningradsky Avenue, Moscow, 125319, Russian Federation)

1. Korshak A.A., Shammazov A.M. Osnovy neftegazovogo dela. Izdaniye vtoroye, dopolnennoye i ispravlennoye [Basics of oil and gas business. Second edition, amended and amended]. Ufa: DesignPolygraphService. 2002.528 p.
2. Korochkin A.V. Steadiness of asphalt concrete layers of rigid road pavement against displacement. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 65–67. (In Russian).
3. Ushakov VV, Makarov E.N. Preparation of cement concrete coatings of roads for overlapping layers of asphalt concrete. Transportnoye stroitel’stvo. 2011. No. 3, pp. 14–15. (In Russian).
4. Nosov V.P. The main trends in the construction of cement concrete coatings on highways. Science and technology in the road industry. Nauka i tekhnika v dorozhnoy otrasli. 2011. No. 4 (59), pp. 1–3. (In Russian).
5. Yankovsky L.V., Kochetkov A.V. The operational reliability of cement concrete roads from the perspective of risk theory. Vestnik of the Perm National Research Polytechnic University. Environmental protection, transport, life safety. 2012. No. 2, pp. 63–69. (In Russian).
6. Ushakov V.V. On the expansion of the construction of roads with cement concrete coatings. Nauka i tekhnika v dorozhnoy otrasli. 2003. No. 3 (26), pp. 7–8. (In Russian).
7. Merentsova G.S. On the feasibility of using impregnating compositions for the protection and restoration of the properties of asphalt concrete coatings of roads. Polzunovskiy vestnik. 2014. No. 1, pp. 100–103. (In Russian).
8. Schepetova L.S., Semenov S.S. On the effectiveness of the use of polymer-bitumen binders in asphalt mixtures for the construction of road coatings. Transport. Transportnyye sooruzheniya. Ekologiya. 2014. No. 4, pp. 138–152. (In Russian).
9. Yakushev N.M., Romanov E.Yu. Cement concrete roads in Russia. Comparison with asphalt concrete coating. Fotinskiye chteniya. 2017. No. 1 (7), pp. 161–165. (In Russian).
10. Tyuryukhanov K.Yu., Pugin K.G. The study of the interaction of bitumen with mineral particles in asphalt. Transportnyye sooruzheniya. 2018. Vol. 5. No. 1. p. 19. (In Russian).
11. Trautvain A.I., Akimov A.E., Denisov V.P., Lashin M.V. Features of the method of volumetric design of asphalt concrete using Superpave technology. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2019. No 3, pp. 8–14. (In Russian).
12. Starkov G.B., Voronin A.N. Effective polymer material. Mir dorog. 2018. No. 106, pp. 64–65. (In Russian).
13. Golovko S.V., Pavlenko V.A. “Sunny road” is the road of the future. Vestnik of the Astrakhan State Technical University. 2019. No. 1 (67), pp. 37–43. (In Russian).
14. Kudryashova G.N., Smirnovskaya A.M., Ere-meev A.V. Sunny road. way to water and resource conservation. Tekhnika i tekhnologii mira. 2015. No. 8–9, pp. 45–51. (In Russian).
15. Poezzhaeva E.V., Ivanov N.K., Shayakbarov I.E. Diagnosis of plastic roads. Stroitel’nyye i dorozhnyye mashiny. 2017. No. 1, pp. 47–49. (In Russian).
16. Mikhailova K.V. Modern technologies for the processing of plastic waste. Molodoy ucheniy. 2016. No. 9.1, pp. 49–50. (In Russian).
17. Kolosova A.S., Sokolskaya M.K., Vitkalova I.A., Torlova A.S., Pikalov E.S. Modern polymer composite materials and their application. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2018. No. 5–1, pp. 245–256. (In Russian).
18. Yue Huang, Oliver Heidrich, Roger Bird. A review of the use of recycled solid waste materials in asphalt pavements. Resources Conservation and Recycling. 2007. Vol. 52 (1), pp. 78–73. DOI: 10.1016/j.resconrec.2007.02.002
19. Flintsch G.W., Diefenderfer B.K., Nunez O. Composite pavement systems: synthesis of design and construction practices. Final contract report VTRC 09-CR2. Virginia Tech Transportation Institute. 2008. http://www.virginiadot.org/vtrc/main/online_reports/pdf/09-cr2.pdf
20. Korochkin A.V. Analysis of the power effect of vehicles on pavement. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy. 2015. No. 6, pp. 40–46. (In Russian).
21. Korochkin A.V. Wear of hard pavement with asphalt concrete coating. Stroitel’nye Materialy [Construction Materials]. 2012. No. 3, pp. 66–67. (In Russian).
22. Barannik A.Yu., Fedorkov V.I., Arkhipenko A.A. Technologies and results of trial operation of mobile pavements on waterlogged soils and swamps of type I and II in the system of the Ministry of Emergencies of Russia. Civil Security Technologies. Tekhnologii grazhdanskoy oborony. 2015. No. 4 (46), pp. 50–53. (In Russian).

For citation: Korochkin A.V. Road pavements made of composite materials. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 68–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-68-74

Highway Repair Using Fiber-Containing Asphalt Concrete Mixes with Dispersed Binder

Number of journal: 4-5-2020
Autors:

Andronov S.Yu.,
Ivanov A.F.,
Kochetkov A.V.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-62-67
УДК: 625.861

 

AbstractAbout AuthorsReferences
In modern science and practice, the main principle of interaction between bitumen and mineral material grains is that the bitumen film covers the grain of the mineral material. The presented work opens a cycle of studies of the reverse nature of this interaction – when a micro-dispersed drop of bitumen is covered with a powdered layer of a mineral material (nano- or micro-powder). In fact we are talking about the production of nano-material in the form of a bituminous suspension on direct solid emulsifiers and materials based on it. This article presents the results of road repair in the village of Ust-Kurdyum, Saratov Region, with the use of fiber-containing asphalt concrete mixes with dispersed binder. The technology is recommended for extended use for roads and streets of settlements, and for highways with low traffic intensity. The achieved technical result is the prevention of segregation (stratification) and caking of asphalt concrete or bituminous-mineral composition during its storage and transportation, and increasing the adhesion of the binder to the mineral materials of asphalt concrete or bituminous-mineral composition, when using it, due to ensuring the plastic properties of the bituminous binder and road material as a whole.
S.Yu. ANDRONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. IVANOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. KOCHETKOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Saratov State Technical University named after Y.A. Gagarin (77, Politechnicheskaya Street, Saratov, 410054, Russian Federation)
2 Perm National Research Polytechnic University (29, Komsomolsky Prospect, Perm, 614990, Russian Federation)

1. Patent RF No. 2285707. Sposob izgotovleniya bitumosoderzhashchikh smesei s mineral’nym komponentom [A method of manufacturing bitumen mixtures with a mineral component. Svetenko A.V., Strachkov K.M., Gornaev N.A. 2005. (In Russian).
2. Andronov S.Yu. The technology of dispersed-reinforced composite cold gravel-mastic asphalt. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 4, pp. 67–71. (In Russian).
3. Gornaev N.A. Tekhnologiya asfal’ta s dispersnym bitumom [Asphalt technology with dispersed bitumen]. Saratov. 1997. 61 p.
4. Gornaev N.A., Kalashnikov V.P. Emulsifying ability of mineral powders. Problems of transport and transport construction: interuniversity scientific collection. Saratov: SSTU. 2004, pp. 156–158. (In Russian).
5. Gornaev N.A., Strachkov K.M. Stabilization of bitumen emulsions on solid emulsifiers. Problems of transport and transport construction: interuniversity scientific collection. Saratov: SSTU. 2004, pp. 164–167. (In Russian).
6. Copyright certificate 883221 of the USSR. Sposob prigotovleniya bitumomineral’noi smesi [A method of preparing a bitumen-mineral mixture]. Gornaev N.A., Kalashnikov V.P., Ivanov A.F. 1981. (In Russian).
7. Patent RF No. 2351703 Sposob prigotovleniya kholodnoi organomineral’noi smesi dlya dorozhnykh pokrytii [A method of preparing a cold organic-mineral mixture for road surfaces]. Gornaev N.A., Nikishin V.E., Evteeva S.M., Andronov S.Yu., Pyzhov A.S. 2009. (In Russian).
8. Patent RF No. 2662493 Sposob polucheniya bitumnoi emul’sii i bitumnaya emul’siya [A method of obtaining a bitumen emulsion and bitumen emulsion]. Kochetkov A.V. 2018. (In Russian).
9. Kochetkov A.V. Bituminous suspension on a solid emulsifier. Transportnye sooruzheniya. 2018. No. 4. DOI: 10.15862/15SATS418.
10. Di Yu, Wensheng Wang, Yongchun Cheng, Yafeng Gong, Laboratory investigation on the properties of asphalt mixtures modified with double-adding admixtures and sensitivity analysis // Journal of Traffic and Transportation Engineering (English Edition). 2016. Vol. 3. Iss. 5, pp. 412–426. DOI: 10.1016/j.jtte.2016.09.002.
11. Yongchun Cheng, Di Yu, Guojin Tan, Chunfeng Zhu. Low-temperature performance and damage constitutive model of eco-friendly basalt fiber–diatomite-modified asphalt mixture under freeze–thaw cycles. Materials. 2018. Vol. 11 (11), 2148. DOI: 10.3390/ma11112148.
12. Clara Celauro, Filippo Praticò. Asphalt mixtures modified with basalt fibres for surface courses. Construction and Building Materials. 2018. Vol. 170, pp. 245–253. DOI: 10.1016/j.conbuildmat.2018.03.058
13. Yafeng Gong, Haipeng Bi, Chunyu Liang, Shurong Wang. Microstructure analysis of modified asphalt mixtures under freeze-thaw cycles based on ct scanning technology. Applied Sciences. 2018. Vol. 8 (11):2191. DOI: 10.3390/app8112191
14. Xiao Qin, Aiqin Shen, Yinchuan Guo, Zhennan Li. Characterization of asphalt mastics reinforced with basalt fibers. Construction and Building Materials. 2018. Vol. 159, pp. 508–516. DOI: 10.1016/j.conbuildmat.2017.11.012.
15. Yafeng Gong, Haipeng Bi, Zhenhong Tian, Guojin Tan. Pavement performance investigation of nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixture under freeze–thaw cycles. Applied Sciences. 2018. Vol. 8 (12):2581. DOI: 10.3390/app8122581.

For citation: Andronov S.Yu., Ivanov A.F., Kochetkov A.V. Highway repair using fiber-containing asphalt concrete mixes with dispersed binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 62–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-62-67

High-Permeable Concrete with Drainage Effect: Analysis of the State and Prospects of Development

Number of journal: 4-5-2020
Autors:

Strokova V.V.,
Stojkovich N.,
Laketich S.K.,
Zhao P.,
Laketich A.,
Laketich N.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-32-61
УДК: 666.974

 

AbstractAbout AuthorsReferences
The subject of this work is a multi-criteria analysis of the status and technology development prospects for the production and use of highly permeable concrete with a drainage effect, to which are assigned materials with a permeability coefficient of at least 0.1 cm/s, provided with highly porous structure concrete without taking into account technological holes. Analysis of the results of experimental studies performed by both domestic and foreign authors in the last decade, and presented in an open peer-reviewed sources, allowed to structure highly permeable concretes on a functional purpose. Highlighted concrete for road and sidewalk coverings, filtration systems and drainage gutters, as well as decorative concrete with an organic plant layer, the so-called “green concretes”, which, in turn, are used for both horizontal and vertical engineering solutions, and characterized high architectural expressiveness. The accumulated empirical material made it possible to generalize and structure the available data according to criteria such as the type of binder used, the genetic type of rocks used to obtain coarse aggregate, and the type of functional additives. The analysis of the results of work on the development of rational compositions, increasing the drainage ability, strength, wear, frost and corrosion resistance, as well as studying the mechanism of clogging of through pores and the destruction of highly permeable concrete, is presented. Defined boundary values of porosity, strength, and water permeability coefficient for the concretes type under consideration depending on the functional purpose. The existing problems are identified and ways to increase the efficiency of highly permeable concrete with a draining effect are outlined.
V.V. STROKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N. STOJKOVICH2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.K. LAKETICH1, Master student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P. ZHAO3, PhD (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A. LAKETICH1, PhD student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N. LAKETICH1, PhD student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 College of Applied Technical Sciences Nis (20, Aleksandra Medvedeva Street, Nis, 18000, Republic of Serbia)
3 University of Jinan (336, Nanxin Zhuang West Road, Jinan, Shandong, 250022, China)

1. Zhen Dai, Hui Lia, Wenzhong Zhao, Xiangping Wang, Hanbing Wang, Haonan Zhou, Bing Yang. Multi-modified effects of varying admixtures on the mechanical properties of pervious concrete based on optimum design of gradation and cement-aggregate ratio. Construction and Building Materials. 2020. Vol. 233, pp. 1–9. DOI: 10.1016/j.conbuildmat.2019.117178.
2. Benjamin Riley, François de Larrard, Valéry Malécot, Isabelle Dubois-Brugger, Hervé Lequay, Gilles Lecomte. Living concrete: Democratizing living walls. Science of the Total Environment. 2019. Vol. 673, pp. 281–295. DOI: 10.1016/j.scitotenv.2019.04.065.
3. Min Zhao, Yinghui Jia, Linjuan Yuan, Jing Qiu, Chao Xie. Experimental study on the vegetation characteristics of biochar-modified vegetation concrete. Construction and Building Materials. 2019. Vol. 206, pp. 321–328. DOI: 10.1016/j.conbuildmat.2019.01.238.
4. Jingping Zhou, Lei Ji, Chenchen Gong, Lingchao Lu, Xin Cheng. Ceramsite vegetated concrete with water and fertilizer conservation and light weight: Effect of w/c and fertilizer on basic physical performances of concrete and physiological characteristics of festuca arundinacea. Construction and Building Materials. 2020. Vol. 236, pp. 1–12. DOI: 10.1016/j.conbuildmat.2019.117785.
5. Laibo Li, Mingxu Chen, Xiangming Zhou, Lingchao Lu, Yi Wang, Xin Cheng. Evaluation of the preparation and fertilizer release performance of planting concrete made with recycled-concrete aggregates from demolition. Journal of Cleaner Production. 2018. Vol. 200, pp. 54–64. DOI: 10.1016/j.jclepro.2018.07.264.
6. Alalea Kia, Hong S. Wong, Christopher R. Cheeseman. Clogging in permeable concrete: A review. Journal of Environmental Management. 2017. Vol. 193, pp. 221–233. DOI: 10.1016/j.jenvman.2017.02.018.
7. Jiusu Li, Yi Zhang, Guanlan Liu, Xinghai Peng. Preparation and performance evaluation of an innovative pervious concrete pavement. Construction and Building Materials. 2017. Vol. 138, pp. 479–485. DOI: 10.1016/j.conbuildmat.2017.01.137.
8. Shigemitsu Hatanaka, Zilola Kamalova, Morihiro Harada. Construction of a nonlinear permeability model of pervious concrete and drainage simulation of heavy rain in a residential area. Results in Materials. 2019. Vol. 3, pp. 1–6. DOI: 10.1016/j.rinma.2019.100033.
9. Tiejun Liu, Zhongzhen Wang, Dujian Zou , Ao Zhou, Junze Du. Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method. Cement and Concrete Research. 2019. Vol. 122, pp. 72–82. DOI: 10.1016/j.cemconres.2019.05.004.
10. Junbo Sun, Junfei Zhang, Yunfan Gu, Yimiao Huang, Yuantian Sun, Guowei Ma. Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression. Construction and Building Materials. 2019. Vol. 207, pp. 440–449. DOI: 10.1016/j.conbuildmat.2019.02.117.
11. Peng Liu, Yining Gao, Fazhou Wang, Lu Yang. Preparation of pervious concrete with 3-thiocyanatopropyltriethoxysilane modified fly ash and its use in Cd (II) sequestration. Journal of Cleaner Production. 2019. Vol. 212, pp. 1–7. DOI: 10.1016/j.jclepro.2018.11.242.
12. Ayanda N. Shabalala, Stephen O. Ekolu, Souleymane Diop, Fitsum Solomon. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage – column study. Journal of Hazardous Materials. 2017. Vol. 323, pp. 641–653. DOI: 10.1016/j.jhazmat.2016.10.027.
13. Xiaogeng Xie, Tongsheng Zhanga, Yongmin Yang, Ziyu Lin, Jiangxiong Wei, Qijun Yu. Maximum paste coating thickness without voids clogging of pervious concrete and its relationship to the rheological properties of cement paste. Construction and Building Materials. 2018. Vol. 168, pp. 732–746. DOI: 10.1016/j.conbuildmat.2018.02.128.
14. Ali Rezaei Lori, Abolfazl Hassani, Reza Sedghi. Investigating the mechanical and hydraulic characteristics of pervious concrete containing copper slag as coarse aggregate. Construction and Building Materials. 2019. Vol. 197, pp. 130–142. DOI: 10.1016/j.conbuildmat.2018.11.230.
15. Hanbing Wang, Hui Li, Xiao Liang, Haonan Zhou, Ning Xie, Zhen Dai. Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Construction and Building Materials. 2019. Vol. 202, pp. 387–395. DOI: 10.1016/j.conbuildmat.2019.01.044.
16. Lei Lang, Haijuan Duan, Bing Chen. Properties of pervious concrete made from steel slag and magnesium phosphate cement. Construction and Building Materials. 2019. Vol. 209, pp. 95–104. DOI: 10.1016/j.conbuildmat.2019.03.123.
17. Mojtaba Tabatabaeian, Alireza Khaloo, Hooman Khaloo. An innovative high performance pervious concrete with polyester and epoxy resins. Construction and Building Materials. 2019. Vol. 228, pp. 1–22. DOI: 10.1016/j.conbuildmat.2019.116820.
18. Zhen Dai, Hui Li, Wenzhong Zhao, Xiangping Wang, Hanbing Wang, Haonan Zhou, Bing Yang. Multi-modified effects of varying admixtures on the mechanical properties of pervious concrete based on optimum design of gradation and cement-aggregate ratio. Construction and Building Materials. 2020. Vol. 233, pp. 1–9. DOI: 10.1016/j.conbuildmat.2019.117178.
19. Jian-Xin Lu, Xin Yan, Pingping He, Chi Sun Poon. Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of Cleaner Production. 2019. Vol. 234, pp. 1102–1112. DOI: 10.1016/j.jclepro.2019.06.260.
20. M.Uma Maguesvari, V.L. Narasimha. Studies on characterization of pervious concrete for pavement applications. Procedia – Social and Behavioral Sciences. 2013. Vol. 104, pp. 198–207. DOI: 10.1016/j.sbspro.2013.11.112.
21. Bashar S. Mohammed, Mohd Shahir Liew, Wesam S. Alaloul, Veerendrakumar C. Khed, Cheah Yit Hoong, Musa Adamu. Properties of nano-silica modified pervious concrete. Case Studies in Construction Materials. 2018. Vol. 8, pp. 409–422. DOI: 10.1016/j.cscm.2018.03.009.
22. Mohsen Sartipi, Farid Sartipi. Stormwater retention using pervious concrete pavement: Great Western Sydney case study. Case Studies in Construction Materials. 2019. Vol. 11, pp. 1–8. DOI: 10.1016/j.cscm.2019.e00274.
23. Shengnan Dai, Xianghao Wu, Haoran Zhou, Wei Li, Xingquan Jiang, Binghan Liang. Experimental study on mechanical properties of permeable concrete. Earth and Environmental Science. 2019. Vol. 233, pp. 1–6. DOI: 10.1088/1755-1315/233/3/032037.
24. Ramkrishnan R., Abilash B., Mansi Trivedi, Varsha P., Varun P., Vishanth S. Effect of mineral admixtures on pervious concrete. Materials Today: Proceedings. 2018. Vol. 5, pp. 24014–24023. DOI: https://doi.org/10.1016/j.matpr.2018.10.194
25. Gersson F.B. Sandoval, Isaac Galobardes, Raquel S. Teixeira, Berenice M. Toralles. Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes. Case Studies in Construction Materials. 2017. Vol. 7, pp. 317–328. DOI: 10.1016/j.cscm.2017.09.001.
26. Jian-Xin Lu, Xin Yan, Pingping He, Chi Sun Poon. Sustainable design ofpervious concrete using wasteglass and recycled concrete aggregate. Journal of Cleaner Production. 2019. Vol. 234, pp. 1102–1112. DOI: 10.1016/j.jclepro.2019.06.260.
27. Soon Poh Yap, Paul Zhao Chiat Chen, Yingxin Goh, Hussein Adebayo Ibrahim, Kim Hung Mo, Choon Wah Yuen. Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates. Journal of Cleaner Production. 2018. Vol. 181, pp. 155–165. DOI: 10.1016/j.jclepro.2018.01.205.
28. Murugan Muthu, Manu Santhanam, Mathava Kumar. Pb removal in pervious concrete filter: Effects of accelerated carbonation and hydraulic retention time. Construction and Building Materials. 2018. Vol. 174, pp. 224–232. DOI: 10.1016/j.conbuildmat.2018.04.116.
29. Ivanka Netinger Grubeša, Ivana Barišić, Vilma Ducman, Lidija Korat. Draining capability of single-sized pervious concrete. Construction and Building Materials. 2018. Vol. 169, pp. 252–260. DOI: 10.1016/j.conbuildmat.2018.03.037.
30. Hatice Öznur Öz. Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate. Construction and Building Materials. 2018. Vol. 166, pp. 601–609. DOI: 10.1016/j.conbuildmat.2018.02.010.
31. Valerie López-Carrasquillo, Sangchul Hwang. Comparative assessment of pervious concrete mixtures containing fly ash and nanomaterials for compressive strength, physical durability, permeability, water quality performance and production cost. Construction and Building Materials. 2017. Vol. 139, pp. 148–158. DOI: 10.1016/j.conbuildmat.2017.02.052.
32. Dang Hanh Nguyena, Mohamed Boutouil, Nassim Sebaibi, Fabienne Baraud, Lydia Leleyter. Durability of pervious concrete using crushed seashells. Construction and Building Materials. 2017. Vol. 135, pp. 137–150. DOI: 10.1016/j.conbuildmat.2016.12.219.
33. Elnaz Khankhaje, Mohd Razman Salim, Jahangir Mirza, Mohd Warid Hussin, Mahdi Rafieizonooz. Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Construction and Building Materials. 2016. Vol. 126, pp. 1054–1065. DOI: 10.1016/j.conbuildmat.2016.09.010.
34. Juanlan Zhou, Mulian Zheng, Qi Wang, Jiangang Yang, Tianfa Lin. Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates. Construction and Building Materials. 2016. Vol. 124, pp. 897–905. DOI: 10.1016/j.conbuildmat.2016.07.136.
35. Hao Wu, Zhuo Liu, Beibei Sun, Jian Yin. Experimental investigation on freeze–thaw durability of Portland cement pervious concrete (PCPC). Construction and Building Materials. 2016. Vol. 117, pp. 63–71. DOI: 10.1016/j.conbuildmat.2016.04.130.
36. Hussein Adebayo Ibrahim, Hashim Abdul Razak. Effect of palm oil clinker incorporation on properties of pervious concrete. Construction and Building Materials. 2016. Vol. 115, pp. 70–77. DOI: 10.1016/j.conbuildmat.2016.03.181.
37. Nicholas A. Brake, Hamid Allahdadi, Fatih Adam. Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials. 2016. Vol. 113, pp. 536–543. DOI: 10.1016/j.conbuildmat.2016.03.045.
38. Anthony Torres, Jiong Hu, Amy Ramos. The effect of the cementitious paste thickness on the performance of pervious concrete. Construction and Building Materials. 2015. Vol. 95, pp. 850–859. DOI: 10.1016/j.conbuildmat.2015.07.187.
39. Alessandra Bonicelli, Filippo Giustozzi, Maurizio Crispino. Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Construction and Building Materials. 2015. Vol. 91, pp. 102–110. DOI: 10.1016/j.conbuildmat.2015.05.012.
40. K. Ćosić, L. Korat, V. Ducman, I. Netinger. Influence of aggregate type and size on properties of pervious concrete. Construction and Building Materials. 2015. Vol. 78, pp. 69–76. DOI: 10.1016/j.conbuildmat.2014.12.073.
41. Dang Hanh Nguyen, Nassim Sebaibi, Mohamed Boutouil, Lydia Leleyter, Fabienne Baraud. A modified method for the design of pervious concrete mix. Construction and Building Materials. 2014. Vol. 73, pp. 271–282. DOI: 10.1016/j.conbuildmat.2014.09.088.
42. Mehmet Gesoglu, Erhan Güneyisi, Ganjeena Khoshnaw, Süleyman Ipek. Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials. 2014. Vol. 73, pp. 19–24. DOI: 10.1016/j.conbuildmat.2014.09.047.
43. Saeid Hesami, Saeed Ahmadi, Mahdi Nematzadeh. Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Materials. 2014. Vol. 53, pp. 680–691. DOI: 10.1016/j.conbuildmat.2013.11.070.
44. Sonebi M., Bassuoni M.T. Investigating the effect of mixture design parameters on pervious concrete by statistical modelling. Construction and Building Materials. 2013. Vol. 38, pp. 147–154. DOI: 10.1016/j.conbuildmat.2012.07.044.
45. Xiang Shu, Baoshan Huang, Hao Wu, Qiao Dong, Edwin G. Burdette. Performance comparison of laboratory and field produced pervious concrete mixtures. Construction and Building Materials. 2011. Vol. 25, pp. 3187–3192. DOI: 10.1016/j.conbuildmat.2011.03.002.
46. Baoshan Huang, Hao Wu, Xiang Shu, Edwin G. Burdette. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Construction and Building Materials. 2010. Vol. 24, pp. 818–823. DOI: 10.1016/j.conbuildmat.2009.10.025.
47. Pieralisi R., Cavalaro S.H.P., Aguado A. Discrete element modelling of the fresh state behavior of pervious concrete. Cement and Concrete Research. 2016. Vol. 90, pp. 6–18. DOI: 10.1016/j.cemconres.2016.09.010.
48. Liana C., Zhuge Y. Optimum mix design of enhanced permeable concrete – An experimental investigation. Construction and Building Materials. 2010. Vol. 24, pp. 2664–2671. DOI: 10.1016/j.conbuildmat.2010.04.057.
49. Holmes Ryan R., Hart Megan L., Kevern John T. Heavy metal removal capacity of individual components of permeable reactive concrete. Journal of Contaminant Hydrology. 2017. Vol. 196, pp. 52–61. DOI: 10.1016/j.jconhyd.2016.12.005.
50. Solpuker U., Sheets J., Kim Y., Schwartz F.W. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete. Journal of Contaminant Hydrology. 2014. Vol. 196, pp. 35–48. DOI: 10.1016/j.jconhyd.2014.03.002.
51. Xiaogeng Xie, Tongsheng Zhang, Yongmin Yang, Ziyu Lin, Jiangxiong Wei, Qijun Yu. Maximum paste coating thickness without voids clogging of pervious concrete and its relationship to the rheological properties of cement paste. Construction and Building Materials. 2018. Vol. 168, pp. 732–746. DOI: 10.1016/j.conbuildmat.2018.02.128.
52. Mo L.T., Huurman M., Wu S.P., Molenaar A.A.A. Bitumen–stone adhesive zone damage model for the meso-mechanical mixture design of ravelling resistant porous asphalt concrete. International Journal of Fatigue. 2011. Vol. 33, pp. 1490–1503. DOI: 10.1016/j.ijfatigue.2011.06.003.
53. Brake Nicholas A., Allahdadi Hamid, Adam Fatih. Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials. 2016. Vol. 113, pp. 536–543. DOI: 10.1016/j.conbuildmat.2016.03.045.
54. Gerharz B. Pavements on the base of polymer-modified drainage concrete. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999. Vol. 152, pp. 205–209. https://doi.org/10.1016/S0927-7757(98)00831-0
55. Toplicic-Curcic Gordana, Grdic Dusan, Ristic Nenad, Grdić Zoran. Environmental importance, composition and properties of pervious concrete. Gradjevinski materijali i konstrukcije. 2016. Vol. 59, pp. 15-27. 10.5937/grmk1602015T.
56. Cheng Yee Ng, Anaqi Ratna Narong, Aifaa Balqis Kamarul Zaman, Zahiraniza Mustaffa, Bashar S. Mohammed, Lee Woen Ean. Properties of modified high permeable concrete with a crumb rubber. The Open Civil Engineering Journal. 2019. Vol. 13, pp. 82–91. DOI: 10.2174/1874149501913010082.
57. Seung Bum Park, Byung Jae Lee, Jun Lee, Young Il Jang. A study on the seawater purification characteristics of water-permeable concrete using recycled aggregate. Resources, Conservation and Recycling. 2010. Vol. 54, pp. 658–665. DOI: 10.1016/j.resconrec.2009.11.006.
58. Xiaodi Hu, Kang Dai, Pan Pan. Investigation of engineering properties and filtration characteristics of porous asphalt concrete containing activated carbon. Journal of Cleaner Production. 2019. Vol. 209, pp. 1484–1493. DOI: 10.1016/j.jclepro.2018.11.115.
59. Poulikakos L.D., Sedighi Gilani M., Derome D., Jerjen I., Vontobel P. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. Applied Radiation and Isotopes. 2013. Vol. 77, pp. 5–13. DOI: 10.1016/j.apradiso.2013.01.040.
60. Eduardo-Javier Elizondo-Martínez, Valerio-Carlos Andres-Valeri, Daniel Jato-Espino, Jorge Rodriguez-Hernandez. Review of porous concrete as multifunctional and sustainable pavement. Journal of Building Engineering. 2020. Vol. 27, pp. 1–9. DOI: 10.1016/j.jobe.2019.100967.
61. Sourabh Rahangdale, Shobhit Maran, Sumit Lakhmanil, Mayuresh Gidde. Study of pervious concrete. International Research Journal of Engineering and Technology (IRJET). 2017. Vol. 6, pp. 2563–2566. https://www.irjet.net/archives/V4/i6/IRJET-V4I6648.pdf
62. Muhammad Aamer Rafique Bhutta, Nor Hasanah, Nur Farhayu, Mohd Warid Hussin, Mahmood bin Md Tahir, J. Mirza. Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials. 2013. Vol. 47, pp. 1243–1248. DOI: 10.1016/j.conbuildmat.2013.06.022.
63. Lian C., Zhuge Y., Beecham S. The relationship between porosity and strength for porous concrete. Construction and Building Materials. 2011. Vol. 25, pp. 4294–4298. DOI: 10.1016/j.conbuildmat.2011.05.005.
64. Muhammad Aamer Rafique Bhutta, Nor Hasanah, Nur Farhayu, Mohd Warid Hussin, Mahmood bin Md Tahir, J. Mirza. Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials. 2013. Vol. 47, pp. 1243–1248. DOI: 10.1016/j.conbuildmat.2013.06.022.
65. Gelong Xu, Weiguo Shen, Xujia Huo, Zhifeng Yang, Jing Wang, Wensheng Zhang, Xiaoli Ji. Investigation on the properties of porous concrete as road base material. Construction and Building Materials. 2018. Vol. 158, pp. 141–148. DOI: 10.1016/j.conbuildmat.2017.09.151.
66. Wuguang Lin, Dae-Geun Park, Sung Woo Ryu, Byeong-Tae Lee, Yoon-Ho Cho. Development of permeability test method for porous concrete block pavement materials considering clogging. Construction and Building Materials. 2016. Vol. 118, pp. 20–26. DOI: 10.1016/j.conbuildmat.2016.03.107.
67. Weiguo Shena, Lai Shan, Tao Zhang, Hongkun Ma, Zhi Cai, Hua Shi. Investigation on polymer–rubber aggregate modified porous concrete. Construction and Building Materials. 2013. Vol. 38, pp. 667–674. DOI: 10.1016/j.conbuildmat.2012.09.006.
68. Aamer Rafique Bhutta M., Tsuruta K., Mirza J. Evaluation of high-performance porous concrete properties. Construction and Building Materials. 2012. Vol. 31, pp. 67–73. DOI: 10.1016/j.conbuildmat.2011.12.024.
69. Chao Xie, Linjuan Yuan, Min Zhao, Yinghui Jia. Study on failure mechanism of porous concrete based on acoustic emission and discrete element method. Construction and Building Materials. 2020, pp. 1–10. DOI: 10.1016/j.conbuildmat.2019.117409.
70. СП 28.13330.2017. Свод правил. Защита строительных конструкций от коррозии. Актуализиро-ванная редакция СНиП 2.03.11–85. Введен 28.08.2017.
70. SP 28.13330.2017. Svod pravil. Zashhita stroitel’nyh konstrukcij ot korrozii. Aktualizirovannaja redakcija SNiP 2.03.11–85 [SP 28.13330.2017. Set of rules. Protection of building structures against corrosion. Updated edition of SNiP 2.03.11–85]. Introduced28.08.2017. (In Russian).
71. Harada S., Yanbe M. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff. Chemosphere. 2018. Vol. 197, pp. 451–456. DOI: 10.1016/j.chemosphere.2018.01.044.
72. Elnaz Khankhaje, Mohd Razman Salim, Jahangir Mirza, Salmiati, Mohd Warid Hussin, Rawid Khan, Mahdi Rafieizonooz. Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell. Applied Acoustics. 2017. Vol. 122, pp. 113–120. DOI: 10.1016/j.apacoust.2017.02.014.
73. Дергунова А.В., Пиксайкина А.А. Применение пористых тротуаров в создании инфраструктуры городской среды // Вестник МГСУ. 2018. Т. 13. № 12 (123). С. 1440–1447.
73. Dergunova A.V., Piksajkina A.A. The use of porous sidewalks in creating the infrastructure of the urban environment. Vestnik MGSU. 2018. Vol. 13. No. 12 (123), pp. 1440–1447. (In Russian).
74. Kebede Keterew Kefeni, Bhekie Brilliance Mamba. Evaluation of charcoal ash nanoparticles pollutant removal capacity from acid mine drainage rich in iron and sulfate. Journal of Cleaner Production. 2020. Vol. 251, pp. 1–14. DOI: 10.1016/j.jclepro.2019.119720.
75. Jinman Wang , Qian Qin, Sijia Hu, Kening Wu. A concrete material with waste coal gangue and fly ash used for farmland drainage in high groundwater level areas. Journal of Cleaner Production. 2016. Vol. 112, pp. 631–638. DOI: 10.1016/j.jclepro.2015.07.138.
76. Романенко И.И., Петровнина И.Н., Романенко М.И. Пористый бетон в дорожном строительстве // Инженерный вестник Дона. 2019. № 2 (53). С. 50.
76. Romanenko I.I., Petrovnina I.N., Romanenko M.I. Porous concrete in road construction. Inzhenernyi vestnik Dona. 2019. No. 2 (53), pp. 50. (In Russian).
77. Лесовик Р.В., Сопин Д.М., Митрохин А.А. Крупнопористый бетон для малоэтажного строительства на композиционных вяжущих // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 10. С. 45–50.
77. Lesovik R.V., Sopin D.M., Mitrohin A.A. Krupnoporistyj beton dlja malojetazhnogo stroitel’stva na kompozicionnyh vjazhushhih. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2016. No. 10, pp. 45–50. (In Russian).
78. Арын Б.А. Обоснование применения пористого бетона в качестве основания и дренажа сооружений // Известия Всероссийского научно-исследовательского института гидротехники им. Б.Е. Веденеева. 2016. Т. 281. С. 101–108.
78. Aryn B.A. Justification for the use of porous concrete as a base and drainage of structures. Izvestija Vserossijskogo nauchno-issledovatel’skogo instituta gidrotehniki named after B.E. Vedeneeva. 2016. Vol. 281, pp. 101–108. (In Russian).
79. Mohammed Seddik Meddah, Salim Zitouni Saïd Belâabes. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Construction and Building Materials. 2010. Vol. 24, pp. 505–512. DOI: 10.1016/j.conbuildmat.2009.10.009.
80. Лесовик В.С., Агеева М.С., Иванов А.В. Гранулированные шлаки в производстве композиционных вяжущих // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2011. № 3. С. 29–32.
80. Lesovik V.S., Ageeva M.S., Ivanov A.V. Granular slag in the production of composite binders. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2011. No. 3, pp. 29–32. (In Russian).
81. Беленцов Ю.А., Лесовик В.С., Ильинская Г.Г. Повышение надежности конструкций управлением параметрами композиционного материала // Строительные материалы. 2011. № 3. С. 90–92.
81. Belentsov Yu.A., Lesovik V.S., Il’inskaya G.G. Enhancement of reliability of structures by controlling parameters of a composition material. Stroitel’nye Materialy [Construction Materials] 2011. No. 3, pp. 90–92. (In Russian).
82. Косухин М.М., Косухин А.М., Шарапова Ю.А., Шарапов О.Н. Обеспечение долговечности, эксплуатационной надежности, комфортности и экологической безопасности улично-дорожной сети путем использования цементобетонных дорожных покрытий на модифицированном вяжущем // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 3. С. 31–37.
82. Kosuhin M.M., Kosuhin A.M., Sharapova Ju.A., Sharapov O.N. Ensuring the durability, operational reliability, comfort and environmental safety of the road network by using cement concrete pavements on a modified binder. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2016. No. 3, pp. 31–37. (In Russian).
83. Королев Е.В. Принцип реализации нанотехнологии в строительном материаловедении // Строительные материалы. 2013. № 6. С. 60–64.
83. Korolev E.V. Principle of realization of nanotechnology in building materials science. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 60–64. (In Russian).
84. Sonebi M., Bassuoni M.T. Investigating the effect of mixture design parameters on pervious concrete by statistical modelling. 2013. Vol. 38, pp. 147–154. DOI: 10.1016/j.conbuildmat.2012.07.044.
85. Строкова В.В., Бабаев В.Б., Марков А.Ю., Соболев К.Г., Нелюбова В.В. Сравнительная оценка конструкций дорожной одежды с использованием цементобетона // Строительные материалы и изделия. 2019. Т. 2. № 4. С. 56–63.
85. Strokova V.V., Babaev V.B., Markov A.Ju., Sobolev K.G., Neljubova V.V. Comparative assessment of pavement structures using cement concrete. Stroitel’nye materialy i izdeliya. 2019. Vol. 2. No. 4, pp. 56–63. (In Russian).
86. Автомобильные дороги. Строительные нормы и правила. СНИП 2.05.02–85 (утв. Постановлением Госстроя СССР от 17.12.85 № 233) (ред. от 08.06.95).
86. Avtomobil’nye dorogi. Stroitel’nye normy i pravila. SNIP 2.05.02–85 (utv. Postanovleniem GOSSTROJa SSSR ot 17.12.85 No. 233) (red. ot 08.06.95). [Highways. Building regulations. SNIP 2.05.02–85 (approved by the Decree of the GOSSTROY of the USSR dated 17.12.85 No. 233) (As amended on 08.06.95)]. (In Russian).
87. Ерофеев В.Т., Федорцов А.П., Богатов А.Д., Федорцов В.А. Биокоррозия цементных бетонов, особенности ее развития, оценки и прогнозирования // Фундаментальные исследования. 2014. № 12–4. С. 708–716.
87. Erofeev V.T., Fedorcov A.P., Bogatov A.D., Fedorcov V.A. Biocorrosion of cement concrete, features of its development, assessment and forecasting. Fundamental’nye issledovaniya. 2014. No. 12–4, pp. 708-716. (In Russian).
88. Ерофеев В.Т., Богатов А.Д., Федорцов А.П., Пронькин С.П. Исследование механизмов повреждения битумных композитов в условиях воздействия биологических агрессивных сред // Фундаментальные исследования. 2015. № 2–13. С. 2787–2800.
88. Erofeev V.T., Bogatov A.D., Fedorcov A.P., Pron’kin S.P. Investigation of damage mechanisms of bitu-men composites under conditions of exposure to biological aggressive environment. Fundamental’nye issledovaniнa. 2015. No. 2–13, pp. 2787–2800. (In Russian).
89. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В., Духанина У.Н., Балицкий Д.А. Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития // Строительные материалы. 2019. № 9. С. 83–103. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103.
89. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V., Dukhanina U.N., Balitsky D.A. Application of microbial carbonate biomineralization in biotechnologies of building materials creation and restoration: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103

For citation: Strokova V.V., Stojkovich N., Laketich S.K., Zhao P., Laketich A., Laketich N. High-permeable concrete with drainage effect: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 32–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-32-61

Accelerated Construction of Monolithic Structures of a Building Under Low Temperature Conditions

Number of journal: 4-5-2020
Autors:

Batyushenko A.A.,
Sokolov N.S.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-29-31
УДК: 693.5

 

AbstractAbout AuthorsReferences
The technological process of constructing a monolithic reinforced concrete frame includes the selection of the composition of the concrete mix and the mode of heat treatment to achieve 100% of the design strength at a theoretical temperature of 80оC. At the same time to remove residual stresses based on the results of heat treatment a solution for reducing the heating temperature is included in the technical process of warming up. The original technique and special measures of rapid strength gain of monolithic concrete developed by the authors and used for high-speed construction of monolithic buildings under low temperature conditions, made it possible, when constructing a residential building with a monolithic bearing frame in the micro-district “Raduzhny”in Cheboksary in 2012, to build a building cage with brick enclosing structures at the rate of “40 floors – in 40 working days”. This technology was tested when constructing the city of Tsiolkovsky of the “Vostochny” Cosmodrome (Amur Oblast).
A.A. BATYUSHENKO1, Engineer;
N.S. SOKOLOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 FGUP “Spetsstroytekhnologii” at Spetsstroy of the Russian Federation (Tsiolkovsky City, Amur Oblast, 676470, Russian Federation)
2 I.N. Ulianov Chuvash State University (15, Moskovsky Prospect, Cheboksary, 428015, Chuvash Republic, Russian Federation)

1. Grinev A.P., Rudchenko I.I., Nikogda V.O. Fine-grained concrete for monolithic construction. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2016. No. 58, рp. 203–214. (In Russian).
2. Samuskevich V., Koshevar V. Chemical additives in the technology of monolithic concrete. Nauka i innovatsii. 2011. No. 6 (100), рp. 18–20. (In Russian).
3. Terentyev O.M. Tekhnologiya vozvedeniya zdanii i sooruzhenii [Technology of construction of buildings and structures]. Rostov-on-don: Phoenix. 2006. 223 p.
4. Akulova I.I., Chernyshev E.M., Praslov V.A. Forecasting the development of the regional construction complex: theory, methodology and applied tasks. Voronezh: VSTU, 2016. 162.
5. Kuzevanov D.V., Belyaev A.V. Information modeling of reinforced concrete struct. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 1, рp. 58–63. (In Russian).
6. Zemlyakov G.V. Modeling of the process of heat treatment of concrete monolithic structures. Nauka i tekhnika. 2015. No. 6, рp. 37–43. (In Russian).
7. Khayutin Yu.G. Monolitnyi beton [Monolithic concrete]. Moscow: Stroyizdat. 1981. 236 p.
8. Gitushkin V. G. The Strength and diagnosis of concrete monolithic vertical structures. Nauchnaya diskussiya: voprosy tekhnicheskikh nauk. 2016. No. 5 (35), рp. 48–61. (In Russian).
9. Kozelkov M.M., Antipov S.S. life cycle Management of load-bearing structures of monolithic reinforced concrete buildings using information modeling technology. Beton i zhelezobeton. 2016. No. 1, рр. 12–15. (In Russian).
10. Sassone M., Casalegno C. Evaluation of the structural response to the time-dependent behaviour of concrete. Part 2. A general computational approach. The Indian Concrete Journal. 2012. Vol. 86. No. 12, рp. 39–51.
11. Komarinskij M.V., Oniskovec R.V., Ostarkova O.A. Concreting of densely reinforced structures with cast mixtures. Stroitel’stvo unikal’nyh zdaniy i sooruzheniy. 2017. No. 2 (53), pp. 29–41. (In Russian).
12. Komarinskiy M.V., Chervova N.A. Transportation of concrete mix in the construction of unique buildings and structures. Stroitel’stvo unikal’nyh zdaniy i sooruzheniy. 2015. No. 1 (28), pp. 6–31. (In Russian).
13. Kolchedancev L.M., Osipenkova I.G. Features of organizational and technological decisions in the course of construction of high-rise buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 11, pp. 17–19. (In Russian).
14. Slavcheva G.S., Shvedova M.A., Babenko D.S. Analysis and criteria assessment of rheological behavior of mixes for construction 3-D printing. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 34–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-766-12-34-40
15. Kaklyugin A.V. Comparative assessment of pressureforming concrete corrosion. Vibration-free methods of forming reinforced concrete products: a Collection of scientific papers. Rostov-on-Don: RSAC. 1992. pp. 51–57. (In Russian).
16. Kolchedancev L.M., Volkov S.V. Organizational-technological solutions for transporting concrete mix to place of concreting of high-rise buildings structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 11. pp. 21–26. (In Russian).
17. Batyushenko A.A., Sokolov N.S. Reducing the construction time of buildings made of monolithic concrete. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 49–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-49-53

For citation: Batyushenko A.A., Sokolov N.S. Accelerated construction of monolithic structures of a building under low temperature conditions. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 29–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-29-31

Investigation of Powder-Activated Concretes by Laser Interferometry Methods

Number of journal: 4-5-2020
Autors:

Travush V.I.,
Karpenko N.I.,
Erofeev V.T.,
Erofeeva I.V.,
Maksimova I.N.,
Kondrashchenko V.I.,
Kesariyskiy A.G.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-18-28
УДК: 691.32

 

AbstractAbout AuthorsReferences
Concrete is a strong and relatively cheap building material and the demand for it is constantly growing. The most important task in the field of construction is to ensure the durability of concrete and reinforced concrete structures based on it. In recent years, significant progress has been made in the technology of producing high-quality concretes, high-strength self- compacting, dispersed-reinforced, etc. Along with the establishment of physical and mechanical parameters, it is important to identify the patterns of their deformation and destruction under the influence of force loads. In this paper, laser holographic interferometry methods were used to conduct such studies. the physical essence of this method is to register wave fields synchronously with the application of loads reflected by the surface under study at different times, and then compare these wave fields with each other. Powder-activated concretes of the new generation were considered as the studied materials in comparison with the materials of the old and transitional generations. The obtained full equilibrium diagrams and 3D graphs were used to determine physical and mechanical parameters (compressive strength, bending strength, and tensile strength during splitting), parameters of crack resistance (specific energy consumption for static destruction of the sample, static j-integral, static coefficient of stress intensity at normal rupture), the chart parameters (circularity, elongation limit ), the deformation parameters of the surface ( the photos with the waves of deformations and cracks). Using laser interferometry, it was found that the introduction of micro-quartz , especially in combination with amorphous-active micro–silica , significantly delays the start of micro-crack formation in cement samples that exhibit a single-row deformation field up to the stress level of 0.9–0.95 of the destructive ones. A sample based on a cement-sand solution without fine fillers is distinguished by a lower level of crack formation , corresponding to the stress level of 0.5–0.6 from the destructive ones, while with increasing load, the destruction of the sample has a block character.
V.I. TRAVUSH1, Doctor of Sciences (Engineering), Professor, Academician of RAACS,
N.I. KARPENKO1, Doctor of Sciences (Engineering), Academician of RAACS;
V.T. EROFEEV2, Doctor of Sciences (Engineering), Academician of RAACS,
I.V. EROFEEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.N. MAKSIMOVA3, Candidate of Sciences (Engineering);
V.I. KONDRASHCHENKO4, Doctor of Sciences (Engineering);
A.G. KESARIYSKIY5, Candidate of Sciences (Engineering)

1 Russian Academy of Architecture of Construction Sciences (24, Bolshaya Dmitrovka Street, Moscow, 107031, Russian Federation)
2 National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 4Republic of Mordovia, 30005, Russian Federation)
3 Penza State University of Architecture and Civil Engineering (28, Germana Titova Street, Penza, 440028, Russian Federation)
4 Russian University of Transport (MIIT) (9, build. 9, Obraztsova Street, Moscow, 127994, Russian Federation)
5 LLC Laboratory of Complex Technologies (1a, Iskraskaya Street, Dnepropetrovsk region, Pavlograd, 51412, Ukraine)

1. Bazhenov Yu.M. Modern technology of concrete. Concrete and reinforced concrete – a look into the future: scientific papers of the III All-Russian (II International) conference on concrete and reinfor-ced concrete. Vol. 7. Moscow. May 12–16, 2014, pp. 23–28. (In Russian).
2. Falikman V.R., Sorokin Yu.V., Kalashnikov O.O. Construction and technical properties of particularly high-strength quick-hardening concrete. Beton i zhelezobeton. 2004. No. 5, pp. 5–10. (In Russian).
3. Silver Deo. Aspects of the use of non-metallic fiber. The study of the use of fiber for concrete products. CPI – International Concrete Production. 2011. No. 4, pp. 46–56. (In Russian).
4. Peter Liblani, Daniel Ringwelski. The influence of mixing technology on the properties of heavy-duty concrete. CPI – International Concrete Production. 2012. No. 3, pp. 32–35. (In Russian).
5. Kalashnikov V.I. How to turn old-generation concrete into high-performance new-generation concrete. Beton i zhelezobeton. 2012. No. 1, pp. 82. (In Russian).
6. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V. Suspension-filled concrete mixes for new generation powder-activated concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2016. No. 4 (688), pp. 30–37. (In Russian).
7. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V., Arkhipov V.P. The concept of strategic development of plasticized powder-activated concrete of a new generation. High-strength cement concrete: technology, construction, economics (VPB-2016): Collection of abstracts of international reports. scientific and technical conference. Kazan. 2016, p. 36.
8. Gulyaeva E.V., Erofeeva I.V., Kalashnikov V.I., Petukhov A.V. The effect of reactive additives on the strength properties of plasticized cement stone. Molodoi uchenyi. 2014. No. 19, pp. 194–196. (In Russian).
9. Kalashnikov V.I., Erofeeva I.V., Volodin V.M., Abramov D.A. High-performance self-compacting powder-activated sand concrete and fiber concrete. Sovremennye problemy nauki i obrazovaniya. 2015. No. 1–2. https://www.science-education.ru/pdf/2015/1-2/237.pdf (In Russian).
10. Bazhenov Yu.M., Falikman V.R. New century: new effective concretes and technologies. Materials of the 1st All-Russian Conference on Concrete and Reinforced Concrete. Moscow. 2001, pp. 91–101. (In Russian).
11. Chernyshev E.M., Potamoshneva N.D., Artamonova O.V., Slavcheva G.S., Korotkikh D.N., Makeev A.I. Applications of nanochemistry in the technology of solid-phase building materials: scientific and engineering problem, directions and examples of implementation. Stroitel’nye Materialy [Construction Materials]/ 2008. No. 2, pp. 32–36. (In Russian).
12. Korotkikh. D.N. Treshchinostoikost’ sovremennykh tsementnykh betonov (problemy materialovedeniya i tekhnologii): monografiya [Crack resistance of modern cement concrete (problems of materials science and technology): monograph. Voronezh: Voronezh GASU. 2014. 141 p.
13. Kalashnikov V.I. Through the rational rheology of the future of concrete. Part 3. From high-strength and extra-high-strength concrete of the future to superplasticized general-purpose concrete of the present. Tekhnologii betonov. 2008. No. 1, pp. 22–26. (In Russian).
14. Gulyaeva E.V., Erofeeva I.V., Kalashnikov V.I., Petukhov A.V. Effect of water content, type of superplasticizer and hyperplasticizer on the spreadability of suspensions and strength properties of cement stone. Molodoi uchenyi. 2014. No. 19, pp. 191–194. (In Russian).
15. Kalashnikov V.I. Terminology of science of new generation of concrete. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, pp. 103–106. (In Russian).
16. Usherov-Marshak A.V. Betonovedeniye: sovremennyye etyudy [Concrete science: modern studies]. Kharkov: Rarities of Ukraine. 2016. 135 p.
17. Usherov-Marshak A.V. A look into the future of concrete. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 4–6. (In Russian).
18. Velichko Ye.G. Frost resistance of concrete with optimized disperse composition. Stroitel’nye Materialy [Construction Materials]. 2012. No. 2, pp. 81–83. (In Russian).
19. Stepanova V.F., Kaprielov S.S., Sheinfeld A.V., Barykin L.I. The effect of silica fume additives on the corrosion resistance of reinforcing steel in concrete. Beton i zhelezobeton. 1993. No. 5, pp. 28–30. (In Russian).
20. Kalashnikov V.I., Yerofeyev V.T., Tarakanov O.V., Yerofeyeva I.V. Highly economical low-cement plasticized concrete. Naynovite postizheniya na yevropeyskata nauka. 2015. Vol. 13, pp. 85–87. (In Russian).
21. Kalashnikov V.I., Erofeeva I.V. New generation high-strength concrete. Materials of the XII International scientific and practical conference “Science without borders”. Sheffield 2016, pp. 82–84. (In Russian).
22. Kalinovskiy M.I. The use of fiber to increase the crack resistance of concrete // Transportnoye stroitel’stvo. 2008. No. 3, pp. 7–9. (In Russian).
23. Kaprielov S.S., Chilin I.A. Ultra-high-strength self-compacting fiber-reinforced concrete for monolithic structures. Concrete and reinforced concrete – a look into the future: scientific papers of the III All-Russian (II International) conference on concrete and reinforced concrete. Vol. 3. Moscow. May 12–16, 2014, pp. 158–164. (In Russian).
24. Karpenko N.I., Yarmakovskiy V.N. Structural concrete of new modifications for lightweight frames of energy-efficient buildings. Rossiyskiy stroitel’nyy kompleks. 2011. No. 10, pp. 122–128. (In Russian).
25. Korolev Ye.V., Grishina A.N., Satyukov A.B. The chemical composition of nanomodified composite binder using nano- and micro-sized barium hydrosilicates. Nanotekhnologii v stroitel’stve: internet-zhurnal. 2014. No. 4 (26), pp. 90–103. (In Russian).
26. Urkhanova L.A., Lkhasaranov S.A., Rozina V.E., Buyantuev S.L. Fine basalt-fibrous-concrete with nano-silica. Stroitel’nye Materialy [Construction Materials]. 2015. No. 6, pp. 45–48.
27. Kaprielov S.S., Shenfeld A.V., Kardumyan G.S. New modified concrete in the construction of high-rise buildings. II International Forum of Architecture, Construction, Urban Reconstruction, Building Techno-logies and Materials. Moscow. November 11–13, 2008, pp. 29–38. (In Russian).
28. Payares I., Barbara H., Barragan B., Ramos G. Self-compacting concrete with finely ground calcium carbonate. CPI. 2012. No. 1, pp. 34–38. (In Russian).
29. Falikman V.R. New effective high-strength concrete. Beton i zhelezobeton. Oborudovaniye. Materialy. Tekhnologii. 2011. No. 1, pp. 48–54. (In Russian).
30. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Prochnost’ i parametry razrusheniya tsementnykh kompozitov [Strength and fracture parameters of cement composites]. Saransk: Mordovian University Press, 2015.360 p.
31. Aitcin P.C., Neville, A.M. High performance concrete demystified. Concrete International. 1993. Vol. 15, pp. 21–26.
32. Kalashnikov V.I., Moroz M.N., Erofeeva I.V. Effective new generation concretes with low specific cement consumption per unit of strength. Molodoi uchenyi. 2015. No. 6, pp. 189–191. (In Russian).
33. Kalashnikov V.I., Volodin V.M., Moroz M.N., Erofeeva I.V., Petukhov A.V. Super and hyperplasticizers. Silica fume. New generation concrete with low specific cement consumption per unit of strength. Molodoi uchenyi. 2014. No. 19, pp. 207–210. (In Russian).
34. Kalashnikov V.I. What is the powder-activated concrete of new generation. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 70–71. (In Russian).
35. Kalashnikov V.I. Through the rational rheology of the future of concrete. Tekhnologii betonov. 2007. No. 5, pp. 8–10; No. 6, pp. 8–11. (In Russian).
36. Kondrashchenko V.I., Yarmakovskiy V.N., Kesa-riyskiy A.G. The modern methods for ensuring of the reinforced concrete structures durability. Stroitel’nye Materialy [Construction Materials]. 2010. No. 3, pp. 13–15. (In Russian).
37. Kesariysky A.G., Kondrashchenko V.I. The practice of applying methods of holographic interferometry. XXX international school-symposium on holography, coherent optics and photonics: materials of the school-symposium: IKBFU I. Kant. Kaliningrad. 2017, pp. 110–119. (In Russian).
38. Vest C.H. Golograficheskaya interferometriya: Per. s angl. [Holographic Interferometry: Translation from English] Moscow: Mir. 1982. 504 p.
39. Ostrovskiy YU.I., Shchepinov V.P., Yakovlev V.V. Golograficheskiye interferentsionnyye metody izmereniya deformatsiy [Holographic interference strain measurement methods]. Moscow: Nauka. 1988. 248 p.
40. Kesariysky A.G., Kondrashchenko V.I., Grebennikov D.A., Guzenko S.V. Investigation of the deformation characteristics of concrete samples by laser-interference methods. Vestnik grazhdanskikh inzhenerov SPbGASU. 2009. No. 4, pp. 154–159. (In Russian).
41. Kondrashchenko V.I., Kesariysky A.G., Greben-nikov D.A., Kendyuk A.V., Tararushkin E.V. The use of holographic interferometry for study of complexly structured materials. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 72–77. (In Russian).
42. Chernyshov E.M., Korotkikh D.N., Kesariysky A.G. Evaluation of the cracking process parameters in the structure of modern concrete using laser holographic interferometry. The mechanics of the destruction of concrete, reinforced concrete and other building materials: Collection of reports of the 6th international conference. St. Petersburg. 2012, pp. 65–71. (In Russian).
43. Erofeeva I.V. Physico-mechanical properties, biological and climatic resistance of powder-activated concrete. Dis ... Candidate of Sciences (Engineering). Penza 2018. 318 p. (In Russian).

For citation: Travush V.I., Karpenko N.I., Erofeev V.T., Erofeeva I.V., Maksimova I.N., Kondrashchenko V.I., Kesariyskiy A.G. Investigation of powder-activated concretes by laser interferometry methods. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 18–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-18-28

Solid Waste of Soda Production is an Important Reserve for Expanding the Raw Material Base for Production of Lime and Low-Energy, Clinkerless Binders Based on it

Number of journal: 4-5-2020
Autors:

Riazanov A.N.,
Sinitsin D.A.,
Shagigalin G.Yu.,
Bikbulatov M.P.,
Nedoseko I.V.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-14-17
УДК: 691.51

 

AbstractAbout AuthorsReferences
The higher user cost of lime relative to Portland cement is justified. It is shown that against the background of depletion of natural deposits of pure limestones, an important reserve for expanding the raw material base of lime production is carbonate waste from various branches of the industries, in particular the production of soda. After the introduction of advanced technology for dewatering distilled slurries at JSC “Soda”, the humidity of solid waste of soda production (SWS) decreased to 30%. This determined the possibility of using them to produce lime and low-energy, clinkerless binders based on it. After firing the SWS, a lime product, corresponding to about the third grade of traditional lime from natural raw materials, is obtained. Samples of aerated concrete with a density of 500-600 kg/m3 and a compressive strength of up to 2.5 MPa (class B1.5) were obtained on the basis of burnt filtered SWS, however aerated concrete with a density of 400 kg/m3 has a strength of about 1–1.5 MPa, which does not correspond to GOST 31359–2007. On the basis of annealed SWS and glinite, it is proposed to produce clinkerless binders of grades M150 and higher. If necessary, the grade of lime-glinite binder can be significantly increased (up to M300–M400) by mixing with 20–30% of Portland cement.
A.N. RIAZANOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. SINITSIN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.Yu. SHAGIGALIN1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.R. BIKBULATOV2, Chief Technologist (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.V. NEDOSEKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ufa State Petroleum Technological University (195, Mendeleev Street, Ufa, Republic of Bashkortostan, 450080, Russian Federation)
2 OOO “GlavBashStroy” (2a, Kariernaya Street, Chesnokovka Village, Ufa District, Republic of Bashkortostan, 450591, Russian Federation)

1. Riazanov A.N., Rakhimov R.Z., Vinnichenko V.I., Riazanov A.A., Rakhimova N.R., Nedoseko I.V. Energy efficient combined technology of composite binders. Stroitel’nye Materialy [Construction Materials]. 2019. No. 12, pp. 62–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-777-12-62-67
2. Petrenko V.V., Alekseyev P.A. Alternative technology for the decomposition of carbonates: ecology, energy conservation and integrated processing of conversion products. Khimicheskaya tekhnologiya. 2012. Vol. 13. No. 11, pp. 697–703. (In Russian).
3. Rakhimova N.R., Rakhimov R.Z., Gaifullin A.R., Morozov V.P., Potapova L.I., Gubaidullina A.M., Osin Y.N. Marl-based geopolymers incorporated with limestone: a feasibility study. Journal of Non-Crystalline Solids. 2018. Vol. 492, pp. 1–10. DOI: 10.1016/j.jnoncrysol.2018.04.015
4. Rakhimov R.Z., Magdeev U.Kh., Yarmakovsky V.N. Ecology, scientific achievements and innovations in the production of building materials based on and using technogenic raw materials. Stroitel’nye Materialy [Construction Materials]. 2009. No. 12, pp. 8–11. (In Russian).
5. Oratovskaya A.A., Sinitsin D.A., Galeeva L.Sh., Babkov V.V., Shatov A.A. The use of wastes of soda ash production for manufacturing of lime-containing binders and construction materials on their base. Stroitel’nye Materialy [Construction Materials]. 2012. No. 2, pp. 52–54. (In Russian).
6. Vagapov R.F., Sinitsin D.A., Oratovskaya A.A., Tenenbaum G.V. Building materials based on industrial waste of the Republic of Bashkortostan. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2012. No. 4 (22), pp. 279–284. (In Russian).
7. Shelikhov N.S., Rakhimov R.Z., Sagdiyev R.R., Stoyanov O.V. Low baked hydraulic binders. Problems and solutions. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. No. 2(17), pp. 59–64. (In Russian).
8. Riazanov A.N., Vinnichenko V.I., Nedoseko I.V., Riazanova V.A., Riazanov A.A. Structure and properties of lime-ash cement and its modification. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 18–22. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-18-22 (In Russian).
9. Riazanov A.A., Rakhimov R.Z., Vinnichenko V.I., Riazanov A.N. Shagigalin G.Yu., Nedoseko I.V. Features of dissociation of calcium carbonate in the composition of an organo-mineral mixture. Stroitel’-nye Materialy [Construction Materials]. 2020. No. 3, pp. 55–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-55-61
10. Yermilova Ye.Yu., Rakhimov R.Z., Kamalova Z.A., Bulanov P.Ye. Thermosetting clay and limestone mixtures as complex additives for composite Portland cement. Vestnik of the Volga territorial branch of the Russian Academy of Architecture and Construction sciences. 2019. pp. 260–271 (In Russian).

For citation: Riazanov A.N., Sinitsin D.A., Shagigalin G.Yu., Bikbulatov M.P., Nedoseko I.V. Solid waste of soda production is an important reserve for expanding the raw material base for production of lime and low-energy, clinkerless binders based on it. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 14–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-14-17

Regional Lime Producers: Potential Opportunities and Challenges

Number of journal: 4-5-2020
Autors:

Akulova I.I.,
Baranov E.V.,
Baranova E.N.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-9-13
УДК: 691.51

 

AbstractAbout AuthorsReferences
The potential opportunities and problems of lime producers are examined on the example of the Voronezh Region. The status of lime as a strategic material is indicated, which implies not only “domestic” consumption, but also export abroad. The data on the availability of natural raw materials and production capacities, the dynamics of demand and the competitiveness of lime from local producers are presented. It is shown that the region is fully provided with carbonate raw materials used for lime production, since it has significant reserves of high-quality chalk with a CaCO3 content of 95 to 99%. The industrial potential is represented by three large enterprises that have the ability to increase output with increasing market demand. The regional dynamics of lime production is characterized by some instability, expressed in the alternation of periods of rise, and then a decrease in the output of this material. A lime competitiveness rating is presented based on a comparison of the quality of the binder and its selling price. When assessing the quality, the CaO+MgO content, the time and temperature of the quenching, and the fraction of unextinguished grains was taken into account. Among the main problems of regional lime producers, there is a decrease in demand, increased competition, high-energy prices, a shortage of highly qualified personnel, etc.
I.I. AKULOVA, Doctor of Sciences (Еconomics) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. BARANOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.N. BARANOVA, Master of Sciences (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State Technical University (84, 20 let Octyabrya Street, Voronezh, 394006, Russian Federation)

1. Akulova I.I., Chernyshov E.M. Strategy of development for a regional construction complex: technology of development, direction and experience of realization. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 17–23. DOI: https://doi.org/10.31659/0585-430X-2018-757-3-17-23 (In Russian).
2. Scherbakova A.A., Usova A.S. Assessment of the state and prospects of the building materials industry in the region. Voprosy territorial’nogo razvitiya. 2019. No. 4 (49), p. 4. (In Russian). DOI: 10.15838/tdi.2019.4.49.4
3. Davidyuk A.N., Volkov Yu.S. About the draft strategy for the development of the construction industry of the Russian Federation until 2030. BST: Byulleten’ stroitel’noy tekhniki. 2019. No. 10 (1022), pp. 30–31. (In Russian).
4. Semenov A.A. Tendencies of development of the Russian commodity lime market. Stroitel’nye Materialy [Construc-tion Materials]. 2017. No. 8, pp. 4–6. DOI: https://doi.org/10.31659/0585-430X-2017-751-8-4-6. (In Russian).
5. Busygin P.I., Tsvetkova A.Yu. Analysis of competition in the Russian lime market. SPbPU Science Week: Materials of a scientific conference with international participation. St. Petersburg. 2017, pp. 305–307. (In Russian).
6. Ufimtsev V.M. Technological lime – production and properties. ALITinform: Tsement. Beton. Sukhiye smesi. 2018. No. 2 (51), pp. 64–70. (In Russian).
7. Nesterov A.N., Datukashvili D.O. Production of high-calcium lime in Russia. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 52–59. DOI: https://doi.org/10.31659/0585-430X-2017-746-3-52-59. (In Russian).
8. Yeletskikh D.A. Assessment of the current state of production of construction materials and products in the Voronezh Region. Zhilishchnoye khozyaystvo i kommunal’naya infrastruktura. 2019. No. 2 (9), pp. 17–25. (In Russian).
9. Semenov A.A. Silicate brick and gas silicate. Some trends at the market in 2018–2019. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 3–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-3-5
10. Buiko O.V., Kotenyova P.I. Analysis and development trends of the construction market and production of wall building materials. Polzunovskiy al’manakh. 2017. No. 4–2, pp. 20–24. (In Russian).
11. Grinfel’d G.I. Problems and prospects of autoclaved aerated concrete. Stroitel’nyye materialy, oborudovaniye, tekhnologii XXI veka. 2020. No. 1–2 (252–253), pp. 24–26. (In Russian).
12. Akulova I.I. Research and accounting of consumer preferences in the residential real estate market as the basis for the formation of an effective urban development policy. Zhilishchnoye Stroitel’stvo [Housing Construction]. 2017. No. 4, pp. 3–6. (In Russian).
13. Kuzmina V.P. Compositions and methods for producing dry construction mixtures. Sukhiye stroitel’nyye smesi. 2018. No. 5, pp. 25–30. (In Russian).
14. Botka E.I. The market of dry building mixtures in Russia: rapid growth and its causes. Tsement i ego pri-meneniye. 2019. No. 6, pp. 32–33. (In Russian).
15. Akulova I.I., Slavcheva G.S. Assessment of the competitiveness of building materials and products: justification and testing of the methodology on the example of cements. Zhilishchnoye Stroitel’stvo [Housing Construction]. 2017. No. 7, pp. 9–12. (In Russian).

For citation: Akulova I.I., Baranov E.V., Baranova E.N. Regional lime producers: potential opportunities and challenges. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 9–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-9-13

Overview of the Russian Market of Commercial Lime: Results of 2019 and Forecast for 2020

Number of journal: 4-5-2020
Autors:

Semenov A.A.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-4-7
УДК: 631.821:339.1

 

AbstractAbout AuthorsReferences
The analysis of the state and main trends in the development of the domestic lime market in comparison with the United States and Europe is made. It is noted that in connection with the transition of Russia to new versions of the All-Russia Classifier of Types of Economic Activity (OKVED2) and the All-Russia Classifier of Products by Types of Economic Activity (OKPD2), harmonized respectively with the Statistical Classification of Economic Activities in the European Economic Community (NACE Rev.2) and the Statistical Classification of Products by Types of Activity in the European Economic Community (CPA 2008), there are serious difficulties with the objective statistical accounting of lime including the comparison of production statistics with data for previous periods. “GS-Expert” LLC has developed a methodology for evaluating the production of commercial lime, i.e. products sold at the market, which makes it possible to estimate the total volume of deliveries to the market of both construction lime and excesses of technological lime. This made it possible to specify the volume of lime production in 2018 in the amount of 11.7–11.9 million tons, which is slightly higher than Rosstat data – 11.5 million tons. Data on the dynamics and structure of production and consumption of slaked and quicklime, trends in foreign trade operations are presented. The production rating of the 10 largest Russian lime producers was determined, and it is shown that due to the introduction of new capacities, the leading position was taken by “Klintsovsky silicate plant” CJSC. An increase in investment activity in the industry is noted. The forecast of market development for 2020 is given.
A.A. SEMENOV, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

OOO «GS-Expert» (18, 1st Tverskoy-Yamskoy pereulok, Moscow, 125047, Russian Federation)

For citation: Semenov A.A. Overview of the Russian market of commercial lime: results of 2019 and forecast for 2020. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 4–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-4-7

Modern Technologies in the Production of Hydrotechnical Concrete

Number of journal: 3-2020
Autors:

Hagverdieva T.A.,
Jafarov R.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-76-79
УДК: 666.972.52

 

AbstractAbout AuthorsReferences
It has been experimentally established that the use of local natural materials and production wastes subjected to mechanical activation can significantly change the physical and mechanical properties of cement composites. For this purpose, it is planned to use local natural Tovuz zeolite and open-hearth slag of the metallurgical industry. The chemical composition of the materials used shows that they are acidic and low-activity additives. To use them in a cement matrix, it is necessary to bring the specific surface area of these components to a value of 500–600 m2/kg. Based on the results of the study of the obtained samples, the following conclusions are made: when the specific surface area of the mineral powder increases, the average density of concrete increases due to the formation of a denser concrete stone due to filling the voids between the filler particles with the products of hydration of ultrafine additives. The average density of samples prepared on the basis of activated powder is 2262–2560 kg/m3, which is 10% higher than the density of concrete samples prepared without additives. The compressive strength of the finished concrete increases as the specific surface area of the mineral additives increases. It was found that the compressive strength of samples with activated Tovuz zeolite is 9% higher, and with activated open-hearth slag is 12% higher compared to concrete without additives. Thus, the replacement of 1% of cement with fine-ground open-hearth slag with a specific surface area of more than 1136.6 m2/kg, makes it possible to achieve an increase in the compressive strength of concrete to 92.55 MPa.
T.A. HAGVERDIEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R. JAFAROV, Magister (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Azerbaijan University of Architecture and Construction (5, A. Sultanova Street, Baku, AZ 1073 Azerbaijan)

1. Jafarov R.M., Hagverdieva T.A. Determination of compressive strength of the concrete retaining wall of the harbor located at Baku Deep Water Jacket Plant by non-destructive method. Materials of the International Conference on the Perspectives for Development of the Construction Materials Industry in Azerbaijan, dedicated to the 40th Anniversary of the Azerbaijan University of Architecture and Construction. Baku, December 18, 2015, pp. 72–79. (In Azerbaijani).
2. Rashad A. Preliminary study on the effect of fine aggregate replacement with metakaolin on strength and abrasion resistance of concrete. Construction and Building Materials. 2013. Vol. 44, pp. 487–495.
3. Abramchuk N.S., Avdoshenko N.S., Baranov A.N. Nanotechnology. The Alphabet for All. Moscow: Fizmatlit, 2009, pp. 367. (In Russian).
4. Selyaev V.P., Osipov A.K., Pisareva A.S. Nanoparticles – Powders – structures, technologies: an analytical review. Saransk: 2010. (In Russian).
5. Hagverdiyeva T.A., Jafarov R.M Impact of Fine Ground Mineral Additives on Properties of Concrete. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 73–76. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-73-76
6. Hagverdiyeva T.A., Jafarov R.M. The Possibility of Developing New Organic-Mineral Additives Using Industrial Wastes and Their Application in the Production of Hydraulic Concrete. International Concrete Congress. Turkey, Bursa 2019, pp. 367–372. (In English).
7. Hagverdiyeva T.A., Jafarov R.M. Investigation of the Influence of Metal Production Waste on the Properties of Concrete. Scientific Works. Azerbaijan University of Architecture and Construction. Baku. 2017, No. 2, pp. 24–27. (In English).
8. Hagverdiyeva T.A., Jafarov R.M. Development of Efficient Hydraulic Concrete Composition by Use of Industrial Wastes. Building Innovations, Collection of Materials of the II International Ukrainian-Azerbaijani Conference. Poltava, Ukraine, 2019, pp. 395–398. (In English).
9. Usherov-Marshak A.V. Сoncrete science: lexicon. Moscow: Snroymaterialy. 2009. 112 p.

For citation: Hagverdieva T.A., Jafarov R. Modern technologies in the production of hydrotechnical concrete. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 76–79. (In English). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-76-79

Technology of Production and Application of Dispersed-Reinforced Asphalt Concrete Mixes with Basalt Fiber

Number of journal: 3-2020
Autors:

Andronov S.Yu.,
Ivanov A.F.,
Kochetkov A.V.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-70-75
УДК: 625.7/.8

 

AbstractAbout AuthorsReferences
The results of research in the distribution of basalt fiber in the composition of cold asphalt concrete mixtures based on dispersed bitumen are presented. The possibility of using basalt fiber (fiber) to improve the quality of asphalt concrete mixtures prepared using hot and cold technologies has been established. On the basis of the study of the quality characteristics system of the asphalt-concretes (mixes), it is established that as the basis for requirements for physical-mechanical properties of composite mixtures disperse-reinforced by the addition of basalt fiber it is possible to take the requirements for mixtures of the brand I appropriate type according to GOST 9128–2013 “Mixtures of asphalt concrete, polymer-asphalt concrete, asphalt concrete, popymerasphalt-concrete for roads and airfields. Technical conditions». The introduction of basalt fiber for the pur-pose of obtaining dispersed-reinforced asphalt concrete mixtures with higher quality indicators can be performed on mass-produced equipment of asphalt concrete plants without any significant modifications. The problem of homogene-ous and reproducible distribution of basalt fiber in the asphalt concrete mix is solved.
S.Yu. ANDRONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. IVANOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. KOCHETKOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Yuri Gagarin State Technical University of Saratov (77, Polytechnicheskaya Street, Saratov, 410054, Russian Federation)
2 Perm National Research Polytechnic University (29, Komsomolsky Avenue, Perm 614990, Russian Federation)

1. Dedyukhin A.Yu. Dispersion-reinforced asphalt concrete. Scientific Vestnik of the Voronezh State University of Architecture and Civil Engineering. Construction and architecture. 2009. No. 1 (13), pp. 116–120. (In Russian).
2. Polyakova S.V. Dispersion-reinforced asphalt concrete with the use of synthetic fibers. Dorogi i mosty. 2012. No. 2 (28), pp. 247–260. (In Russian).
3. Igoshkin D.G., Shtabinsky V.V., Koshelev D.V., Kravchenko S.E. Asphalt concrete reinforced with geosynthetic materials. Mir dorog. 2017. No. 97, pp. 85–88. (In Russian).
4. Andronov S.Yu., Zadiraka A.A. The results of a study of the technology for the production of dispersed-reinforced composite asphalt mixes. Tekhnicheskoye regulirovaniye v transportnom stroitel’stve. 2017. No. 2 (22), pp. 24–26. (In Russian).
5. Brain V.V., Kutsman A.M., Borovik I.I., Zakharova T.V., Nagaychuk V.M. Design features of non-rigid pavement using reinforced asphalt layers of Ukrai-nian roads. Vestnik of the Kyrgyz State University of Construction, Transport and Architecture named after N. Isanova. 2016. No. 1 (51), pp. 107–113. (In Russian).
6. Dedyukhin A.Yu., Kruchinin I.N., Melkumov V.N. The use of technogenic wastes of chrysotile processing in road construction. Scientific Vestnik of the Voronezh State University of Architecture and Civil Engineering. Construction and architecture. 2009. No. 4 (16), pp. 141–147. (In Russian).
7. Andronov S.Yu., Trofimenko Yu.A. Investigation of the effect of the method of introducing polyacrylonitrile fiber on the physical and mechanical properties of composite dispersed reinforced asphalt concrete. Fundamental’nyye issledovaniya. 2016. No. 11-2, pp. 244–248. (In Russian).
8. Andronov S.Yu., Zadiraka A.A. The influence of the method of introducing basalt fiber on the physicomechanical parameters of composite dispersed reinforced asphalt. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 2, pp. 168–171. (In Russian).
9. Gur’ev V.V., Neproshin E.I., Mostovol G.E. The effect of basalt fiber production technology on mechanical property of fiber. Glass and Ceramics. 2000. Vol. 58. No. 1–2, pp. 62–65.
10. Shi F. A study on structure and properties of basalt fiber. Applied Mechanics and Materials. 2012. Vol. 238, pp. 17–21.
11. Andronov S.Yu. The technology of dispersed-reinforced composite cold crushed stone and mastic asphalt. Vesynik of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 4, pp. 67–71. (In Russian).
12. Gornaev N.A. Tekhnologiya asfal’ta s dispersnym bitumom [Asphalt technology with dispersed bitumen]. Saratov, 1997. 61 p.
13. Copyright certificate 883221 of the USSR Sposob prigotovleniya bitumomineral’noy smesi [A method of preparing a bitumen-mineral mixture]. Gornaev N.A., Kalashnikov V.P., Ivanov A.F. 1981. (In Russian).
14. Patent RU2351703C1 [Method for the preparation of cold organic-mineral mixture for road surfaces] Gornaev N.A., Nikishin V.E., Evteeva S.M., Andronov S.Yu., Pyzhov A.S. 2009. (In Russian).
15. RF patent No. 2662493 Sposob polucheniya bitumnoy emul’sii i bitumnaya emul’siya [A method for producing a bitumen emulsion and a bitumen emulsion] Kochetkov A.V. 2017. (In Russian).

For citation: Andronov S.Yu., Ivanov A.F., Kochetkov A.V. Technology of production and application of dispersed-reinforced asphalt concrete mixes with basalt fiber. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 70–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-70-75

Mathematical Optimization of Charge Compositions in the Production of Ceramic Bricks

Number of journal: 3-2020
Autors:

Gur'eva V.A.,
Doroshin A.V.,
Il'ina A.A.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-64-68
УДК: 691.42:665.6

 

AbstractAbout AuthorsReferences
The scheme of preliminary preparation, forecasting and experimental confirmation of the physicomechanical properties of ceramic products using the results of mathematical planning is developed. By the method of a full three-factor experiment, the influence of the main factors affecting the increase in the efficiency of studies on expanding the range of use of low-melting aluminosilicate loams in a composition with ash and slag waste (ASW) was established. The mathematical model of the experiment made it possible to establish the functional relationships between the recipe parameters (loam + ASW + silicate block) and the physicomechanical properties of ceramic bricks (density, compressive strength, water absorption). The regression equations are obtained, which allow to reveal the dependence of the response functions on the established factors. The response surfaces of the functions of the output parameters made it possible to visually assess the change in the properties of the full-body ceramic wall material using technogenic waste of the fuel and energy complex – ASW in the amount of 28% by weight in the composition with a silicate block of 10% at a firing temperature of 1050оC and a pressing pressure of 20 MPa in the studied area of the factor space. The proposed experimental technique allows to ensure the stability of the production cycle when selecting raw materials and reducing the proportion of low-quality products and rejects.
V.A. GUR'EVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. DOROSHIN, Engineer,
A.A. IL'INA, Engineer

Orenburg State University (13, Pobedy Avenue, Orenburg, 460018, Russian Federation)

1. Statyuha G.A., Telicyna N.E., Surup I.V. Optimization of granulometric composition of fillers for dry building mixes. Khimicheskiye tekhnologii i ekologiya. Vestnik CHDTU. 2008. No. 4, pp. 57–61. (In Russian).
2. Alibekov A.K., Mikhalev M.A. Praktika primenenija planirovanija jeksperimenta: dlja inzhenerov i nauchnyh rabotnikov [The practice of experiment planning: for engineers and scientists. Monograph]. Makhachkala: DGTU. 2013. 126 p.
3. Gurieva V.A., Doroshin A.V. The feasibility of using local secondary raw materials in the production of building materials. University complex as a regional center of education, science and culture: materials of the All-Russian scientific-methodical conference. Orenburg. 2017, pp. 167–171. (In Russian).
4. Gurieva V.A., Doroshin A.V. Determination of optimal drying process for ceramic bricks of semidry pressing. Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Funda-mental Research” dedicated to the 85th anniversary of H.I. Ibragimov. (ISEES 2019). 2019, pp. 162–165. DOI: https://doi.org/10.2991/isees-19.2019.33
5. Laptenok V.D., Seregin Yu.N. Metody planirovanija jeksperimenta i obrabotki rezul’tatov [Methods of experiment planning and processing of results] Krasnoyarsk: SibGAU name after M.F. Reshetnev. 2006. p. 184.
6. Dvornikov L.T., Zhukov I.A., Karateev A.V. Planning an experiment in the technical sciences. Problemy i perspektivy studencheskiy nauki. 2017. No. 1 (1), pp. 4–5. (In Russian).
7. Medvedev P.V., Fedotov V.A. Matematicheskoe planirovanie jeksperimenta [Mathematical design of the experiment]. Orenburg: OSU. 2017. 97 p.
8. Kovel A.A., Tinyakov S.E. Modeling of degradation processes of ceramic products under operational conditions. Issledovaniya naukograda. 2015. No. 2 (12), pp. 32–36. (In Russian).
9. Dolotova R.G., Vereshchagin V.I., Smirenskaya V.N. Determination of the composition of cellular concrete of various densities using feldspar-quartz sand by the method of mathematical planning. Stroitel’nye Materialy [Construction Materials]. 2012. No. 12, pp. 16–19. (In Russian).
10. Rusina V.V., Chernov E.I. Peculiarities of selection of the compositon of organic-mineral concretes on the basis of anthropogenic raw material. Stroitel’nye Materialy [Construction Materials]. 2018. No. 10, pp. 36–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-764-10-36-39
11. Guryeva V.A., Doroshin A.V., Dubineckij V.V. Cera-mic bricks of semi-dry pressing with the use of fusible loams and non-traditional mineral raw materials. Solid State Phenomena. Vol. 299, pp. 252–257. DOI: 10.4028/www.scientific.net/SSP.299.252.

For citation: Gur'eva V.A., Doroshin A.V., Il'ina A.A. Mathematical optimization of charge compositions in the production of ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 64–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-64-68

Features of Dissociation of Calcium Carbonate in the Composition of an Organo-Mineral Mixture

Number of journal: 3-2020
Autors:

Riazanov A.A.,
Rakhimov R.Z.,
Vinnichenko V.I.,
Riazanov A.N.
Shagigalin G.Yu.,
Nedoseko I.V.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-55-61
УДК: 666.914

 

AbstractAbout AuthorsReferences
The influence of carbon and its gasification products on the process of decarbonization of calcium carbonate has been studied by the method of thermodynamic analysis. The intensifying effect of organic matter during heat treatment of calcium carbonate is shown. In addition to carbon, decarbonation reactions are affected by gases released as a result of gasification of the organic part of coal waste. It is theoretically proved that the organic component of coal waste contributes to lowering the temperature of the beginning and end of the decomposition of calcium carbonate. To confirm the theoretical assumptions, experimental studies of the behavior of mixtures under heating were conducted. The influence of organic matter on the decarbonization of pure calcium carbonate and chalk was studied. Products of thermochemical transformations of organic mass increase the efficiency of the process of decarbonization of calcium carbonate using coal enrichment waste as part of the raw material mixture. The organic component of the waste reduces the temperature of the decarbonization process both of pure calcium carbonate and chalk.
A.A. RIAZANOV1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.Z. RAKHIMOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
V.I. VINNICHENKO3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.N.RIAZANOV1, Candidate of Sciences(Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.Yu. SHAGIGALIN1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.V. NEDOSEKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ufa State Petroleum Technological University (1, Kosmonavtov Street, Republic of Bashkortostan, Ufa, 450062, Russian Federation)
2 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)
3 Kharkiv National University of Civil Engineering and Architecture (40, Sumy Street., 61002, Kharkov, Ukraine)

1. Mirzaev D.A., Koptsev D.V. The features of CaCO3 decarbonization kinetics. Vestnik MGTU im. G.I. Nosova. 2012. No. 2, pp. 79–81. (In Russian).
2. Wang Y., Lin S.Y., Suzuki Y. Limestone Calcination with CO2 Capture: Decomposition behavior in a CO2 atmosphere. Energy & Fuels. 2007. No. 21. pp 3317–3321. DOI: https://doi.org/10.1021/ef700318c
3. Barsukov S.V. The Study of clinker formation processes during firing of ash mixtures. Poluyanovskii Vestnik. 2006. No. 2, pp. 205-209. (In Russian).
4. Ganopol’skii F.I. About the mineral composition of accompanying coal rocks of the Donbass. Ugol’ Ukrainy. 1985. No. 3, pp. 44–45. (In Russian).
5. Shpirt M. Ya., Artem’ev V. B., Silyutin S. A. Ispol’zovanie tverdykh otkhodov dobychi i pererabotki uglei [The use of solid mine waste and coal processing waste]. Moscow: Gornoe delo. 2013. 432 p.
6. Luginina I.G., Ibatulina L.Kh. at as. The use of coal waste for cement production. Tsement. 1983. No.11, p. 6. (In Russian).
7. Shubin V.I., Kholodnyi A.G., Kopeliovich V.M., Ovcharenko L.V., Vinnichenko V.I. The efficiency analysis of the coal processing waste as an energy-saving additive for the raw mix. VNIIESM. 1991. Iss. 1, pp. 14–21. (In Russian).
8. Klassen V.K., Borisov I.N., Manuilov V.E., Khodykin E.I. Theoretical substantiation and efficiency of using coal waste as a raw material component in cement technology. Stroitel’nye materialy. [Construction Materials] 2007. No. 8, pp. 20–21. (In Russian).
9. Shelikhov N.S., Rakhimov R.Z., Sagdiev R.R., Stoyanov O.V. Low baked hydraulic binders. Problems and Solutions. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. No. 2 (17), pp. 59–64. (In Russian).
10. Barbane I., Vitynya I., Lindynya L. Study of the chemical and mineralogical composition of romancement synthesized from Latvia’s clay and dolomite. Stroitel’nye materialy [Construction Materials]. 2013. No. 1, pp. 40–43. (In Russian).
11. Tislova R., Kozlowska A., Kozlowski R., Hughes D. Porosity and specific surface area of Roman cement pastes. Cement and Concrete Research. 2009. Vol. 39. Iss. 10, pp. 950–956.
12. Babushkin V.I., Matveev G.M., Mchedlov-Petrosyan O.P. Termodinamika silikatov [Thermodynamics of silicates]. Moskow: Gosstroiizdat. 1986. 407 p.
13. Karapet’yants M.Kh., Karapet’yants M.P. Osnovnye termodinamicheskie konstanty neorganicheskikh i organicheskikh veshchestv [Basic thermodynamic constants of inorganic and organic substances]. Moscow: Khimiya. 1968. 472 p.
14. Eitel’ V. Fizicheskaya khimiya silikatov [Physical chemistry of silicates]. Moscow: Izd-vo Inostrannoi literatury. 1962. 1055 p.
15. Sklyar M. G. Fiziko-khimicheskie osnovy spekaniya uglya [Physicochemical fundamentals of sintering coal]. Moscow: Metallurgiya. 1984. 200 p.

For citation: Riazanov A.A., Rakhimov R.Z., Vinnichenko V.I., Riazanov A.N. Shagigalin G.Yu., Nedoseko I.V. Features of dissociation of calcium carbonate in the composition of an organo-mineral mixture. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 55–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-55-61

https://www.traditionrolex.com/10