Investigation of Powder-Activated Concretes by Laser Interferometry Methods

Number of journal: 4-5-2020
Autors:

Travush V.I.,
Karpenko N.I.,
Erofeev V.T.,
Erofeeva I.V.,
Maksimova I.N.,
Kondrashchenko V.I.,
Kesariyskiy A.G.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-18-28
УДК: 691.32

 

AbstractAbout AuthorsReferences
Concrete is a strong and relatively cheap building material and the demand for it is constantly growing. The most important task in the field of construction is to ensure the durability of concrete and reinforced concrete structures based on it. In recent years, significant progress has been made in the technology of producing high-quality concretes, high-strength self- compacting, dispersed-reinforced, etc. Along with the establishment of physical and mechanical parameters, it is important to identify the patterns of their deformation and destruction under the influence of force loads. In this paper, laser holographic interferometry methods were used to conduct such studies. the physical essence of this method is to register wave fields synchronously with the application of loads reflected by the surface under study at different times, and then compare these wave fields with each other. Powder-activated concretes of the new generation were considered as the studied materials in comparison with the materials of the old and transitional generations. The obtained full equilibrium diagrams and 3D graphs were used to determine physical and mechanical parameters (compressive strength, bending strength, and tensile strength during splitting), parameters of crack resistance (specific energy consumption for static destruction of the sample, static j-integral, static coefficient of stress intensity at normal rupture), the chart parameters (circularity, elongation limit ), the deformation parameters of the surface ( the photos with the waves of deformations and cracks). Using laser interferometry, it was found that the introduction of micro-quartz , especially in combination with amorphous-active micro–silica , significantly delays the start of micro-crack formation in cement samples that exhibit a single-row deformation field up to the stress level of 0.9–0.95 of the destructive ones. A sample based on a cement-sand solution without fine fillers is distinguished by a lower level of crack formation , corresponding to the stress level of 0.5–0.6 from the destructive ones, while with increasing load, the destruction of the sample has a block character.
V.I. TRAVUSH1, Doctor of Sciences (Engineering), Professor, Academician of RAACS,
N.I. KARPENKO1, Doctor of Sciences (Engineering), Academician of RAACS;
V.T. EROFEEV2, Doctor of Sciences (Engineering), Academician of RAACS,
I.V. EROFEEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.N. MAKSIMOVA3, Candidate of Sciences (Engineering);
V.I. KONDRASHCHENKO4, Doctor of Sciences (Engineering);
A.G. KESARIYSKIY5, Candidate of Sciences (Engineering)

1 Russian Academy of Architecture of Construction Sciences (24, Bolshaya Dmitrovka Street, Moscow, 107031, Russian Federation)
2 National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 4Republic of Mordovia, 30005, Russian Federation)
3 Penza State University of Architecture and Civil Engineering (28, Germana Titova Street, Penza, 440028, Russian Federation)
4 Russian University of Transport (MIIT) (9, build. 9, Obraztsova Street, Moscow, 127994, Russian Federation)
5 LLC Laboratory of Complex Technologies (1a, Iskraskaya Street, Dnepropetrovsk region, Pavlograd, 51412, Ukraine)

1. Bazhenov Yu.M. Modern technology of concrete. Concrete and reinforced concrete – a look into the future: scientific papers of the III All-Russian (II International) conference on concrete and reinfor-ced concrete. Vol. 7. Moscow. May 12–16, 2014, pp. 23–28. (In Russian).
2. Falikman V.R., Sorokin Yu.V., Kalashnikov O.O. Construction and technical properties of particularly high-strength quick-hardening concrete. Beton i zhelezobeton. 2004. No. 5, pp. 5–10. (In Russian).
3. Silver Deo. Aspects of the use of non-metallic fiber. The study of the use of fiber for concrete products. CPI – International Concrete Production. 2011. No. 4, pp. 46–56. (In Russian).
4. Peter Liblani, Daniel Ringwelski. The influence of mixing technology on the properties of heavy-duty concrete. CPI – International Concrete Production. 2012. No. 3, pp. 32–35. (In Russian).
5. Kalashnikov V.I. How to turn old-generation concrete into high-performance new-generation concrete. Beton i zhelezobeton. 2012. No. 1, pp. 82. (In Russian).
6. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V. Suspension-filled concrete mixes for new generation powder-activated concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2016. No. 4 (688), pp. 30–37. (In Russian).
7. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V., Arkhipov V.P. The concept of strategic development of plasticized powder-activated concrete of a new generation. High-strength cement concrete: technology, construction, economics (VPB-2016): Collection of abstracts of international reports. scientific and technical conference. Kazan. 2016, p. 36.
8. Gulyaeva E.V., Erofeeva I.V., Kalashnikov V.I., Petukhov A.V. The effect of reactive additives on the strength properties of plasticized cement stone. Molodoi uchenyi. 2014. No. 19, pp. 194–196. (In Russian).
9. Kalashnikov V.I., Erofeeva I.V., Volodin V.M., Abramov D.A. High-performance self-compacting powder-activated sand concrete and fiber concrete. Sovremennye problemy nauki i obrazovaniya. 2015. No. 1–2. https://www.science-education.ru/pdf/2015/1-2/237.pdf (In Russian).
10. Bazhenov Yu.M., Falikman V.R. New century: new effective concretes and technologies. Materials of the 1st All-Russian Conference on Concrete and Reinforced Concrete. Moscow. 2001, pp. 91–101. (In Russian).
11. Chernyshev E.M., Potamoshneva N.D., Artamonova O.V., Slavcheva G.S., Korotkikh D.N., Makeev A.I. Applications of nanochemistry in the technology of solid-phase building materials: scientific and engineering problem, directions and examples of implementation. Stroitel’nye Materialy [Construction Materials]/ 2008. No. 2, pp. 32–36. (In Russian).
12. Korotkikh. D.N. Treshchinostoikost’ sovremennykh tsementnykh betonov (problemy materialovedeniya i tekhnologii): monografiya [Crack resistance of modern cement concrete (problems of materials science and technology): monograph. Voronezh: Voronezh GASU. 2014. 141 p.
13. Kalashnikov V.I. Through the rational rheology of the future of concrete. Part 3. From high-strength and extra-high-strength concrete of the future to superplasticized general-purpose concrete of the present. Tekhnologii betonov. 2008. No. 1, pp. 22–26. (In Russian).
14. Gulyaeva E.V., Erofeeva I.V., Kalashnikov V.I., Petukhov A.V. Effect of water content, type of superplasticizer and hyperplasticizer on the spreadability of suspensions and strength properties of cement stone. Molodoi uchenyi. 2014. No. 19, pp. 191–194. (In Russian).
15. Kalashnikov V.I. Terminology of science of new generation of concrete. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, pp. 103–106. (In Russian).
16. Usherov-Marshak A.V. Betonovedeniye: sovremennyye etyudy [Concrete science: modern studies]. Kharkov: Rarities of Ukraine. 2016. 135 p.
17. Usherov-Marshak A.V. A look into the future of concrete. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 4–6. (In Russian).
18. Velichko Ye.G. Frost resistance of concrete with optimized disperse composition. Stroitel’nye Materialy [Construction Materials]. 2012. No. 2, pp. 81–83. (In Russian).
19. Stepanova V.F., Kaprielov S.S., Sheinfeld A.V., Barykin L.I. The effect of silica fume additives on the corrosion resistance of reinforcing steel in concrete. Beton i zhelezobeton. 1993. No. 5, pp. 28–30. (In Russian).
20. Kalashnikov V.I., Yerofeyev V.T., Tarakanov O.V., Yerofeyeva I.V. Highly economical low-cement plasticized concrete. Naynovite postizheniya na yevropeyskata nauka. 2015. Vol. 13, pp. 85–87. (In Russian).
21. Kalashnikov V.I., Erofeeva I.V. New generation high-strength concrete. Materials of the XII International scientific and practical conference “Science without borders”. Sheffield 2016, pp. 82–84. (In Russian).
22. Kalinovskiy M.I. The use of fiber to increase the crack resistance of concrete // Transportnoye stroitel’stvo. 2008. No. 3, pp. 7–9. (In Russian).
23. Kaprielov S.S., Chilin I.A. Ultra-high-strength self-compacting fiber-reinforced concrete for monolithic structures. Concrete and reinforced concrete – a look into the future: scientific papers of the III All-Russian (II International) conference on concrete and reinforced concrete. Vol. 3. Moscow. May 12–16, 2014, pp. 158–164. (In Russian).
24. Karpenko N.I., Yarmakovskiy V.N. Structural concrete of new modifications for lightweight frames of energy-efficient buildings. Rossiyskiy stroitel’nyy kompleks. 2011. No. 10, pp. 122–128. (In Russian).
25. Korolev Ye.V., Grishina A.N., Satyukov A.B. The chemical composition of nanomodified composite binder using nano- and micro-sized barium hydrosilicates. Nanotekhnologii v stroitel’stve: internet-zhurnal. 2014. No. 4 (26), pp. 90–103. (In Russian).
26. Urkhanova L.A., Lkhasaranov S.A., Rozina V.E., Buyantuev S.L. Fine basalt-fibrous-concrete with nano-silica. Stroitel’nye Materialy [Construction Materials]. 2015. No. 6, pp. 45–48.
27. Kaprielov S.S., Shenfeld A.V., Kardumyan G.S. New modified concrete in the construction of high-rise buildings. II International Forum of Architecture, Construction, Urban Reconstruction, Building Techno-logies and Materials. Moscow. November 11–13, 2008, pp. 29–38. (In Russian).
28. Payares I., Barbara H., Barragan B., Ramos G. Self-compacting concrete with finely ground calcium carbonate. CPI. 2012. No. 1, pp. 34–38. (In Russian).
29. Falikman V.R. New effective high-strength concrete. Beton i zhelezobeton. Oborudovaniye. Materialy. Tekhnologii. 2011. No. 1, pp. 48–54. (In Russian).
30. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Prochnost’ i parametry razrusheniya tsementnykh kompozitov [Strength and fracture parameters of cement composites]. Saransk: Mordovian University Press, 2015.360 p.
31. Aitcin P.C., Neville, A.M. High performance concrete demystified. Concrete International. 1993. Vol. 15, pp. 21–26.
32. Kalashnikov V.I., Moroz M.N., Erofeeva I.V. Effective new generation concretes with low specific cement consumption per unit of strength. Molodoi uchenyi. 2015. No. 6, pp. 189–191. (In Russian).
33. Kalashnikov V.I., Volodin V.M., Moroz M.N., Erofeeva I.V., Petukhov A.V. Super and hyperplasticizers. Silica fume. New generation concrete with low specific cement consumption per unit of strength. Molodoi uchenyi. 2014. No. 19, pp. 207–210. (In Russian).
34. Kalashnikov V.I. What is the powder-activated concrete of new generation. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 70–71. (In Russian).
35. Kalashnikov V.I. Through the rational rheology of the future of concrete. Tekhnologii betonov. 2007. No. 5, pp. 8–10; No. 6, pp. 8–11. (In Russian).
36. Kondrashchenko V.I., Yarmakovskiy V.N., Kesa-riyskiy A.G. The modern methods for ensuring of the reinforced concrete structures durability. Stroitel’nye Materialy [Construction Materials]. 2010. No. 3, pp. 13–15. (In Russian).
37. Kesariysky A.G., Kondrashchenko V.I. The practice of applying methods of holographic interferometry. XXX international school-symposium on holography, coherent optics and photonics: materials of the school-symposium: IKBFU I. Kant. Kaliningrad. 2017, pp. 110–119. (In Russian).
38. Vest C.H. Golograficheskaya interferometriya: Per. s angl. [Holographic Interferometry: Translation from English] Moscow: Mir. 1982. 504 p.
39. Ostrovskiy YU.I., Shchepinov V.P., Yakovlev V.V. Golograficheskiye interferentsionnyye metody izmereniya deformatsiy [Holographic interference strain measurement methods]. Moscow: Nauka. 1988. 248 p.
40. Kesariysky A.G., Kondrashchenko V.I., Grebennikov D.A., Guzenko S.V. Investigation of the deformation characteristics of concrete samples by laser-interference methods. Vestnik grazhdanskikh inzhenerov SPbGASU. 2009. No. 4, pp. 154–159. (In Russian).
41. Kondrashchenko V.I., Kesariysky A.G., Greben-nikov D.A., Kendyuk A.V., Tararushkin E.V. The use of holographic interferometry for study of complexly structured materials. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 72–77. (In Russian).
42. Chernyshov E.M., Korotkikh D.N., Kesariysky A.G. Evaluation of the cracking process parameters in the structure of modern concrete using laser holographic interferometry. The mechanics of the destruction of concrete, reinforced concrete and other building materials: Collection of reports of the 6th international conference. St. Petersburg. 2012, pp. 65–71. (In Russian).
43. Erofeeva I.V. Physico-mechanical properties, biological and climatic resistance of powder-activated concrete. Dis ... Candidate of Sciences (Engineering). Penza 2018. 318 p. (In Russian).

For citation: Travush V.I., Karpenko N.I., Erofeev V.T., Erofeeva I.V., Maksimova I.N., Kondrashchenko V.I., Kesariyskiy A.G. Investigation of powder-activated concretes by laser interferometry methods. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 18–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-18-28


Print   Email