High-Permeable Concrete with Drainage Effect: Analysis of the State and Prospects of Development

Number of journal: 4-5-2020
Autors:

Strokova V.V.,
Stojkovich N.,
Laketich S.K.,
Zhao P.,
Laketich A.,
Laketich N.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-32-61
УДК: 666.974

 

AbstractAbout AuthorsReferences
The subject of this work is a multi-criteria analysis of the status and technology development prospects for the production and use of highly permeable concrete with a drainage effect, to which are assigned materials with a permeability coefficient of at least 0.1 cm/s, provided with highly porous structure concrete without taking into account technological holes. Analysis of the results of experimental studies performed by both domestic and foreign authors in the last decade, and presented in an open peer-reviewed sources, allowed to structure highly permeable concretes on a functional purpose. Highlighted concrete for road and sidewalk coverings, filtration systems and drainage gutters, as well as decorative concrete with an organic plant layer, the so-called “green concretes”, which, in turn, are used for both horizontal and vertical engineering solutions, and characterized high architectural expressiveness. The accumulated empirical material made it possible to generalize and structure the available data according to criteria such as the type of binder used, the genetic type of rocks used to obtain coarse aggregate, and the type of functional additives. The analysis of the results of work on the development of rational compositions, increasing the drainage ability, strength, wear, frost and corrosion resistance, as well as studying the mechanism of clogging of through pores and the destruction of highly permeable concrete, is presented. Defined boundary values of porosity, strength, and water permeability coefficient for the concretes type under consideration depending on the functional purpose. The existing problems are identified and ways to increase the efficiency of highly permeable concrete with a draining effect are outlined.
V.V. STROKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N. STOJKOVICH2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.K. LAKETICH1, Master student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P. ZHAO3, PhD (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A. LAKETICH1, PhD student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N. LAKETICH1, PhD student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 College of Applied Technical Sciences Nis (20, Aleksandra Medvedeva Street, Nis, 18000, Republic of Serbia)
3 University of Jinan (336, Nanxin Zhuang West Road, Jinan, Shandong, 250022, China)

1. Zhen Dai, Hui Lia, Wenzhong Zhao, Xiangping Wang, Hanbing Wang, Haonan Zhou, Bing Yang. Multi-modified effects of varying admixtures on the mechanical properties of pervious concrete based on optimum design of gradation and cement-aggregate ratio. Construction and Building Materials. 2020. Vol. 233, pp. 1–9. DOI: 10.1016/j.conbuildmat.2019.117178.
2. Benjamin Riley, François de Larrard, Valéry Malécot, Isabelle Dubois-Brugger, Hervé Lequay, Gilles Lecomte. Living concrete: Democratizing living walls. Science of the Total Environment. 2019. Vol. 673, pp. 281–295. DOI: 10.1016/j.scitotenv.2019.04.065.
3. Min Zhao, Yinghui Jia, Linjuan Yuan, Jing Qiu, Chao Xie. Experimental study on the vegetation characteristics of biochar-modified vegetation concrete. Construction and Building Materials. 2019. Vol. 206, pp. 321–328. DOI: 10.1016/j.conbuildmat.2019.01.238.
4. Jingping Zhou, Lei Ji, Chenchen Gong, Lingchao Lu, Xin Cheng. Ceramsite vegetated concrete with water and fertilizer conservation and light weight: Effect of w/c and fertilizer on basic physical performances of concrete and physiological characteristics of festuca arundinacea. Construction and Building Materials. 2020. Vol. 236, pp. 1–12. DOI: 10.1016/j.conbuildmat.2019.117785.
5. Laibo Li, Mingxu Chen, Xiangming Zhou, Lingchao Lu, Yi Wang, Xin Cheng. Evaluation of the preparation and fertilizer release performance of planting concrete made with recycled-concrete aggregates from demolition. Journal of Cleaner Production. 2018. Vol. 200, pp. 54–64. DOI: 10.1016/j.jclepro.2018.07.264.
6. Alalea Kia, Hong S. Wong, Christopher R. Cheeseman. Clogging in permeable concrete: A review. Journal of Environmental Management. 2017. Vol. 193, pp. 221–233. DOI: 10.1016/j.jenvman.2017.02.018.
7. Jiusu Li, Yi Zhang, Guanlan Liu, Xinghai Peng. Preparation and performance evaluation of an innovative pervious concrete pavement. Construction and Building Materials. 2017. Vol. 138, pp. 479–485. DOI: 10.1016/j.conbuildmat.2017.01.137.
8. Shigemitsu Hatanaka, Zilola Kamalova, Morihiro Harada. Construction of a nonlinear permeability model of pervious concrete and drainage simulation of heavy rain in a residential area. Results in Materials. 2019. Vol. 3, pp. 1–6. DOI: 10.1016/j.rinma.2019.100033.
9. Tiejun Liu, Zhongzhen Wang, Dujian Zou , Ao Zhou, Junze Du. Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method. Cement and Concrete Research. 2019. Vol. 122, pp. 72–82. DOI: 10.1016/j.cemconres.2019.05.004.
10. Junbo Sun, Junfei Zhang, Yunfan Gu, Yimiao Huang, Yuantian Sun, Guowei Ma. Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression. Construction and Building Materials. 2019. Vol. 207, pp. 440–449. DOI: 10.1016/j.conbuildmat.2019.02.117.
11. Peng Liu, Yining Gao, Fazhou Wang, Lu Yang. Preparation of pervious concrete with 3-thiocyanatopropyltriethoxysilane modified fly ash and its use in Cd (II) sequestration. Journal of Cleaner Production. 2019. Vol. 212, pp. 1–7. DOI: 10.1016/j.jclepro.2018.11.242.
12. Ayanda N. Shabalala, Stephen O. Ekolu, Souleymane Diop, Fitsum Solomon. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage – column study. Journal of Hazardous Materials. 2017. Vol. 323, pp. 641–653. DOI: 10.1016/j.jhazmat.2016.10.027.
13. Xiaogeng Xie, Tongsheng Zhanga, Yongmin Yang, Ziyu Lin, Jiangxiong Wei, Qijun Yu. Maximum paste coating thickness without voids clogging of pervious concrete and its relationship to the rheological properties of cement paste. Construction and Building Materials. 2018. Vol. 168, pp. 732–746. DOI: 10.1016/j.conbuildmat.2018.02.128.
14. Ali Rezaei Lori, Abolfazl Hassani, Reza Sedghi. Investigating the mechanical and hydraulic characteristics of pervious concrete containing copper slag as coarse aggregate. Construction and Building Materials. 2019. Vol. 197, pp. 130–142. DOI: 10.1016/j.conbuildmat.2018.11.230.
15. Hanbing Wang, Hui Li, Xiao Liang, Haonan Zhou, Ning Xie, Zhen Dai. Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Construction and Building Materials. 2019. Vol. 202, pp. 387–395. DOI: 10.1016/j.conbuildmat.2019.01.044.
16. Lei Lang, Haijuan Duan, Bing Chen. Properties of pervious concrete made from steel slag and magnesium phosphate cement. Construction and Building Materials. 2019. Vol. 209, pp. 95–104. DOI: 10.1016/j.conbuildmat.2019.03.123.
17. Mojtaba Tabatabaeian, Alireza Khaloo, Hooman Khaloo. An innovative high performance pervious concrete with polyester and epoxy resins. Construction and Building Materials. 2019. Vol. 228, pp. 1–22. DOI: 10.1016/j.conbuildmat.2019.116820.
18. Zhen Dai, Hui Li, Wenzhong Zhao, Xiangping Wang, Hanbing Wang, Haonan Zhou, Bing Yang. Multi-modified effects of varying admixtures on the mechanical properties of pervious concrete based on optimum design of gradation and cement-aggregate ratio. Construction and Building Materials. 2020. Vol. 233, pp. 1–9. DOI: 10.1016/j.conbuildmat.2019.117178.
19. Jian-Xin Lu, Xin Yan, Pingping He, Chi Sun Poon. Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of Cleaner Production. 2019. Vol. 234, pp. 1102–1112. DOI: 10.1016/j.jclepro.2019.06.260.
20. M.Uma Maguesvari, V.L. Narasimha. Studies on characterization of pervious concrete for pavement applications. Procedia – Social and Behavioral Sciences. 2013. Vol. 104, pp. 198–207. DOI: 10.1016/j.sbspro.2013.11.112.
21. Bashar S. Mohammed, Mohd Shahir Liew, Wesam S. Alaloul, Veerendrakumar C. Khed, Cheah Yit Hoong, Musa Adamu. Properties of nano-silica modified pervious concrete. Case Studies in Construction Materials. 2018. Vol. 8, pp. 409–422. DOI: 10.1016/j.cscm.2018.03.009.
22. Mohsen Sartipi, Farid Sartipi. Stormwater retention using pervious concrete pavement: Great Western Sydney case study. Case Studies in Construction Materials. 2019. Vol. 11, pp. 1–8. DOI: 10.1016/j.cscm.2019.e00274.
23. Shengnan Dai, Xianghao Wu, Haoran Zhou, Wei Li, Xingquan Jiang, Binghan Liang. Experimental study on mechanical properties of permeable concrete. Earth and Environmental Science. 2019. Vol. 233, pp. 1–6. DOI: 10.1088/1755-1315/233/3/032037.
24. Ramkrishnan R., Abilash B., Mansi Trivedi, Varsha P., Varun P., Vishanth S. Effect of mineral admixtures on pervious concrete. Materials Today: Proceedings. 2018. Vol. 5, pp. 24014–24023. DOI: https://doi.org/10.1016/j.matpr.2018.10.194
25. Gersson F.B. Sandoval, Isaac Galobardes, Raquel S. Teixeira, Berenice M. Toralles. Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes. Case Studies in Construction Materials. 2017. Vol. 7, pp. 317–328. DOI: 10.1016/j.cscm.2017.09.001.
26. Jian-Xin Lu, Xin Yan, Pingping He, Chi Sun Poon. Sustainable design ofpervious concrete using wasteglass and recycled concrete aggregate. Journal of Cleaner Production. 2019. Vol. 234, pp. 1102–1112. DOI: 10.1016/j.jclepro.2019.06.260.
27. Soon Poh Yap, Paul Zhao Chiat Chen, Yingxin Goh, Hussein Adebayo Ibrahim, Kim Hung Mo, Choon Wah Yuen. Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates. Journal of Cleaner Production. 2018. Vol. 181, pp. 155–165. DOI: 10.1016/j.jclepro.2018.01.205.
28. Murugan Muthu, Manu Santhanam, Mathava Kumar. Pb removal in pervious concrete filter: Effects of accelerated carbonation and hydraulic retention time. Construction and Building Materials. 2018. Vol. 174, pp. 224–232. DOI: 10.1016/j.conbuildmat.2018.04.116.
29. Ivanka Netinger Grubeša, Ivana Barišić, Vilma Ducman, Lidija Korat. Draining capability of single-sized pervious concrete. Construction and Building Materials. 2018. Vol. 169, pp. 252–260. DOI: 10.1016/j.conbuildmat.2018.03.037.
30. Hatice Öznur Öz. Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate. Construction and Building Materials. 2018. Vol. 166, pp. 601–609. DOI: 10.1016/j.conbuildmat.2018.02.010.
31. Valerie López-Carrasquillo, Sangchul Hwang. Comparative assessment of pervious concrete mixtures containing fly ash and nanomaterials for compressive strength, physical durability, permeability, water quality performance and production cost. Construction and Building Materials. 2017. Vol. 139, pp. 148–158. DOI: 10.1016/j.conbuildmat.2017.02.052.
32. Dang Hanh Nguyena, Mohamed Boutouil, Nassim Sebaibi, Fabienne Baraud, Lydia Leleyter. Durability of pervious concrete using crushed seashells. Construction and Building Materials. 2017. Vol. 135, pp. 137–150. DOI: 10.1016/j.conbuildmat.2016.12.219.
33. Elnaz Khankhaje, Mohd Razman Salim, Jahangir Mirza, Mohd Warid Hussin, Mahdi Rafieizonooz. Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Construction and Building Materials. 2016. Vol. 126, pp. 1054–1065. DOI: 10.1016/j.conbuildmat.2016.09.010.
34. Juanlan Zhou, Mulian Zheng, Qi Wang, Jiangang Yang, Tianfa Lin. Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates. Construction and Building Materials. 2016. Vol. 124, pp. 897–905. DOI: 10.1016/j.conbuildmat.2016.07.136.
35. Hao Wu, Zhuo Liu, Beibei Sun, Jian Yin. Experimental investigation on freeze–thaw durability of Portland cement pervious concrete (PCPC). Construction and Building Materials. 2016. Vol. 117, pp. 63–71. DOI: 10.1016/j.conbuildmat.2016.04.130.
36. Hussein Adebayo Ibrahim, Hashim Abdul Razak. Effect of palm oil clinker incorporation on properties of pervious concrete. Construction and Building Materials. 2016. Vol. 115, pp. 70–77. DOI: 10.1016/j.conbuildmat.2016.03.181.
37. Nicholas A. Brake, Hamid Allahdadi, Fatih Adam. Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials. 2016. Vol. 113, pp. 536–543. DOI: 10.1016/j.conbuildmat.2016.03.045.
38. Anthony Torres, Jiong Hu, Amy Ramos. The effect of the cementitious paste thickness on the performance of pervious concrete. Construction and Building Materials. 2015. Vol. 95, pp. 850–859. DOI: 10.1016/j.conbuildmat.2015.07.187.
39. Alessandra Bonicelli, Filippo Giustozzi, Maurizio Crispino. Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Construction and Building Materials. 2015. Vol. 91, pp. 102–110. DOI: 10.1016/j.conbuildmat.2015.05.012.
40. K. Ćosić, L. Korat, V. Ducman, I. Netinger. Influence of aggregate type and size on properties of pervious concrete. Construction and Building Materials. 2015. Vol. 78, pp. 69–76. DOI: 10.1016/j.conbuildmat.2014.12.073.
41. Dang Hanh Nguyen, Nassim Sebaibi, Mohamed Boutouil, Lydia Leleyter, Fabienne Baraud. A modified method for the design of pervious concrete mix. Construction and Building Materials. 2014. Vol. 73, pp. 271–282. DOI: 10.1016/j.conbuildmat.2014.09.088.
42. Mehmet Gesoglu, Erhan Güneyisi, Ganjeena Khoshnaw, Süleyman Ipek. Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials. 2014. Vol. 73, pp. 19–24. DOI: 10.1016/j.conbuildmat.2014.09.047.
43. Saeid Hesami, Saeed Ahmadi, Mahdi Nematzadeh. Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Materials. 2014. Vol. 53, pp. 680–691. DOI: 10.1016/j.conbuildmat.2013.11.070.
44. Sonebi M., Bassuoni M.T. Investigating the effect of mixture design parameters on pervious concrete by statistical modelling. Construction and Building Materials. 2013. Vol. 38, pp. 147–154. DOI: 10.1016/j.conbuildmat.2012.07.044.
45. Xiang Shu, Baoshan Huang, Hao Wu, Qiao Dong, Edwin G. Burdette. Performance comparison of laboratory and field produced pervious concrete mixtures. Construction and Building Materials. 2011. Vol. 25, pp. 3187–3192. DOI: 10.1016/j.conbuildmat.2011.03.002.
46. Baoshan Huang, Hao Wu, Xiang Shu, Edwin G. Burdette. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Construction and Building Materials. 2010. Vol. 24, pp. 818–823. DOI: 10.1016/j.conbuildmat.2009.10.025.
47. Pieralisi R., Cavalaro S.H.P., Aguado A. Discrete element modelling of the fresh state behavior of pervious concrete. Cement and Concrete Research. 2016. Vol. 90, pp. 6–18. DOI: 10.1016/j.cemconres.2016.09.010.
48. Liana C., Zhuge Y. Optimum mix design of enhanced permeable concrete – An experimental investigation. Construction and Building Materials. 2010. Vol. 24, pp. 2664–2671. DOI: 10.1016/j.conbuildmat.2010.04.057.
49. Holmes Ryan R., Hart Megan L., Kevern John T. Heavy metal removal capacity of individual components of permeable reactive concrete. Journal of Contaminant Hydrology. 2017. Vol. 196, pp. 52–61. DOI: 10.1016/j.jconhyd.2016.12.005.
50. Solpuker U., Sheets J., Kim Y., Schwartz F.W. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete. Journal of Contaminant Hydrology. 2014. Vol. 196, pp. 35–48. DOI: 10.1016/j.jconhyd.2014.03.002.
51. Xiaogeng Xie, Tongsheng Zhang, Yongmin Yang, Ziyu Lin, Jiangxiong Wei, Qijun Yu. Maximum paste coating thickness without voids clogging of pervious concrete and its relationship to the rheological properties of cement paste. Construction and Building Materials. 2018. Vol. 168, pp. 732–746. DOI: 10.1016/j.conbuildmat.2018.02.128.
52. Mo L.T., Huurman M., Wu S.P., Molenaar A.A.A. Bitumen–stone adhesive zone damage model for the meso-mechanical mixture design of ravelling resistant porous asphalt concrete. International Journal of Fatigue. 2011. Vol. 33, pp. 1490–1503. DOI: 10.1016/j.ijfatigue.2011.06.003.
53. Brake Nicholas A., Allahdadi Hamid, Adam Fatih. Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials. 2016. Vol. 113, pp. 536–543. DOI: 10.1016/j.conbuildmat.2016.03.045.
54. Gerharz B. Pavements on the base of polymer-modified drainage concrete. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999. Vol. 152, pp. 205–209. https://doi.org/10.1016/S0927-7757(98)00831-0
55. Toplicic-Curcic Gordana, Grdic Dusan, Ristic Nenad, Grdić Zoran. Environmental importance, composition and properties of pervious concrete. Gradjevinski materijali i konstrukcije. 2016. Vol. 59, pp. 15-27. 10.5937/grmk1602015T.
56. Cheng Yee Ng, Anaqi Ratna Narong, Aifaa Balqis Kamarul Zaman, Zahiraniza Mustaffa, Bashar S. Mohammed, Lee Woen Ean. Properties of modified high permeable concrete with a crumb rubber. The Open Civil Engineering Journal. 2019. Vol. 13, pp. 82–91. DOI: 10.2174/1874149501913010082.
57. Seung Bum Park, Byung Jae Lee, Jun Lee, Young Il Jang. A study on the seawater purification characteristics of water-permeable concrete using recycled aggregate. Resources, Conservation and Recycling. 2010. Vol. 54, pp. 658–665. DOI: 10.1016/j.resconrec.2009.11.006.
58. Xiaodi Hu, Kang Dai, Pan Pan. Investigation of engineering properties and filtration characteristics of porous asphalt concrete containing activated carbon. Journal of Cleaner Production. 2019. Vol. 209, pp. 1484–1493. DOI: 10.1016/j.jclepro.2018.11.115.
59. Poulikakos L.D., Sedighi Gilani M., Derome D., Jerjen I., Vontobel P. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. Applied Radiation and Isotopes. 2013. Vol. 77, pp. 5–13. DOI: 10.1016/j.apradiso.2013.01.040.
60. Eduardo-Javier Elizondo-Martínez, Valerio-Carlos Andres-Valeri, Daniel Jato-Espino, Jorge Rodriguez-Hernandez. Review of porous concrete as multifunctional and sustainable pavement. Journal of Building Engineering. 2020. Vol. 27, pp. 1–9. DOI: 10.1016/j.jobe.2019.100967.
61. Sourabh Rahangdale, Shobhit Maran, Sumit Lakhmanil, Mayuresh Gidde. Study of pervious concrete. International Research Journal of Engineering and Technology (IRJET). 2017. Vol. 6, pp. 2563–2566. https://www.irjet.net/archives/V4/i6/IRJET-V4I6648.pdf
62. Muhammad Aamer Rafique Bhutta, Nor Hasanah, Nur Farhayu, Mohd Warid Hussin, Mahmood bin Md Tahir, J. Mirza. Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials. 2013. Vol. 47, pp. 1243–1248. DOI: 10.1016/j.conbuildmat.2013.06.022.
63. Lian C., Zhuge Y., Beecham S. The relationship between porosity and strength for porous concrete. Construction and Building Materials. 2011. Vol. 25, pp. 4294–4298. DOI: 10.1016/j.conbuildmat.2011.05.005.
64. Muhammad Aamer Rafique Bhutta, Nor Hasanah, Nur Farhayu, Mohd Warid Hussin, Mahmood bin Md Tahir, J. Mirza. Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials. 2013. Vol. 47, pp. 1243–1248. DOI: 10.1016/j.conbuildmat.2013.06.022.
65. Gelong Xu, Weiguo Shen, Xujia Huo, Zhifeng Yang, Jing Wang, Wensheng Zhang, Xiaoli Ji. Investigation on the properties of porous concrete as road base material. Construction and Building Materials. 2018. Vol. 158, pp. 141–148. DOI: 10.1016/j.conbuildmat.2017.09.151.
66. Wuguang Lin, Dae-Geun Park, Sung Woo Ryu, Byeong-Tae Lee, Yoon-Ho Cho. Development of permeability test method for porous concrete block pavement materials considering clogging. Construction and Building Materials. 2016. Vol. 118, pp. 20–26. DOI: 10.1016/j.conbuildmat.2016.03.107.
67. Weiguo Shena, Lai Shan, Tao Zhang, Hongkun Ma, Zhi Cai, Hua Shi. Investigation on polymer–rubber aggregate modified porous concrete. Construction and Building Materials. 2013. Vol. 38, pp. 667–674. DOI: 10.1016/j.conbuildmat.2012.09.006.
68. Aamer Rafique Bhutta M., Tsuruta K., Mirza J. Evaluation of high-performance porous concrete properties. Construction and Building Materials. 2012. Vol. 31, pp. 67–73. DOI: 10.1016/j.conbuildmat.2011.12.024.
69. Chao Xie, Linjuan Yuan, Min Zhao, Yinghui Jia. Study on failure mechanism of porous concrete based on acoustic emission and discrete element method. Construction and Building Materials. 2020, pp. 1–10. DOI: 10.1016/j.conbuildmat.2019.117409.
70. СП 28.13330.2017. Свод правил. Защита строительных конструкций от коррозии. Актуализиро-ванная редакция СНиП 2.03.11–85. Введен 28.08.2017.
70. SP 28.13330.2017. Svod pravil. Zashhita stroitel’nyh konstrukcij ot korrozii. Aktualizirovannaja redakcija SNiP 2.03.11–85 [SP 28.13330.2017. Set of rules. Protection of building structures against corrosion. Updated edition of SNiP 2.03.11–85]. Introduced28.08.2017. (In Russian).
71. Harada S., Yanbe M. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff. Chemosphere. 2018. Vol. 197, pp. 451–456. DOI: 10.1016/j.chemosphere.2018.01.044.
72. Elnaz Khankhaje, Mohd Razman Salim, Jahangir Mirza, Salmiati, Mohd Warid Hussin, Rawid Khan, Mahdi Rafieizonooz. Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell. Applied Acoustics. 2017. Vol. 122, pp. 113–120. DOI: 10.1016/j.apacoust.2017.02.014.
73. Дергунова А.В., Пиксайкина А.А. Применение пористых тротуаров в создании инфраструктуры городской среды // Вестник МГСУ. 2018. Т. 13. № 12 (123). С. 1440–1447.
73. Dergunova A.V., Piksajkina A.A. The use of porous sidewalks in creating the infrastructure of the urban environment. Vestnik MGSU. 2018. Vol. 13. No. 12 (123), pp. 1440–1447. (In Russian).
74. Kebede Keterew Kefeni, Bhekie Brilliance Mamba. Evaluation of charcoal ash nanoparticles pollutant removal capacity from acid mine drainage rich in iron and sulfate. Journal of Cleaner Production. 2020. Vol. 251, pp. 1–14. DOI: 10.1016/j.jclepro.2019.119720.
75. Jinman Wang , Qian Qin, Sijia Hu, Kening Wu. A concrete material with waste coal gangue and fly ash used for farmland drainage in high groundwater level areas. Journal of Cleaner Production. 2016. Vol. 112, pp. 631–638. DOI: 10.1016/j.jclepro.2015.07.138.
76. Романенко И.И., Петровнина И.Н., Романенко М.И. Пористый бетон в дорожном строительстве // Инженерный вестник Дона. 2019. № 2 (53). С. 50.
76. Romanenko I.I., Petrovnina I.N., Romanenko M.I. Porous concrete in road construction. Inzhenernyi vestnik Dona. 2019. No. 2 (53), pp. 50. (In Russian).
77. Лесовик Р.В., Сопин Д.М., Митрохин А.А. Крупнопористый бетон для малоэтажного строительства на композиционных вяжущих // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 10. С. 45–50.
77. Lesovik R.V., Sopin D.M., Mitrohin A.A. Krupnoporistyj beton dlja malojetazhnogo stroitel’stva na kompozicionnyh vjazhushhih. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2016. No. 10, pp. 45–50. (In Russian).
78. Арын Б.А. Обоснование применения пористого бетона в качестве основания и дренажа сооружений // Известия Всероссийского научно-исследовательского института гидротехники им. Б.Е. Веденеева. 2016. Т. 281. С. 101–108.
78. Aryn B.A. Justification for the use of porous concrete as a base and drainage of structures. Izvestija Vserossijskogo nauchno-issledovatel’skogo instituta gidrotehniki named after B.E. Vedeneeva. 2016. Vol. 281, pp. 101–108. (In Russian).
79. Mohammed Seddik Meddah, Salim Zitouni Saïd Belâabes. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Construction and Building Materials. 2010. Vol. 24, pp. 505–512. DOI: 10.1016/j.conbuildmat.2009.10.009.
80. Лесовик В.С., Агеева М.С., Иванов А.В. Гранулированные шлаки в производстве композиционных вяжущих // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2011. № 3. С. 29–32.
80. Lesovik V.S., Ageeva M.S., Ivanov A.V. Granular slag in the production of composite binders. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2011. No. 3, pp. 29–32. (In Russian).
81. Беленцов Ю.А., Лесовик В.С., Ильинская Г.Г. Повышение надежности конструкций управлением параметрами композиционного материала // Строительные материалы. 2011. № 3. С. 90–92.
81. Belentsov Yu.A., Lesovik V.S., Il’inskaya G.G. Enhancement of reliability of structures by controlling parameters of a composition material. Stroitel’nye Materialy [Construction Materials] 2011. No. 3, pp. 90–92. (In Russian).
82. Косухин М.М., Косухин А.М., Шарапова Ю.А., Шарапов О.Н. Обеспечение долговечности, эксплуатационной надежности, комфортности и экологической безопасности улично-дорожной сети путем использования цементобетонных дорожных покрытий на модифицированном вяжущем // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 3. С. 31–37.
82. Kosuhin M.M., Kosuhin A.M., Sharapova Ju.A., Sharapov O.N. Ensuring the durability, operational reliability, comfort and environmental safety of the road network by using cement concrete pavements on a modified binder. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2016. No. 3, pp. 31–37. (In Russian).
83. Королев Е.В. Принцип реализации нанотехнологии в строительном материаловедении // Строительные материалы. 2013. № 6. С. 60–64.
83. Korolev E.V. Principle of realization of nanotechnology in building materials science. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 60–64. (In Russian).
84. Sonebi M., Bassuoni M.T. Investigating the effect of mixture design parameters on pervious concrete by statistical modelling. 2013. Vol. 38, pp. 147–154. DOI: 10.1016/j.conbuildmat.2012.07.044.
85. Строкова В.В., Бабаев В.Б., Марков А.Ю., Соболев К.Г., Нелюбова В.В. Сравнительная оценка конструкций дорожной одежды с использованием цементобетона // Строительные материалы и изделия. 2019. Т. 2. № 4. С. 56–63.
85. Strokova V.V., Babaev V.B., Markov A.Ju., Sobolev K.G., Neljubova V.V. Comparative assessment of pavement structures using cement concrete. Stroitel’nye materialy i izdeliya. 2019. Vol. 2. No. 4, pp. 56–63. (In Russian).
86. Автомобильные дороги. Строительные нормы и правила. СНИП 2.05.02–85 (утв. Постановлением Госстроя СССР от 17.12.85 № 233) (ред. от 08.06.95).
86. Avtomobil’nye dorogi. Stroitel’nye normy i pravila. SNIP 2.05.02–85 (utv. Postanovleniem GOSSTROJa SSSR ot 17.12.85 No. 233) (red. ot 08.06.95). [Highways. Building regulations. SNIP 2.05.02–85 (approved by the Decree of the GOSSTROY of the USSR dated 17.12.85 No. 233) (As amended on 08.06.95)]. (In Russian).
87. Ерофеев В.Т., Федорцов А.П., Богатов А.Д., Федорцов В.А. Биокоррозия цементных бетонов, особенности ее развития, оценки и прогнозирования // Фундаментальные исследования. 2014. № 12–4. С. 708–716.
87. Erofeev V.T., Fedorcov A.P., Bogatov A.D., Fedorcov V.A. Biocorrosion of cement concrete, features of its development, assessment and forecasting. Fundamental’nye issledovaniya. 2014. No. 12–4, pp. 708-716. (In Russian).
88. Ерофеев В.Т., Богатов А.Д., Федорцов А.П., Пронькин С.П. Исследование механизмов повреждения битумных композитов в условиях воздействия биологических агрессивных сред // Фундаментальные исследования. 2015. № 2–13. С. 2787–2800.
88. Erofeev V.T., Bogatov A.D., Fedorcov A.P., Pron’kin S.P. Investigation of damage mechanisms of bitu-men composites under conditions of exposure to biological aggressive environment. Fundamental’nye issledovaniнa. 2015. No. 2–13, pp. 2787–2800. (In Russian).
89. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В., Духанина У.Н., Балицкий Д.А. Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития // Строительные материалы. 2019. № 9. С. 83–103. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103.
89. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V., Dukhanina U.N., Balitsky D.A. Application of microbial carbonate biomineralization in biotechnologies of building materials creation and restoration: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103

For citation: Strokova V.V., Stojkovich N., Laketich S.K., Zhao P., Laketich A., Laketich N. High-permeable concrete with drainage effect: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 32–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-32-61


Print   Email