Log in

Reducing the Construction Time of Buildings Made of Monolithic Concrete

Number of journal: 3-2020
Autors:

Batyushenko A.A.,
Sokolov N.S.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-49-53
УДК: 693.5

 

AbstractAbout AuthorsReferences
Ensuring the manufacturability of buildings and structures for any purpose is an important state task. Currently, most construction organizations work with the use of outdated technological maps for the construction of a monolithic reinforced concrete frame. A method for reducing the construction time of buildings and structures constructed from ready-made concrete mix and under the conditions of construction sites is presented. Techniques for the optimal choice of building construction technology are highlighted. The ways of reducing the terms of concrete strength set developed by the authors during the construction of objects in Cheboksary, Chuvash Republic, and Tsiolkovsky City on the territory of the “Vostochny” Cosmodrome are given. To introduce the labor organization based on the principle of «industrial conveyor» in the construction, technological maps and graphs were developed, which made it possible to increase labor productivity by two times. A number of design solutions for reinforcing monolithic structures were simplified. At the first stage of construction of structures in Tsiolkovsky City, the number of rebar ligation units was reduced by more than 2.5 million operations. It was possible to reduce the period of concrete strength gain from 5 to 1.5 days.
A.A. BATYUSHENKO1, Engineer;
N.S. SOKOLOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 FGUP “Spetsstroytechnologii” pri RF Spetsstroy (the city of Tsiolkovsky, Amur Oblast, 676470, Russian Federation)
2 I.N. Ulianov Chuvash State University» (15, Moskovskiy pr., 428015, Cheboksary, Chuvash Republic, Russian Federation)

1. Kozelkov M.M., Antipov S.S. life cycle Management of load-bearing structures of monolithic reinforced concrete buildings using information modeling technology. Beton i zhelezobeton. 2016. No. 1, рр. 12–15. (In Russian).
2. Sassone M., Casalegno C. Evaluation of the structural response to the time-dependent behaviour of concrete. Part 2. A general computational approach. The Indian Concrete Journal. 2012. Vol. 86. No. 12, рp. 39–51.
3. Kuzevanov D.V., Belyaev A.V. Information modeling of reinforced concrete struct. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 1, рp. 58–63. (In Russian).
4. Zemlyakov G.V. Modeling of the process of heat treatment of concrete monolithic structures. Nauka i tekhnika. 2015. No. 6, рp. 37–43. (In Russian).
5. Khayutin Yu.G. Monolitnyi beton [Monolithic concrete]. Moscow: Stroyizdat, 1981. 236 p.
6. Itskin V. G. the Strength and diagnosis of concrete monolithic vertical structures. Nauchnaya diskussiya: voprosy tekhnicheskikh nauk. 2016. No. 5 (35), рp. 48–61. (In Russian).
7. Grinev A.P., Rudchenko I.I., Never V.O. fine-Grained concrete for monolithic construction. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2016. No. 58, рp. 203–214. (In Russian).
8. Samuskevich V., Koshevar V. Chemical additives in the technology of monolithic concrete. Nauka i innovatsii. 2011. No. 6 (100), рp. 18–20. (In Russian).
9. Terentyev O.M. Tekhnologiya vozvedeniya zdanii i sooruzhenii [Technology of construction of buildings and structures]. Rostov-on-don: Phoenix, 2006. 223 p.
10. Kuzmin A.V., Yusin G.S. Quality of life and quality of spatial environment-social standards and norms in urban planning, architecture, construction. Informatsiya RAASN. 2011. No. 4, рp. 16–19. (In Russian).
11. Stefanovic M.Y. low-rise housing construction: features and problems of development in Russia. Molodoi uchenyi. 2015. No. 12, рp. 505–507. (In Russian).
12. Akulova I.I., Chernyshev E.M., Praslov V.A. Forecasting the development of the regional construction complex: theory, methodology and applied tasks. Voronezh: VSTU, 2016. 162.
13. Akulova I.I., Dudina N.A., Baranov E.V. Methods and results of evaluating the competitiveness of thermal insulation materials used in housing construction. Economy. Theory and practice: Materials of the international scientific and practical conference. Saratov: TCM “Academy of business”. 2014, рp. 32–37.
14. Akulova I.I., Praslov V.A. Scenario forecasting of capital construction needs in personnel of working professions (regional aspect). Vestnik grazhdanskikh inzhenerov. 2016. No. 4 (55), рp. 267–273. (In Russian).

For citation: Batyushenko A.A., Sokolov N.S. Reducing the construction time of buildings made of monolithic concrete. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 49–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-49-53

Determination of the Adhesion Strength of Reinforcing Fibers to the Matrix in Fiber Concrete

Number of journal: 3-2020
Autors:

Pukharenko Yu.V.,
Morozov V.I.,
Panteleev D.A.,
Zhavoronkov M.I.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-39-43
УДК: 691.328.5

 

AbstractAbout AuthorsReferences
The issue of determining the characteristics of the adhesion of fibers to the matrix, which is necessary for the theoretical prediction of the behavior of fiber concrete under load and determining the indicators of its crack resistance by calculation, is considered; it is also one of the values that determine the mechanism of destruction of the cement composite. The existing method for determining the characteristics of the fiber-matrix adhesion strength is presented, the effectiveness of its application is considered on the example of low-modulus synthetic fiber. The method provides for the production and testing of several series of fiber concrete samples and subsequent calculation of the strength characteristics of the adhesion of fibers to the cement matrix based on the results obtained. In this case, it is necessary to determine such a volume content of fibers, after the introduction of which there is a steady increase in the strength of fiber concrete. However, it is known that low-modulus fiber does not have a noticeable effect on the strength of fiber concrete , so determining the characteristics of its adhesion to the matrix may be difficult, which causes the need to improve the existing method and indicates the relevance of the research topic.
Yu.V. PUKHARENKO, Doctor of Sciences (Engineering), Corresponding member of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.I. MOROZOV, Doctor of Sciences (Engineering), Corresponding member of RAACS,
D.A. PANTELEEV, Candidate of Sciences (Engineering),
M.I. ZHAVORONKOV, Candidate of Sciences (Engineering)

Saint Petersburg State University of Architecture and Civil Engineering (4, Vtoraya Krasnoarmeiskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Rabinovich, F.N. Kompozity na osnove dispersno armirovannykh betonov. Voprosy teorii i proektirovaniya, tekhnologiya, konstruktsii [Composites based on dispersed reinforced concrete. Questions of theory and design, technology, constructions]. Moscow: ASV. 2004. 560 p.
2. Rabinovich F.N. Betony, dispersno-armirovannye voloknami: Obzor [Concrete, dispersed-fiber-reinforced: Overview]. Moscow: All-Union Scientific Research Institute of Scientific and Technical Information and Economics of the Building Materials Industry. 1976. 73 p.
3. Panteleev D.A. Deformative and strength characteristics of poly-reinforced fiber-reinforced concrete. Izvestiya KGASU. 2015. No. 3 (33), pp. 133–139. (In Russian).
4. Panteleev D.A. Evaluation of the effectiveness of poly-reinforced fiber-reinforced concrete. Vestnik grazhdanskikh inzhenerov. 2013. No. 6 (41), pp. 102–108. (In Russian).
5. Puharenko Yu.V., Magdeev U. Kh., Morozov V.I., Panteleev D.A., Zhavoronkov M.I. Investigation of the properties of steel fiber concrete based on amorphous metal fiber. Vestnik VolgGASU. 2013. Iss. 31 (50), pp. 132–135. (In Russian).
6. Mett’yuz F., Rolings R. Kompozitsionnye materialy. Mekhanika i tekhnologiya [Composite materials: engineering and science]. Moscow: Tekhnosfera. 2004. 408 p.
7. Parton V.Z. Mekhanika razrusheniya: Ot teorii k praktike [Fracture mechanics: From theory to practice]. Moscow: Nauka. 1990. 240 p.
8. Zertsalov M.G., Khoteev E.A. Experimental determination of fiber-reinforced concrete crack resistance characteristics. Vestnik MGSU. 2014. No. 5, pp. 91–99. (In Russian).
9. Zhavoronkov M.I. Method of determining the energy and power characteristics of the destruction of fiber-reinforced concrete. Vestnik grazhdanskikh inzhenerov. 2014. No. 6 (47), pp. 155–160. (In Russian).
10. Zhavoronkov M.I. Determination of fracture characteristics and elastic modulus of fiber-reinforced concrete. Izvestiya KGASU. 2015. No. 3 (33), pp. 114–120. (In Russian).
11. Puharenko Yu.V., Panteleev DA, Zhavoronkov M.I. Deformation diagrams of cement composites reinforced with steel wire fiber. Academia. Arkhitektura i stroitel’stvo. 2018. No. 2, pp. 143–147. (In Russian).
12. Puharenko, Yu.V., Golubev, V.Yu. On the viscosity of the destruction of fiber-reinforced concrete. Vestnik grazhdanskikh inzhenerov. 2008. No. 3, pp. 80–83. (In Russian).
13. Puharenko, Yu.V., Golubev V.Yu. High-strength steel fiber concrete. Promishlennoe i grazdanskoe stroitelstwo. 2007. № 9, pp. 40–41. (In Russian).
14. Puharenko Yu.V. Principles of formation of the structure and prediction of the strength of fiber-reinforced concrete. Stroitel’nye Materialy [Construction Mate-rials]. 2004. No. 10 (598), pp. 47–50. (In Russian).
15. Kostrikin M.P. The character and degree of interaction of synthetic macrofiber with cement stone. Vestnik grazhdanskikh inzhenerov. 2018. No. 4 (69), pp. 116–120. (In Russian).

For citation: Pukharenko Yu.V., Morozov V.I., Panteleev D.A., Zhavoronkov M.I. Determination of the adhesion strength of reinforcing fibers to the matrix in fiber concrete. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 39–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-39-43

High-Performance Concrete Produced With Locally Available Materials of Vietnam

Number of journal: 3-2020
Autors:

Bazhenov Yu.M.,
Aleksandrova O.V.,
Nguyen Duc Vinh Quang,
Bulgakov B.I.,
Larsen O.A.,
Gal'tseva N.A.,
Golotenko D.S.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-32-38
УДК: 666.972.55

 

AbstractAbout AuthorsReferences
Vietnam is a developing country. In recent years concrete has been widely used in most construction projects. However, Vietnam is one of the most severely affected country by climate change and sea level rise, especially in southern part of the country. The impact of seawater combined with technogenic waste impedes the development of necessary infrastructure, especially in coastal areas in the South of Vietnam. In such conditions, it is necessary to use high-performance concretes which have both the required strength and resistance in aggressive environments. The main objective of the study was design of high-performance concrete with compressive strength more than 80 MPa with mainly use of local materials of Vietnam. In this study was used locally available materials of Vietnam, which includes the following components: sulfate-resisting Portland cement – PCSR40; crushed granite as coarse aggregate with size of 5–10 and 10–20 mm; fine river sand with fineness modulus of 3; superplasticizer Sika®ViscoCrete®-151; fly ash as mineral admixture with class F (FA), silica flour (Qp) and silica fume (SF), and water. All concrete mixtures were designed according to Russian standard GOST 7473–2010 and GOST 10181–2014. The highest compressive strengths obtained at the age of 56 days was 109 MPa with mixes content: 10–12.5%SF+20-40%FA+20%Qp. This study has shown that HPC can be produced by using local materials of Vietnam. Concrete with high strength properties and optimal granulometric composition of raw materials was obtained to ensures high density packing of the grains. It makes possible to use high-strength concrete as constructional material in climate of Vietnam.
Yu.M. BAZHENOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. ALEKSANDROVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
NGUYEN DUC VINH QUANG, Postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
B.I. BULGAKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.A. LARSEN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.A. GAL'TSEVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.S GOLOTENKO, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Hoff G.C. Utilization of high-strength concrete in North America. Proceeding of the Third International on Utilization of High-Strength Concrete in Lillehammer. 1993, pp. 28–36.
2. Holand I. High-strength concrete in Norway – utilization and research. Proceeding of the Third International on Utilization of High-Strength Concrete. 1993, pp. 68–79.
3. Pierre-Claude Aitcin, Moussa Baalbaki. canadian experience in producing and testing HPC. International Concrete Abstracts Portal. 1996, pp. 295–308.
4. De Larrard. A survey of recent research performed in French “LPC” network on high-performance concrete. The Third International on Utilization of High-Strength Concrete. 1993, pp. 57–67.
5. Sicard V., Pons G. High-performance concretes: some phenomena in relation to desiccation. Materials and Structures. 1992. Vol. 25 (10), pp. 591–597. DOI:10.1007/bf02472227
6. Potter R.J., Guirguis S. High-strength concrete in Australia. The Third International on Utilization of High strength Concrete in Lillehammer. 1993, pp. 581–9.
7. König, G. Utilization of High-strength concrete in Germany. Proceeding of The Third International on Utilization of High strength Concrete in Lillehammer. 1993, pp. 45–56.
8. Aoyama H., Murato T., Hiraishi H., Bessho S. Outline of the Japanese national project on advanced reinforced concrete buildings with high-strength and high-quality materials. ACI SP-121. 1990, pp. 21–31.
9. Sung-Woo Shin. High-strength concrete in Korea. Engineered Concrete Structures. 1990. Vol. 3 (2), pp. 3–4.
10. Zhu Jinquam, Hu Qingchang. High strength concrete in China. Engineered Concrete Structures. 1993. Vol. 6 (2), pp. 1–3.
11. Chern J.C., Hwang C.L., Tsai T.H. Research and development of high performance concrete in Taiwan. Concrete International. 1995. Vol. 17 (10), pp. 71–77.
12. Karthikeyan G., Balaji M., Adarsh R. Pai, Krishnan A. Muthu. High-performance concrete (HPC) – an innovative cement concrete mix design to increase the life span of structures. Sustainable Construction and Building Materials. 2018, pp. 189–199. DOI: 10.1007/978-981-13-3317-0_17
13. Bilek V., Pytlik D., Bambuchova M. High performance concrete with ternary binders. Key Engineering Materials. 2018. Vol. 761, pp. 120–123. DOI:10.4028/www.scientific.net/KEM.761.120
14. Ahmet Benli, Kazim Turk, Ceren Kina. Influence of silica fume and class f fly ash on mechanical and rheological properties and freeze-thaw durability of self-compacting mortars. Journal of Cold Regions Engineering. Vol. 32. Iss. 3. 2018. 04018009. DOI:10.1061/(asce)cr.1943-5495.0000167
15. Petr Hajek. Advanced high-performance concrete structures – challenge for sustainable and resilient future. MATEC Web of Conferences 195 (ICRMCE 2018). 2018. 01001. DOI: 10.1051/matecconf/201819501001
16. Petr Hajek, Ctislav Fiala. Advanced concrete structures for the sustainable- and resilient-built environment. DSCS 2018, ACI. Moscow, pp. 69.1–69.8.
17. Chena J.J., Ng P.L., Li L.G., Kwan A.K.H. Production of high-performance concrete by addition of fly ash microsphere and condensed silica fume. Procedia Engineering. 2017. Vol. 172, pp. 165–171. DOI: 10.1016/j.proeng.2017.02.045
18. Elahi A., Basheer P.A.M., Nanukuttan S.V., Khan Q.U.Z. Mechanical and durability properties of high-performance concretes containing supplementary cementitious materials. Construction and Building Materials. 2010. Vol. 24. Iss. 3, pp. 292–299. DOI: 10.1016/j.conbuildmat.2009.08.045
19. Kwan A.K.H., Chen J.J. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technology. 2013. Vol. 234, pp. 19–25. DOI:10.1016/j.powtec.2012.09.016
20. Jae Hong Kim, Nagy Noemi, Surendra P. Shah. Effect of powder materials on the rheology and formwork pressure of self-consolidating concrete. Cement and Concrete Composites. 2012. Vol. 34 (6), pp. 746–753. DOI: 10.1016/j.cemconcomp.2012.02.016
21. Kashani Alireza, Nicolas R.S., Qiao G.G., Deventer J.S.V., Provis John L. Modelling the yield stress of ternary cement-slag-fly ash pastes based on particle size distribution. Powder Technology. 2014. Vol. 266, pp. 203–209. DOI: 10.1016/j.powtec.2014.06.041
22. Bentz Dale P., Ferraris C.F., Galler M.A., Hansen A.S., Guynn J.M. Influence of particle size distributions on yield stress and viscosity of cement fly ash pastes. Cement and Concrete Research. 2012. Vol. 42 (2), pp. 404–409. DOI: 10.1016/j.cemconres.2011.11.006
23. Lee C.Y., Lee H.K., Lee K.M. Strength and microstructural characteristics of chemically activated fly ash-cement systems. Cement and Concrete Research. 2003. Vol. 33 (3), pp. 425–431. DOI: 10.1016/S0008-8846(02)00973-0
24. Shaikh Faiz U.A., Supit Steve W.M. Compressive strength and durability properties of high volume fly ash concretes containing ultrafine fly ash. Construction and Building Materials. 2015. Vol. 82, pp. 192–205. DOI: 10.1016/j.conbuildmat.2015.02.068
25. Ashish Kumer Saha, Sarker P.K. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: Mechanical properties and leaching study. Journal of Cleaner Production. 2017. Vol. 162, pp. 438–448. DOI: 10.1016/j.jclepro.2017.06.035

For citation: Bazhenov Yu. M., Aleksandrova O.V., Nguyen Duc Vinh Quang, Bulgakov B.I., Larsen O.A., Gal'tseva N.A., Golotenko D.S. High-performance concrete produced with locally available materials in Vietnam. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 32–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-32-3

BENPAN — Innovation Technology of Prefabricated Low-Rise Housing Construction

Number of journal: 3-2020
Autors:

Golovin N.G.,
Fedorov Yu.N.,
Kozlov A.S.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-24-26
УДК: 711.643

 

AbstractAbout AuthorsReferences
Production of precast reinforced concrete requires modernization of technological processes, development and implementation of new technological and structural solutions to improve the quality of products. With the growth of low-rise construction, industrial technologies for the construction of energy-efficient, fully-assembled low-rise standard housing that is affordable to middle-income families are most in demand. The proposed technology is focused on the construction of low-rise individual and multi- apartment residential buildings and infrastructure facilities. The technology can be adapted in a short time for use at existing precast concrete plants with relatively small capital investments in technological equipment. The structures and materials used for their manufacture, as well as technological processes, are certified and meet the safety requirements.
N.G. GOLOVIN, Candidate of Sciences (Engineering), Adviser on scientific and industrial issues (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.N. FEDOROV, Director for development (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. KOZLOV, Magister, Engineer-Designer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

OOO “BENPAN” (Krekshino State Farm, Marushkinskoye Settlement, Moscow, 775101, Russian Federation)

1. Usmanov Sh.I. Formation of economic strategy of development of industrial housing construction in Russia. Politika, gosudarstvo i pravo. 2015. No. 1 (37), pp. 76–79. (In Russian).
2. Davidyuk A.N., Nesvetaev G.V. Large-panel housing construction – an important provision for solving the housing problem in Russia. Stroitel’nye Materialy [Construction Materials]. 2013. No. 3, pp. 24–26. (In  Russian).
3. Kazin A.S. Industrial housing construction: yesterday, today, tomorrow. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 10, pp. 22–26. (In Russian).
4. Nikolaev S.V. Panel and Frame Buildings of New Generation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 8, pp. 2–9. (In Russian).
5. Nikolaev S.V. Innovative Replacement of Large-Panel Housing Construction by Panel-Monolithic Housing Construction (PMHC). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 3–10. DOI: https://doi.org/10.31659/0044-4472-2019-3-3-10 (In Russian).
6. Nikolaev S.V. Renovation of housing stock of the country on the basis of large-panel housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 3–7. (In Russian).
7. Aloyan R.M., Podzhivotov V.P., Stavrova M.V. Organization of reconstruction of housing, taking into account the factor of comfort of residence. Investitsii v Rossii. 2011. No. 3, pp. 32–38. (In Russian).
8. Nikolaev S.V. Arrangement of balconies with the help of hollow core floor slabs. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 10, pp. 17–21. (In Russian).
9. Antipov D.N. Strategy of development of the enterprises of industrial housing construction. Problemy sovremennoi ekonomiki. 2012. No. 1, pp. 267–270. (In Russian).

For citation: Golovin N.G., Fedorov Yu.N., Kozlov A.S. BENPAN – innovation technology of prefabricated low-rise housing construction. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 24–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-24-26

Influence of Polymer Surfactants on the Corrosion of Steel Reinforcement in Concrete as Part of a Complex Anti-Corrosion Additive

Number of journal: 3-2020
Autors:

Talipov L.N.,
Velichko E.G.,
Tembulatov S.I.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-16-21
УДК: 666.982.24

 

AbstractAbout AuthorsReferences
Corrosion of steel reinforcement in concrete under the influence of aggressive environments brings huge losses all over the world. In this connection the development of methods for passivation of reinforcing steel is quite an urgent task. One of these methods is the use of complex anti-corrosion additives in the concrete mix. As a component of such additives, polymer surfactants are of particular interest because of their programmable properties, especially since the geography and range of their application are expanding. to assess the possibility of using polymer surfactants as components of a complex anti corrosion additive for a steel rod, samples of concrete with a chloride corrosion medium were modeled. To keep the polymer in the liquid phase longer, a naphthalene formaldehyde surfactant was added that was more active in its adsorbing characteristics. The result was that 6 of the 13 studied polymers in the complex anticorrosion additive showed a protective ability of 100%, the remaining 7 – from 96.46 to 99.9%. Based on the results obtained, it was found that polycarboxylate polymers have a passivating effect under aggressive medium-term probability by the adsorption-film mechanism. Thus, the prerequisites were created for further study of the principle of the protective effect of complex anti-corrosion additives based on polymer surfactants and a passivator.
L.N. TALIPOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.G. VELIChKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.I. TEMBULATOV, Master

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Raupach M., Elsener B., Polder R.., Mietz J. Raupach M., Elsener B., Polder R., Mitts D. Corrosion of reinforcement in concrete monitoring, prevention and rehabilitation techniques. Cambridge: Woodhead publishing limited. 2006. 336 p.
2. Nikitin S.E. Belov V.V. Forecasting of service life of reinforced concrete structures of transport facilities. Naukovedenie. 2014. No. 5(24). 05KO514. https://naukovedenie.ru/PDF/05KO514.pdf (date of access 19.03.14). (In Russian).
3. Tupikin E.I., Platonova E.E. Povyshenie sposobnosti metallov k passivacii primeneniem kompleksnyh dobavok [Increasing the ability of metals to passivation using complex additives]. Moscow: ASV. 2009. 128 p.
4. Wang X., Du R., Zhu Y., Guo Y., Chen W., Yang Z., Dong S., Lin C. Sodium nitrite-based corrosion inhibitor for reinforcing steel in simulated polluted concrete pore solutions. The Electrochemical Society. ECS Transactions. Vol. 50. DOI: 10.1149/05050.0043ecst.
5. Li J., Zhao B., Hu J., Zhang H., Dong S., Du R., Lin C. Corrosion inhibition effect of d-sodium gluconate on reinforcing steel in chloride-contaminated simulated concrete pore solution. International Journal of Electrochemical Science. 2015. No. 10. pp. 956–968. http://www.electrochemsci.org/papers/vol10/100100956.pdf
6. Talipov L., Velichko E. Polymer additives for cement systems based on polycarboxylate ethers. In: Murgul V., Pasetti M. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018 2018. Advances in Intelligent Systems and Computing. Vol 983. DOI: https://doi.org/10.1007/978-3-030-19868-8_93
7. Wang Z., Zi-Chen L., Liu X. Optimization of the structural parameters and properties of PCE based on the length of grafted side chain. Proc. 11 Int. Conf. Superplasticizers and Other Chemical Admixtures in Concrete. Ottawa. 2015. Vol. 302 (20), pp. 265–278.
8. Batrakov. V.G. Modificirovannye betony. Teoriya i praktika. 2-e izd., pererab. i dop. [Modified concrete. Theory and practice]. Moscow. 1998. 768 p.
9. Ratinov. V.B., Rozenberg T.I. Dobavki v beton [Concrete additives] Moscow: Stroyizdat. 1989. 188 p.
10. Yuhnevskiy P.I. On the mechanism of plasticizing cement compositions with additives. Stroitel’naya nauka i tekhnika: nauchno-tekhnicheskiy zhurnal. 2010. No. 1–2. pp. 64–69. (In Russian).
11. Vovk A.I. Some features of the use of hyper plasticizersторов. Tekhnologii betonov. 2007. No. 5. pp. 18–19. (In Russian).
12. Rozental’ N.K., Stepanova V.F., Chekhniy G.V. About maximum admissible content of chlorides in concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 82–85. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-745-1-2-82-85
13. Rozental’ N.K., Stepanova V.F., Chekhniy G.V. Chlorides in concrete and their impact on development of corrosion of steel reinforcement. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 1, pp. 92–96. (In Russian).
14. Kumar V., Singh R., Quraishi M.A. Study on corrosion of reinforcement in concrete and effect of inhibitor on service life of RCC. Journal of Materials and Environmental Science. 2013. No. 4 (5), pp. 726–731.
15. Song H. W., Saraswathy V., Muralidharan S., Lee C. H., Thangavel K. Role of alkaline nitrites in the corrosion performance of steel in composite cements. Journal of Applied Electrochemistry. Vol. 39(1), pp. 5–22. DOI: 10.1007/s10800-008-9632-1

For citation: Talipov L.N., Velichko E.G., Tembulatov S.I. Influence of polymer surfactants on the corrosion of steel reinforcement in concrete as part of a complex anti-corrosion additive. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 16–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-16-21

Features of the Composition of Concrete Mixes for Concrete Pumping Technology

Number of journal: 3-2020
Autors:

Kastornykh L.I.,
Kaklyugin A.V.,
Gikalo M.A.,
Trishchenko I.V.

DOI: https://doi.org/10.31659/0585-430X-2020-779-3-4-11
УДК: 666.9.031

 

AbstractAbout AuthorsReferences
he concrete pumping principle of transporting and laying concrete mix is promising for implementing in monolithic construction and factory production of precast concrete products. Its implementation makes it possible to mechanize the most labor-intensive concreting processes, reduce labor costs, and improve the quality of work. The technical effect of concrete pumping technology is achieved when using concrete mixes of a specially selected composition. They must meet a number of technological requirements, including: high fluidity, increased concrete mix cohesion, and non-segregation of the mixture. The complexity of determining and accounting for production factors that affect the properties of the concrete mixtures pumped and the indicators of the purpose of concrete, makes it impossible to design their composition according to GOST 27006–2019 and requires an individual approach. An experimental evaluation of the effect of superplasticizers of different chemical nature on the pumpability of mixtures and the physical-mechanical properties of concrete was performed. The possibility of obtaining self-compacting mixtures is considered. The studies were performed using superplasticizers of the TECHNONICOL brands (based on sodium poly-naphthalene methylene sulfonate) and BASF (based on polycarboxylate ether). Fly ash from Novocherkasskaya GRES was used as a mineral filler. The use of superplasticizers of both brands ensured the production of pumped mixtures. Self-compacting mixtures (with the required spreadability) were obtained only in compositions with the addition of the BASF trademark. The influence of the consumption of the components of concrete mixtures on their properties and the properties of concretes is established
L.I. KASTORNYKH1, Candidate of Sciences (Engineering),
A.V. KAKLYUGIN1, Candidate of Sciences (Engineering);
M.A. GIKALO2, Project Chief Engineer;
I.V. TRISHCHENKO3, Candidate of Sciences (Engineering)

1 Don State Technical University (1 Gagarin Square, Rostov-on-Don, 344002, Russian Federation)
2 “Scientific-Technical Center “Academstroy” LLC (144 Taganrogskaya Street, Rostov-on-Don, 344016, Russian Federation)
3 “Rostovskaya Stroitelnaya Laboratoriya” LLC (8A, Liter L, Off. 30, 50-letiya Rostselmash Street, Rostov-on Don, 344065, Russian Federation)

1. Kastornykh L.I. Progressive production technology of precast concrete and reinforced concrete. Building materials, products and structures at the turn of the century: Interdepartmental collection of scientific works. Rostov-on-Don: RSUCE. 1999. pp. 18–20. (In Russian).
2. Kolchedancev L.M., Volkov S.V. Organizational-technological solutions for transporting concrete mix to place of concreting of high-rise buildings structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 11. pp. 21–26. (In Russian).
3. Osmanov S.G., Manojlenko A.YU., Litovka V.V. Choice of options for mechanization of concrete works in monolithic-frame construction. Inzhenernyi vestnik Dona. 2019. No. 1. URL: ivdon.ru/ru/magazine/archive/n1y2019/5507/. (In Russian).
4. Komarinskij M.V., Oniskovec R.V., Ostarkova O.A. Concreting of densely reinforced structures with cast mixtures. Stroitel’stvo unikal’nyh zdaniy i sooruzheniy. 2017. No. 2 (53), pp. 29–41. (In Russian).
5. Komarinskiy M.V., Chervova N.A. Transportation of concrete mix in the construction of unique buildings and structures. Stroitel’stvo unikal’nyh zdaniy i sooruzheniy. 2015. No. 1 (28), pp. 6–31. (In Russian).
6. Kolchedancev L.M., Osipenkova I.G. Features of organizational and technological decisions in the course of construction of high-rise buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 11. pp. 17–19. (In Russian).
7. Meshcherin V.S. Three-dimensional printing using concrete-scientific developments of the Dresden technical University. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 8, pp. 40–47.
8. Slavcheva G.S., Shvedova M.A., Babenko D.S. Analysis and criteria assessment of rheological behavior of mixes for construction 3-D printing. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 34–40. DOI: https://doi.org/10.31659/0585-430X-2018-766-12-34-40 (In Russian).
9. Podurovskiy N.I., Kastornykh L.I. Crack resistance (fracture toughness) of pressure-formed concretes on a multicomponent binder. Strength and durability of building materials: a Collection of scientific papers of graduate students. Rostov-on-Don: RSAC. 1994, pp. 4–10. (In Russian).
10. Kaklyugin A.V. Comparative assessment of pressure-forming concrete corrosion. Vibration-free methods of forming reinforced concrete products: a Collection of scientific papers. Rostov-on-Don: RSAC. 1992. pp. 51–57. (In Russian).
11. Trishchenko I.V., Kastornykh L.I. Design features of road concrete composition laid by concrete pumps. Reinforced concrete, building materials and technologies in the third Millennium: an Interdepartmental collection of scientific papers. Rostov-on-Don: RSUCE. 2001, pp. 50–52. (In Russian).
12. Kastornykh L.I., Trishchenko I.V. Efficiency of application of fillers and chemical additives in concrete of pressure forming. Vibration-free methods of forming reinforced concrete products: a Collection of scientific papers. Rostov-on-Don: RSAC. 1992. pp. 43–51. (In Russian).
13. Kastornykh L.I., Tkachenko G.A., Red’ko A.S., Foroponov K.S. Concrete mixes for laying by concrete pumps. Construction-2008: Proceedings of the international scientific and practical conference. Rostov-on-Don: RSUCE. 2008. pp. 24–25. (In Russian).
14. Kastornykh L.I., Gikalo M.A. The role of additives in concrete mixtures laid by concrete pumps. Construction-2009: Materials of the jubilee international scientific and practical conference. Rostov-on-Don: RSUCE. 2009. p. 31. (In Russian).
15. Vatin N.I., Barabanshchikov Yu.G., Komarinskiy M.V., Smirnov S.I. Modification of the cast concrete mixture by airentraining agents. Magazine of Civil Engineering. 2015. No. 4 (56), pp. 3–10. DOI: 10.5862/MCE.56.1. (In Russian).
16. Kastornykh L.I., Skiba V.P., Elsuf’ev A.E. The effectiveness of the use of the viscosity modifier in selfcompacting concrete. Inzhenernyi vestnik Dona. 2017. No. 3. URL: ivdon.ru/ru/magazine/archive/n3y2017/4346/. (In Russian).
17. Kastornykh L.I., Izmalkov D.V. Microreinforcement of highly mobile mixtures for concrete pumping technology. Prospects of development of building materials science: materials of the international scientific and practical conference. Chelyabinsk. 2013, pp. 134–137. (In Russian).

For citation: Kastornykh L.I., Kaklyugin A.V., Gikalo M.A., Trishchenko I.V. Features of the composition of concrete mixes for concrete pumping technology. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-4-11

Composite Underrail Basements. Materials

Number of journal: 1-2-2020
Autors:

Kondrashchenko V.I.,
Wang Ch.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-95-111
УДК: 625.142.213

 

AbstractAbout AuthorsReferences
Composite underrail basements are excellent alternatives compared with traditional structures made of wood, steel, or reinforced concrete in terms of operational properties, economic performance, solving environmental problems and sustainable development of railway transport. Composite underrail basements, especially their most common form – composite sleeper, surpass the properties of traditional structures according to the main operational properties. In this article, properties of the widely used materials are analyzed, material properties between traditional and composite sleepers are compared, the raw materials for their production are summarized, system requirements to the material of composite sleepers are identified, and perspective directions for their development in relation to feedstock are proposed. Therefore, the article provides an important informative base for the selection of raw materials, which helps expanding the production of composite structures in railway transport.
V.I. KONDRASHCHENKO, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Chuang WANG (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Russian university of transport (MIIT) (9, b.9, Obraztsova Street, Moscow, 127994, Russian Federation)

1. Esveld C. Modern Railway Track (2nd Editon). Delft: MRT Proctions. 2001. 740 p.
2. Koike Y., Nakamura T., Hayano K., et al. Numerical method for evaluating the lateral resistance of sleepers in ballasted tracks // Soils and Foundations. 2014. Vol. 54. Iss. 3, pp. 502–514. DOI: https://doi.org/10.1016/j.sandf.2014.04.014
3. International Union of Railways (UIC). SUWOS—Sustainable Wooden Railway Sleepers. Pairs UIC, 2013. 44 p.
4. Total length of the railway lines in use in the European Union (EU-28) from 1990 to 2017 (in kilometers). https://www.statista.com/statistics/451812/length-of-railway-lines-in-use-in-europe-eu-28/ (Date of access 17.06.2019).
5. 铁道部档案史志中心.中国铁道年鉴2015.北京:中国铁道出版社.2016.588 p. Архивный исторический центр Министерства путей сообщения. Ежегодник Китайской железной дороги 2015 [M]. Пекин: Китайское Железнодорожное Издательство, 2016. 588 c. (На китайском).
6. Historical Tie Trends. Wood Crosstie Insertions in the US. https://www.rta.org/assets/docs/Surveys/class%201%20insertions%201921%20to%202016.pdf (Date of access 02.12.2019).
7. Ferdous W., Manalo A., Aravinthan T., et al. Review of failures of railway sleepers and its consequences. Proceedings of the 1st International Conference on Infrastructure Failures and Consequences (ICFC 2014). RMIT University. 2014. Vol. 1, pp. 398-407.
8. Silva É.A., Pokropski D., You R., et al. Comparison of structural design methods for railway composites and plastic sleepers and bearers // Australian journal of structural engineering. 2017. Vol. 18, Iss. 3, pp. 160–177. DOI: https://doi.org/10.1080/13287982.2017.1382045
9. Ets Rothlisberger SA. History and development of the wooden sleeper. https://www.traverses-chemin-de-fer-bois.ch/files/4/Timber_sleeper-history_and_development.pdf (Date of access 08.12.2019).
10. Terziev N., Panov D. Plant oils as “green” substances for wood protection. Ecowood 2010, 4th International Conference on Environmentally-Compatible Forest Products. Porto. 2011. Vol. 1, pp. 139–146.
11. Silva A., Martins A.C., Feio A.O., et al. Feasibility of creosote treatment for glued-laminated pine-timber railway sleepers // Journal of Materials in Civil Engineering. 2014. Vol. 27, Iss. 3, p. 04014134. DOI: https://doi.org/10.1061/(ASCE)MT.1943–5533.0001073
12. Koh T., Hwang S. Field evaluation and durability analysis of an eco-friendly prestressed concrete sleeper // Journal of Materials in Civil Engineering. 2014. Vol. 27, Iss. 7, p. B4014009. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001109
13. Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made // Science advances. 2017. Vol. 3, Iss. 7, p. e1700782. DOI: https://doi.org/10.1126/sciadv.1700782
14. Jambeck J.R., Geyer R., Wilcox C., et al. Plastic waste inputs from land into the ocean // Science. 2015. Vol. 347, Iss. 6223, pp. 768–771. DOI: https://doi.org/10.1126/science.1260352
15. Шерункова О. Вечная проблема: Россия тонет в пластике. https://www.gazeta.ru/business/2019/07/01/12469297.shtml (Дата обращения: 08.12.2019).
15. Sherunkova O. The eternal problem: Russia is drowning in plastic https://www.gazeta.ru/business/2019/07/01/12469297.shtml (Date of access: 08.12.2019).
16. Manalo A., Aravinthan T., Karunasena W., et al. A review of alternative materials for replacing existing timber sleepers // Composite Structures. 2010. Vol. 92, Iss. 3, pp. 603–611. DOI: https://doi.org/10.1016/j.compstruct.2009.08.046
17. Shokrieh M.M., Rahmat M. On the reinforcement of concrete sleepers by composite materials // Composite structures. 2006. Vol. 76, Iss. 4, pp. 326–337. DOI: https://doi.org/10.1016/j.compstruct.2005.05.005
18. Kaewunruen S., You R., Ishida M. Composites for timber-replacement bearers in railway switches and crossings // Infrastructures. 2017. Vol. 2, Iss. 4, p. 13. DOI: https://doi.org/10.3390/infrastructures2040013
19. Описание и марки полимеров — АБС-пластик. http://www.polymerbranch.com/catalogp/view/8.html&viewinfo=2 (Дата обращения: 08.12.2019).
19. Description and grades of polymers – ABS plastic. http://www.polymerbranch.com/catalogp/view/8.html&viewinfo=2 (Date of access: 08.12.2019).
20. Maya M.G., George S.C., Jose T., et al. Mechanical properties of short sisal fibre reinforced phenol formaldehyde eco-friendly composites // Polymers from Renewable Resources. 2017. Vol. 8, Iss. 1, pp. 27–42. DOI: https://doi.org/10.1177/204124791700800103
21. Tuner P.S. Thermal Expansion Stresses in Reinforced Plastic // NBS. 1946. Vol. 37, p. 239.
22. James E.M. Physical properties of polymers handbook (2nd Edition). New York: Springer. 2007. 1038 p.
23. Крыжановский В.К., Бурлов В.В., Паниматчен-ко А.Д. и др. Технические свойства полимерных материалов: справочник (2-е изд.). СПб.: ЦОП Профессия. 2011. 240 c.
23. Kryzhanovskii V.K., Burlov V.V., Panimatchenko A.D., et al. Tekhnicheskie svoistva polimernykh materialov: spravochnik (2-e izd.) [Technical properties of polymeric materials: handbook (2-nd edition)]. Saint Petersburg: TsOP Professiya. 2011. 240 p.
24. 沈荣熹, 崔琪,李清海. 新型纤维增强水泥基复合材料. 北京:中国建材工业出版社.2004.382 p.
25. Ghalia M.A., Dahman Y. Lignocellulosic fibre and biomass-based composite materials. Cambridge: Woodhead Publishing. 2017. 522 p.
26. Fraczek-Szczypta A., Bogun M., Blazewicz S. Carbon fibers modified with carbon nanotubes // Journal of materials science. 2009. Vol. 44, Iss. 17, pp. 4721–4727. DOI: https://doi.org/10.1007/s10853-009-3730-2
27. Coefficient of linear thermal expansion on polymers Explained. https://passive-components.eu/coefficient-of-linear-thermal-expansion-on-polymers-explained/ (Date of access 08.12.2019).
28. Boron and silicon carbide fibres. Specialty Materials, Inc. http://specmaterials.com/boronfiberproperties.htm (Date of access 08.12.2019).
29. Alumina and Alumina Fibres – Properties and Applications. https://www.azom.com/article.aspx?ArticleID=2103 (Date of access 08.12.2019).
30. Rojstaczer S., Cohn D., Marom G. Thermal expansion of Kevlar fibres and composites // Journal of materials science letters. 1985. Vol. 4, Iss. 10, pp. 1233–1236.
31. Faruk O., Bledzki A.K., Fink H.P., et al. Biocomposites reinforced with natural fibers: 2000–2010 // Progress in polymer science. 2012. Vol. 37, Iss. 11, pp. 1552–1596. DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003
32. Taj S., Munawar M.A., Khan S. Natural fiber-reinforced polymer composites // Proceedings-Pakistan Academy of Sciences. 2007. Vol. 44, Iss. 2, p. 129. https://www.researchgate.net/profile/Munawar_Munawar5/publication/228636811_Natural_fiber-reinforced_polymer_composites/links/544e8ced0cf29473161be3d9/Natural-fiber-reinforced-polymer-composites.pdf (Date of access 08.12.2019).
33. Célino A., Fréour S., Jacquemin F., et al. The hygroscopic behavior of plant fibers: a review // Frontiers in chemistry. 2014. Vol. 1, p. 43. DOI: https://doi.org/10.3389/fchem.2013.00043
34. Bodros E., Baley C. Study of the tensile properties of stinging nettle fibres (Urtica dioica) // Materials Letters. 2008. Vol. 62, Iss. 14, pp. 2143–2145. DOI: https://doi.org/10.1016/j.matlet.2007.11.034
35. Liu D., Song J., Anderson D.P., et al. Bamboo fiber and its reinforced composites: structure and properties // Cellulose. 2012. Vol. 19, Iss. 5, pp. 1449–1480. DOI: https://doi.org/10.1007/s10570-012-9741-1
36. Mohanty A.K., Misra M., Drzal L.T. Natural Fibers, Biopolymers, and Biocomposites. Boca Raton: CRC Press. 2005. 852 p.
37. Zakikhani P., Zahari R., Sultan M.T.H., et al. Extraction and preparation of bamboo fibre-reinforced composites // Materials & Design. 2014. Vol. 63, pp. 820–828. DOI: https://doi.org/10.1016/j.matdes.2014.06.058
38. Senthilkumar K., Saba N., Chandrasekar M., et al. Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites // Construction and Building Materials. 2019. Vol. 195, pp. 423–431. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.081
39. Shah A.U.M., Sultan M.T.H., Jawaid M., et al. A review on the tensile properties of bamboo fiber reinforced polymer composites // BioResources. 2016. Vol. 11, Iss. 4, pp. 10654–10676. DOI: https://doi.org/10.15376/biores.11.4.Shah
40. Ku H., Wang H., Pattarachaiyakoop N., et al. A review on the tensile properties of natural fiber reinforced polymer composites // Composites Part B: Engineering. 2011. Vol. 42, Iss. 4, pp. 856–873. DOI: https://doi.org/10.1016/j.compositesb.2011.01.010
41. Pappu A., Patil V., Jain S., et al. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review // International journal of biological macromolecules. 2015. Vol. 79, pp. 449–458. DOI: https://doi.org/10.1016/j.ijbiomac.2015.05.013
42. Han Z., Liu Y., Zhong M., et al. Influencing factors of domestic waste characteristics in rural areas of developing countries // Waste Management. 2018. Vol. 72, pp. 45–54. https://www.academia.edu/36668189/Domestic_waste_management_and_its_environmental_impacts_in_Addis_Ababa_City (Date of access 08.12.2019).
43. Mohammed A., Elias E. Domestic solid waste management and its environmental impacts in Addis Ababa city // Journal of Environment and Waste Management. 2017. Vol. 4, Iss. 1, pp. 194–203.
44. Andreola F., Barbieri L., Lancellotti I., et al. Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies // Ceramics International. 2016. Vol. 42, Iss. 12, pp. 13333–13338. DOI: https://doi.org/10.1016/j.ceramint.2016.05.205
45. Rabe S., Sanchez-Olivares G., Pérez-Chávez R., et al. Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites // Materials. 2019. Vol. 12, Iss. 3, p. 344. DOI: https://doi.org/10.3390/ma12030344
46. Ding Z., Yi G., Tam V.W.Y., et al. A system dynamics-based environmental performance simulation of construction waste reduction management in China // Waste management. 2016. Vol. 51, pp. 130–141. DOI: https://doi.org/10.1016/j.wasman.2016.03.001
47. Yuan H., Shen L. Trend of the research on construction and demolition waste management // Waste management. 2011. Vol. 31, Iss. 4, pp. 670–679. DOI: https://doi.org/10.1016/j.wasman.2010.10.030
48. Yeheyis M., Hewage K., Alam M.S., et al. An overview of construction and demolition waste management in Canada: a lifecycle analysis approach to sustainability // Clean Technologies and Environmental Policy. 2013. Vol. 15, Iss. 1, pp. 81–91. DOI: https://doi.org/10.1007/s10098-012-0481-6
49. Lampo R. Recycled plastic composite railroad crossties. Construction Innovation Forum US Army ERDC-CERL. Champaign, IL, USA. 2002. http://www.cif.org/noms/2002/13_-_Recycled_Plastic_Composite_Crossties.pdf (Date of access 08.12.2019).
50. AXION ECOTRAX(R), Composite Railroad Ties. https://axionsi.com/products/ecotrax-railroad/ (Date of access 08.12.2019).
51. АКСИОН РУС. Композитные шпалы. https://axionrus.ru/kompozitnayashpala/ (Дата обращения: 08.12.2019).
51. RUSSIAN AKSION. Composite cross ties. https://axionrus.ru/kompozitnayashpala/ (Date of access 08.12.2019)
52. TieTek сomposite ties. http://www.tietek.net/product.asp (Date of access 08.12.2019).
53. Railroad tie and method for making same. https://patents.google.com/patent/US20020123553/de (Date of access 08.12.2019).
54. АпАТэК – Прикладные перспективные технологии. http://www.apatech.ru/beam.html (Дата обращения: 08.12.2019).
54. ApATeK – Applied Advanced Technologies. http://www.apatech.ru/beam.html (Date of access 08.12.2019)
55. IntegriCo. IntegriTies. https://www.integrico.com/integrities (Date of access 08.12.2019).
56. Clifton P. Plastic surgery // Rail Professional. 2009. P. 26.
57. Network Rail to recycle rubbish into sleepers. https://www.theguardian.com/environment/2009/feb/16/rail-recycling-plastic (Date of access 08.12.2019).
58. SICUT. Plastic Composite Railway Mainline Sleepers. http://www.sicut.co.uk/standard-sleeper-tie/ (Date of access 08.12.2019).
59. Fraunhofer ICT. Mixed Plastic Waste (MPW) Sleeper. https://nachhaltigwirtschaften.at/en/fdz/projects/susprise/railwaste-production-of-railway-sleepers-by-mixed-plastic-waste.php (Date of access 08.12.2019).
60. SUNRUI Plastic composite sleeper. http://www.xssunrui.com/kjcp/gdjtfhclcp/332256.html (Date of access 08.12.2019).
61. 孙津生, 孙稳, 孙嫣. 一种塑胶铁路枕木配方工艺 [P]. CN103524923A.
62. 肖生苓, 陈玉霄. 铁路轨枕复合材料组分特性及对整体性能影响的分析 [J]. 森林工程, 2007, 23(1): 85–87.
63. Кондращенко В.И., Харчевников В.И., Стородуб-цева Т.Н. и др. Древесно-стекловолокнистые композиционные шпалы. М.: Спутник+. 2009. 311 c.
63. Kondrashchenko V.I., Kharchevnikov V.I., Storodubtseva T.N., etс. Drevesnosteklovoloknistye kompozitsionnye shpaly [Wood and Glass Fiber reinforced composite sleeper]. Moscow: Sputnik+. 2009. 311 p.
64. Стородубцева Т.Н., Федянина Н.В. Компози-ционный материал на основе отходов лесного комплекса для железнодорожных шпал // Современные наукоемкие технологии. 2011. № 5. С. 49–52.
64. Storodubtseva T.N., Fedyanina N.V. Composite material based on forest complex wastes for railway sleepers. Sovremennye naukoemkie tekhnologii. 2011. No. 5, pp. 49–52.
65. Патент РФ 2179923. Способ изготовления литой шпалы для железных дорог широкой колеи / Занегин Л.А., Селиванов Н.Ф., Петров Ю.Л. Заявл. 30.03.2000. Опубл. 27.01.2002.
65. Patent RF 2179923. Sposob izgotovleniya litoi shpaly dlya zheleznykh dorog shirokoi kolei [Cast method for manufacturing sleepers for broad gauge railways]. Zanegin L.A., Selivanov N.F., Petrov Yu.L. Declared 30.03.2000. Published 27.01.2002. (In Russian).
66. Патент РФ 2354548. Способ производства композиционных шпал прокатом / Занегин Л.А., Кондратюк В.А., Воскобойников И.В. и т. д. Заявл. 30.10.2007. Опубл. 10.05.2009. Бюл. № 13.
66. Patent RF 2354548. Sposob proizvodstva kompozitsionnykh shpal prokatom [A rolling method for the production of composite sleepers]. Zane-gin L.A., Kondratyuk V.A., Voskoboinikov I.V., et al. Declared 30.10.2007. Published 10.05.2009. Bulletin No. 13. (In Russian).
67. Патент РФ 2389841. Составная композиционная шпала / Занегин Л.А., Кондратюк В.А., Воскобой-ников И.В. и т. д. Заявл. 27.10.2009. Опубл. 23.04.2008. Бюл. № 14.
67. Patent RF 2389841. Sostavnaya kompozitsionnaya shpala [Composite Composite Sleepers]. Zane-gin L.A., Kondratyuk V.A., Voskoboinikov I.V. et al. Declared 27.10.2009. Published 23.04.2008. Bulletin No. 14. (In Russian).
68. Pattamaprom C., Dechojarassri D., Sirisinha C. et al. Natural rubber composites for railway sleepers: a feasibility study. Thailand: Thammasat University. 2005. 350 p.
69. Greenrail. Composite sleeper product. http://www.greenrailgroup.com/en/the-product/ (Date of access 08.12.2019).
70. Tufflex Plastic products (Pty) Ltd. Product Range, http://www.tufflex.co.za/Pages/ProductCatalogue2/SubCategoryPage/SubCategoryPage.asp?SubCategoryID=4391 (Date of access 08.12.2019).
71. Rahul S., Garish P., Gaurav K., et al. Composite Railway Sleeper // International Research Journal of Engineering and Technology (IRJET). 2018. Vol. 5, Iss. 9.
72. Khalil A.A. Mechanical Testing of Innovated Composite Polymer Material for using in Manufacture of Railway Sleepers // Journal of Polymers and the Environment. 2018. No. 26, Iss. 1, pp. 263–274. DOI: https://doi.org/10.1007/s10924-017-0940-6
73. Khalil A.A., Bakry H.M., Riad H.S. et al. Analysis on railway sleepers manufactured from polymers and iron slag // Journal of Engineering Sector of Engineering Colleges – Al-Azhar University. 2017. Vol. 12, Iss. 43, pp. 620–639. DOI: https://doi.org/10.21608/AUEJ.2017.19251
74. FRP Composite Sleepers for Application on Rail Tracks and Support Spans. http://www.presentica.com/ppt-presentation/frp-composite-sleepers-for-application-on-rail-tracks-and-support-spans (Date of access 08.12.2019).
75. Hameed A.S., Shashikala A.P. Suitability of rubber concrete for railway sleepers // Perspectives in Science. 2016. No. 8, pp. 32–35. DOI: https://doi.org/10.1016/j.pisc.2016.01.011 (Date of access 08.12.2019).
76. Duratrack® Composite Recycled Plastic Railway Sleepers. http://www.integratedrecycling.com.au/railway-sleepers/ (Date of access 08.12.2019).
77. SEKISUI. FFU® synthetic wood railway sleepers. https://www.sekisui-rail.com/en/ffu_en.html (Date of access 08.12.2019).
78. SUNRUI. Synthetic sleeper. http://www.xssunrui.com/kjcp/gdjtfhclcp/332255.html (Date of access 08.12.2019).
79. KEBOS. Fiber Reinforced Foamed Urethane Sleeper, http://www.kebos.cn/item/5.html (Date of access 08.12.2019).
80. 于雪斐, 刘雷, 于文吉. 重组竹 (木) 材料替代传统轨枕材料的探讨[J]. 木材加工机械, 2011, 22(6): 40–43.
81. 王士和. 矿用重组竹轨枕. [P]. CN202954271.
82. 吕延, 吴光荣, 季建仁, 陈璟. 玻璃纤维合成轨枕及其制造方法[P]. CN101759898A.
83. 凌烈鹏, 冯毅杰, 李家林. 异型玻璃钢轨枕的设计及应用[J]. 铁道建筑, 2012 (7): 112–114.
84. Hoger D.I. Fibre composite railway sleepers. Cand. Diss. University of Southern Queensland, Toowoomba, Queensland, Australia, 2000.
85. KLP. Hybrid Polymer Sleepers. https://www.lankhorstrail.com/en/recycled-plastic-sleepers (Date of access 08.12.2019).
86. KLP. Hybrid Polymer Sleepers. https://www.hirdrail.com/klp-polymer-sleepers.html (Date of access 08.12.2019).
87. Plastic Composite Wood Core Ties. http://www.swrvandmarine.com/viewitem.php?id=13&basename=equipment (Date of access 08.12.2019).
88. Кондращенко В.И. Оптимизация составов и технологических параметров получения изделий брускового типа методами компьютерного материаловедения. Дисс. ... д-ра техн. наук. Москва, 2005. 551 с.
88. Kondrashchenko V.I. Optimization of the compositions and technological parameters of the production of bar-type products by computational materials science methods. Doc. Diss. Moscow. 2005. 551 p. (In Russian).
89. Qiao P., Davalos J.F., Zipfel M.G. Modeling and optimal design of composite-reinforced wood railroad crosstie // Composite Structures. 1998. Vol. 41, Iss. 1, pp. 87–96. DOI: https://doi.org/10.1016/S0263-8223(98)00051-8
90. Ferdous W., Manalo A., Khennane A., et al. Geopolymer concrete-filled pultruded composite beams–concrete mix design and application // Cement and Concrete Composites. 2015. No. 58, pp. 1–13. DOI: https://doi.org/10.1016/j.cemconcomp.2014.12.012
91. Van Erp G., Rogers D. A highly sustainable fibre composite building panel. Proceedings of the international workshop on fibre composites in civil infrastructure–past, present and future. Brisbane. 2008. Vol. 1. pp. 1–2. http://icsservices.com.au/wkg/pdfs/ARTICLE%20BY%20DR%20G%20VANERP0001TO7.pdf (Date of access 08.12.2019).
92. Ferdous W., Manalo A., Van Erp G., et al. Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load. Journal of Composites for Construction. 2017. Vol. 22, Iss. 2, p. 04017050. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000833
93. Ticoalu A.N.E. Investigation on fibre composite turnout sleepers. Master of engineering dissertation. University of Southern Queensland. 2008.
94. Manalo A., Aravinthan T. Behavior of full-scale railway turnout sleepers from glue-laminated fiber composite sandwich structures // Journal of composites for construction. 2012. Vol. 16, Iss. 6, pp. 724–736. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000307
95. Van Erp G. M. A railway sleeper: U.S. Patent Application 14/652,806 [P]. 2015-11-19.
96. Van Erp G., Mckay M. Recent Australian developments in fibre composite railway sleepers // Electronic Journal of Structural Engineering. 2013. Vol. 13, Iss. 1, pp. 62–66. http://www.ejse.org/Archives/Fulltext/2013sp/Recent%20Australian%20Developments%20in%20Fibre%20Composite%20Railway%20Sleepers.pdf (Date of access 08.12.2019).
97. Soehardjo K.A., Basuki A. Utilization of bagasse and coconut fibers waste as fillers of sandwich composite for bridge railway sleepers. IOP Conference Series: Materials Science and Engineering. Medan. 2017. Vol. 223, conference 1, p. 012036. DOI: https://doi.org/10.1088/1757-899X/223/1/012036
98. 胡显奇, 徐蕴贤. 玄武岩纤维在铁路轨枕中的应用研究[C]//第十二届全国纤维混凝土学术会议. 中国土木工程学会, 2009: 48-53.
99. 范立国, 周勇, 赵莹, 等.一种聚丙烯纤维混凝土轨枕[P]. CN 1743551.
100.Патент РФ 2328373. Способ сохранения торца шпалы от растрескивания / Занегин Л.А. Заявл. 14.09.2006. Опубл. 10.07.2008.
100.Patent RF 2328373. Sposob sokhraneniya tortsa shpaly ot rastreskivaniya [A method to protect end surfaces of sleepers from cracking] / Zanegin L.A. Declared 14.09.2006. Published 10.07.2008.
101.Ahn S., Kwon S., Hwang Y.T., et al. Complex structured polymer concrete sleeper for rolling noise reduction of high-speed train system. Composite Structures. 2019. Vol. 223, p. 110944. DOI: https://doi.org/10.1016/j.compstruct.2019.110944
102.Koh T., Hwang S. Field evaluation and durability analysis of an eco-friendly prestressed concrete sleeper. Journal of Materials in Civil Engineering. 2014. Vol. 27, Iss. 7, p. B4014009. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001109
103. Shokrieh M.M., Rahmat M. On the reinforcement of concrete sleepers by composite materials. Composite structures. 2006. Vol. 76, Iss. 4, pp. 326–337. DOI: https://doi.org/10.1016/j.compstruct.2005.05.005
104.Verma D., Fortunati E., Jain S. et al. Biomass, Biopolymer-Based Materials, and Bioenergy. Cambridge: Woodhead Publishing. 2019. 558 p.
105.Huang Z., Sun Y., Musso F. Assessment on bamboo scrimber as a substitute for timber in building envelope in tropical and humid subtropical climate zones-part 2 performance in building envelope. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 264, conference 1, p. 012007. DOI: https://doi.org/10.1088/1757-899X/264/1/012007

For citation: Kondrashchenko V.I., Wang Ch. Composite Underrail Basements. Materials. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 95–111. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-95-111

Cyclic Strength of Concretes of a New Generation

Number of journal: 1-2-2020
Autors:

Travush V.I.,
Karpenko N.I.,
Erofeev V.T.,
Erofeeva I.V.,
Bondarev B.A.,
Bondarev A.B.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-88-94
УДК: 691.33

 

AbstractAbout AuthorsReferences
For today various types of concrete, including high-strength and self-compacting have been developed in Russia and abroad. High results of strength and other properties were obtained on powder-activated sand concretes of a new generation – plasticized concretes with an increased content of suspension component. To date, the technological physical and mechanical properties of powder-activated concretes depending on the main structure-forming factors have been studied. The present research is devoted to establishing the stability of powder-activated concretes of a new generation under the action of cyclic loads. Comparison of the results was carried out with concretes of a transitional generation. Short-term load tests were conducted on a specially made stand. Loading was carried out in series of 100 load applications. According to the data obtained, curves of low-cyclic fatigue of concretes were built, which were approximated using a fractional-exponential function. The results were processed by the linear correlation method. It is established that the criterion of low-cyclic stability is the coefficient of endurance, showing the term of preserved strength (bearing capacity) after repeated and repeatedly applied loads. The advantages of powder-activated concretes are established. For these compositions, the values of low-cycle and multi-cycle fatigue on the basis of 5·106 cycles – Kb,pul = 0,83Rb, on the basis of 2·106 cycles Kb,pul = 0,4Rb.
V.I. TRAVUSH1, Doctor of Sciences (Engineering), Professor, Academician of RAACS,
N.I. KARPENKO1, Doctor of Sciences (Engineering), Professor, Academician of RAACS;
V.T. EROFEEV2, Doctor of Sciences (Engineering), Academician of RAACS,
I.V. EROFEEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. BONDAREV3, Doctor of Sciences (Engineering),
A.B. BONDAREV3, Candidate of Sciences (Engineering)

1 Russian Academy of Architecture of Construction Sciences (24, Bolshaya Dmitrovka Street, Moscow, 107031, Russian Federation)
2 National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, Republic of Mordovia, 30005, Russian Federation)
3 Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398600, Russian Federation)

1. Bazhenov Yu.M. Modern concrete technology. Concrete and reinforced concrete – a look into the future: scientific papers of the III All-Russian (II International) Conference on Concrete and Reinforced Concrete. Vol. 7. Plenary reports. Moscow, May 12–16, 2014, pp. 23–28. (In Russian).
2. Falikman V.R., Sorokin YU.V., Kalashnikov O.O. Construction and technical properties of particularly high-strength quick-hardening concrete. Beton i zhelezobeton. 2004. No. 5, pp. 5–10. (In Russian).
3. Silver Deo. Aspects of the use of non-metallic fiber. The study of the use of fiber for concrete products. CPI – International Concrete Production. 2011. No. 4, pp. 46–56. (In Russian).
4. Kalashnikov V.I. How to turn old-generation concrete into high-performance new-generation concrete. Beton i zhelezobeton. 2012. No. 1, p. 82.
5. Kapriyelov S.S., Shenfel’d A.M., Krivoborodov Yu.R. Modifiers series MB and high performance concretes Beton i zhelezobeton. 1992. No. 7, pp. 4–7. (In Russian).
6. Kapriyelov S.S., Travush V.I., Karpenko N.I. and other. Modified high-strength concrete of classes B80 and B90 in monolithic structures. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 9–13. (In Russian).
7. Chernyshov Ye.M., Korotkikh D.N., Artamonova O.V. Nanotechnological conditions for controlling the formation of high-strength cement concrete. Transactions of the Central Regional Branch of RAACS. Voronezh. 2010, pp. 102–123. (In Russian).
8. Kalashnikov V.I., Erofeyev V.T., Tarakanov O.V. Suspension-filled concrete mixes for new generation powder-activated concrete. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2016. No. 4 (688), pp. 30–37. (In Russian).
. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V., Arkhipov V.P. The concept of strategic development of plasticized powder-activated concrete of a new generation. High-strength cement concretes: technology, construction, economics (VPB-2016). Collection of abstracts of international reports scientific and technical conference. 2016. 36 p. (In Russian).
10. Gulyayeva Ye.V., Yerofeyeva I.V., Kalashnikov V.I., Petukhov A.V. Effect of water content, type of superplasticizer and hyperplasticizer on the spreadability of suspensions and strength properties of cement stone. Molodoy ucheniy. 2014. No. 19, pp. 191–194. (In Russian).
11. Gulyayeva Ye.V., Yerofeyeva I.V., Kalashnikov V.I., Petukhov A.V. The effect of reactive additives on the strength properties of plasticized cement stone. Molodoy ucheniy. 2014. No. 19, pp. 194–196. (In Russian).
12. Kalashnikov V.I. Terminology of science of new generation of concrete. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, pp. 103–106. (In Russian).
13. Kalashnikov V.I. What is the powder-activated concrete of new generation Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 70–71. (In Russian).
14. Erofeyev V.T., Cherkasov V.D., Yemel’yanov D.V., Yerofeyeva I.V. Impact strength of cement composites. Academia. Arkhitektura i stroitel’stvo. 2017. No. 4, pp. 89–94. (In Russian).
15. Travush V.I., Erofeyev V.T., Cherkasov V.D., Yemel’yanov D.V., Erofeyeva I.V. Damping properties of cement composites. Promyshlennoye i grazhdanskoye stroitel’stvo. 2018. No. 2, pp. 10–15. (In Russian).
16. Erofeeva I.V., Afonin V.V., Fedortsov V.A., Emelyanov D.V., Podzhivotov N.Y., Zotkina M.M. Research of the behavior of cement composites in the conditions of higher humidity and variable positive temperatures. International Journal for Computational Civil and Structural Engineering. 2017. No. 13 (4), pp. 66–81. (In Russian). DOI: https://doi.org/10.22337/2587-9618-2017-13-4-66-81.
17. Prokof’yev A.S., Kabanov V.A., Smorchkov A.A. Proyektirovaniye stroitel’nykh konstruktsiy s uchetom ustalosti [Design of building structures taking into account fatigue]. Publisher TPI. 1988. 105 p.
18. Berg O.Ya. The study of the strength of reinforced concrete structures when exposed to repeatedly repeated load. Proceedings of the Central Research Institute of Railways. Moscow: Transzheldorizdat. 1956. Iss. 19, pp. 106–107. (In Russian).
19. Berg O.Ya. Fizicheskiye osnovy teorii prochnosti betona i zhelezobetona [Physical foundations of the theory of strength of concrete and reinforced concrete]. Moscow: Gosstroyizdat. 1961. 56 p.
20. Karpukhin N.S. Reinforced concrete endurance study. In the book: Building Constructions: Proceedings of the Moscow Institute of Transport Engineers. 1959. Iss. 108, pp. 44–54. (In Russian).
21. Bazhenov YU.M. Betony pri dinamicheskom nagruzhenii [Concrete under dynamic loading]. Moscow: Publishing house of literature on construction. 1970. 271 p.
22. Bondarev B.A., Borkov P.V., Bondarev A.B. Tsiklicheskaya dolgovechnost’ polimernykh materialov stroitel’nogo naznacheniya [Cyclic durability of polymeric materials for construction purposes]. Tambov: Pershin Publishing House. 2013. 112 p.
23. Bondarev B.A., Bondarev A.B., Borkov P.V. Soprotivleniye polimernykh kompozitnykh materialov deystviyu tsiklicheskikh napryazheniy [Resistance of polymer composite materials to cyclic stresses]. Lipetsk: Publishing House of LSTU. 2017. 154 p.

For citation: Travush V.I., Karpenko N.I., Erofeev V.T., Erofeeva I.V., Bondarev B.A., Bondarev A.B. Cyclic strength of concretes of a new generation. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 88–94. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-88-94

Influence of Geosynthetic Reinforcing Materials on the Strength of Rigid Pavements with Asphalt Concrete Coating

Number of journal: 1-2-2020
Autors:

Korochkin A.V.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-82-87
УДК: 625.885

 

AbstractAbout AuthorsReferences
The influence of the reinforcing geomesh on the strength of rigid pavement with asphalt concrete coating was studied. The types and categories of geosynthetic materials used for asphalt concrete reinforcement are analyzed. The main problems arising when designing and calculating reinforcing interlayers made of geosynthetic materials are considered. The efficiency of using geosynthetic meshes for reinforcing asphalt pavement is shown by the example of calculating variants of road surfaces with and without reinforcement. Recommendations defining the vector of development of road geosynthetic materials and their application in road construction are formulated. Arguments are given to prove that the use of a geosynthetic reinforcing mesh increases the overall modulus of elasticity of the structure by 10%. The reasons that prevent the more active introduction of geosynthetic materials in the construction, repair and reconstruction of roads are identified and indicated, and ways to solve these problems are proposed.
A.V. KOROCHKIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow Automobile and Road Construction State Technical University (MADI) (64, Leningradsky Avenue, Moscow, 125319, Russian Federation)

1. Vasil’ev E.G., Krivosheev S.G. Monitoring of road construction facilities built using geosynthetics. Aktual’nye voprosy proektirovanija avtomobil’nyh dorog. Sbornik nauchnyh trudov OAO GIPRODORNII. 2011. No. 2, pp. 141–145. (In Russian).
2. Orudzhova O.N., Shinkaruk A.A. Increasing soil bearing capacity using geosynthetics. Promyshlennoe i grazhdanskoe stroitel’stvo. 2012. No. 10, pp. 30–31. (In Russian).
3. Shaburov S.S., Pilipjak S.A. The use of geosynthetics in the construction of pavements. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. 2013. No. 5 (76), pp. 106–110. (In Russian).
4. Povilajtene I., Oginskas R. Geosynthetics in the construction and repair of roads and railways. Stroitel’nye Materialy [Construction Materials]. 2005. No. 10, pp. 74–76. (In Russian).
5. Shcherbina E.V., Telichenko V.I., Alekseev A.A., Smutchuk B.V., Slepnev P.A. Geosynthetics: classification, properties, scope. Izvestija vysshih uchebnyh zavedenij. Stroitel’stvo. 2004. No. 5 (545), pp. 50–55. (In Russian).
6. Abrosimova G.G., Shakhnovskii A.Yu. The use of geosynthetics to reinforce road pavement structures on highways at Lomonosov Gok. Gornyi zhurnal. 2012. No. 7, pp. 84–86. (In Russian).
7. Chizhikov I.A. The use of geosynthetics in the construction of roads in Western Siberia. Mekhanizatsiya stroitel’stva. 2007. No. 8, pp. 25–27. (In Russian).
8. Sil’yanov V.V., Domke E.R. Transportno-ekspluatatsionnyye kachestva avtomobil’nykh dorog i gorodskikh ulits [Transport and operational qualities of roads and city streets]. Moscow: Izdatel’skiy tsentr «Akademiya». 2008. 352 p.
9. Yin J.H. Modelling geosynthetic – reinforced granular fills over soft soil. Geosynthetics International. 1997. Vol. 4. Iss. 2, pp. 165–185. https://doi.org/10.1680/gein.4.0092
10. Korochkin A.V. The problem of reflected cracks in an asphalt concrete pavement laid on a cement concrete base. Stroitel’nye Materialy [Construction Materials]. 2011. No. 10, pp. 46–47. (In Russian).
11. Burmistrova O.N., Voronina M.A. Primeneniye geosinteticheskikh i geoplastikovykh materialov v dorozhnom stroitel’stve [The use of geosynthetic and geoplastic materials in road construction]. Ukhta: UGNTU. 2012. 188 p. https://docplayer.ru/37770343-Primenenie-geosinteticheskih-i-geoplastikovyh-materialov-v-dorozhnom-stroitelstve.html#show_full_text (Date of accesses 08.09.2019). (In Russian).
12. Vasiliev A.P. Spravochnaya entsiklopediya dorozhnika. Remont i soderzhaniye avtomobil’nykh dorog v 2 tomah [Reference encyclopedia of the road builder. Repair and maintenance of roads in 2 tons]. Moscow: Informavtodor. 2004. 129 p.
13. The market of geogrids in Russia. Moscow: OOO Akademiya Koyunktury Promyshlennykh Rynkov. 2020. 83 p. http://newchemistry.ru/letter.php?n_id=511
14. Flintsch G.W., Diefenderfer B.K., Nunez O. Composite pavement systems: synthesis of design and construction practices. Final contract report VTRC 09-CR2. Virginia Tech Transportation Institute. 2008. http://www.virginiadot.org/vtrc/main/online_reports/pdf/09-cr2.pdf
15. Onishchenko A.N., Riznichenko A.S. Method for calculating crack resistance of asphalt concrete pavement on reinforced concrete bridge structures. Transport. Transportnyye sooruzheniya. Ekologiya. 2015. No. 3, pp. 97–110. (In Russian).
16. Shuvayev A.N., Panova M.V., Kuyukov S.A., Sanni-kov S.P. Calculation of pavement reinforced with volumetric geogrids. Nauka i tekhnika v dorozhnoy otrasli. 2003. No. 3, pp. 18–20. (In Russian).
17. Korochkin A.V. Napryazhenno-deformirovannoye sostoyaniye zhestkoy dorozhnoy odezhdy s asfal’tobetonnym pokrytiyem: Monografiya [Stress-strain state of rigid asphalt pavement: Monograph]. Moscow: MADI. 2011. 376 p.
18. Korochkin A.V. Determination of stresses and deformations of asphalt concrete pavement. Stroitel’naya mekhanika i raschet sooruzheniy. 2015. No. 3, pp. 30–33. (In Russian).

For citation: Korochkin A.V. Influence of geosynthetic reinforcing materials on the strength of rigid pavements with asphalt concrete coating. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 82–87. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-82-87

Granulated Foam-Glass Crystal Materials Based on Silica Rocks of the Southern Urals

Number of journal: 1-2-2020
Autors:

Storozhenko G.I.,
Kazantseva L.K.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-78-81
УДК: 624.148

 

AbstractAbout AuthorsReferences
The results of laboratory and technological optimization of compositions and thermal regimes for obtaining granular foam glass crystallites and industrial tests of their production from silica rocks of the Southern Ural (opoka of the Shipovsky Deposit – the Republic of Kazakhstan and tripoli of the Potaninsky Deposit – the Russian Federation) are presented. The physical and mechanical properties of GFG, obtained according to the developed technological regulations on the production line with domestic equipment, correspond to, and in a number of properties exceed the classic foam glass, which determines the wider scope of their applicability. It is concluded that the technology of production of granulated foam glass crystallites from widely distributed silica raw materials, without their pre-melting into glass, can be implemented on an industrial scale on the basis of domestic equipment.
G.I. STOROZHENKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.K. KAZANTSEVA2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN) (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)
2 V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (3, Akademika Koptyuga Avenue, Novosibirsk, 630090, Russian Federation)

1. Ivanov K.S. Insulation material for thermal stabilization of soils. Kriosfera Zemli. 2011. Vol. XV. No. 4, pp. 120–122. (In Russian).
2. Ketov A.A. Production of construction materials from hydrated polysilicates. Stroitel’nye Materialy [Construction Materials]. 2012. No. 11, pp. 22–24. (In Russian).
3. Ketov A.A, Tolmachev A.V. Foamed glass: technological realities and the market. Stroitel’nye Materialy [Construction Materials]. 2015. No. 1, pp. 17–22. (In Russian).
4. Goryainov K.E., Goryainova S.K. Tekhnologiya teploizolyatsionnykh materialov i izdelii [Technology of heat-insulating materials and products]. Moscow: Stroyizdat. 1982. 296 p.
5. Kazantseva L.K., Zheleznov D.V., Seretkin Yu.V., Rashchenko S.V. Formation of a source of pore-forming gas when wetting natural aluminosilicates with a NaOH solution. Steklo i keramika. 2012. No. 10, pp. 37–42. (In Russian).
6. Specifications TU 5914-001-73893595-2005 Products and materials from foam glass. Technical conditions http://www.penosytal.com/Downloads/TU_penosytal.pdf (In Russian).
7. Kazantseva L.K., Puzanov I.S. Crystallization of the amorphous phase in foam glass as a method of decreasing the alkali-silicon reaction. Glass and Ceramic. 2016. Vol. 73. No. 3–4, pp. 77–81.

For citation: Storozhenko G.I., Kazantseva L.K. Granulated foam-glass crystal materials based on silica rocks of the Southern Urals. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 78–81. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-78-81

Possible Alternative Solutions to Problems in the Cement Industry

Number of journal: 1-2-2020
Autors:

Salamanova M.Sh.,
Murtazaev S.-A.Yu.,
Nakhaev M.R.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-73-77
УДК: 691.32

 

AbstractAbout AuthorsReferences
Approaches to switching to clinker-free binders and building composites with their use to replace resource-and energy-intensive Portland cement, at least in those areas of construction where its high technical and functional properties are not needed, are substantiated. In the absence in many regions of the country domain granulated slag, has been developed the optimal formulations and the properties of alkaline activated binders based on finely dispersed mineral powders were studied and theoretical basis of formation of structure and strength of alkali of the cement stone is described. The results of these studies are of practical value for the construction industry, as the resulting formulations of clinker-free cements will partially replace expensive and energy-intensive Portland cement in the production of concrete and reinforced concrete structures.
M.Sh. SALAMANOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.-A.Yu. MURTAZAEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.R. NAKHAEV1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Grozny State oil technical university named after Academician M.D. Millionshikov (100, Avenue Isaev, Grozny, 364021, Russian Federation)
2 Chechen State University (32, Sheripova Street, Grozny, 364907, Russian Federation)

1. Щелочные и щелочно-земельные гидравлические вяжущие и бетоны / Под редакцией В.Д. Глуховского. Киев: Вища школа, 1979. 232 с.
1. Shchelochnye i shchelochnozemel’nye gidravlicheskie vyazhushchie i betony. Pod redaktsiey V.D. Glukhovskogo [Alkaline and alkaline earth hydraulic binders and concrete]. Kiev: Vishcha shkola. 1979. 232 р.
2. Глуховский В.Д., Пахомов В.А. Шлакощелочные цементы и бетоны. Киев: Будiвельник, 1978. 184 с.
2. Glukhovskiy V.D., Pakhomov V.A. Shlakoshchelochnye tsementy i betony [Slag-alkali cements and concretes]. Kiev: Budivel’nik. 1978. 184 р.
3. Кривенко П.В., Пушкарева К.К. Долговечность шлакощелочного бетона. Киев: Будiвельник, 1993. 224 с.
3. Krivenko P.V., Pushkareva K.K. Dolgovechnost’ shlakoshchelochnogo betona. [Durability of slag-alkali concrete]. Kiev: Budivel’nik. 1993. 224 р.
4. Davidovits J. Geopolymer Chemistry and applications. Saint-Quentin: Institute Geopolymer. 2008. 592 p.
5. Duxson P., Fernández-Jiménez A., Provis J., Lukey G., Palomo A., Van Deventer J. Geopolymer technology: the current state of the art. Journal of Materials Science. Vol. 42, pp. 2917–2933. DOI: 10.1007/s10853-006-0637-z
6. Bataev D.K-S.,Murtazaev S-A.Yu., Salamanova M.Sh. Fine-grained concretes on non-clinker binders with highly disperse mineral components. Materials Science Forum. 2018. Vol. 931, pp. 552–557. DOI: https://doi.org/10.4028/www.scientific.net/MSF.931.552
7. Саламанова М.Ш., Муртазаев С.-А.Ю. Цементы щелочной активации: возможность снижения энергоемкости получения строительных композитов // Строительные материалы. 2019. № 7. С. 32–40. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
7. Salamanova M.Sh., Murtazaev S.-A.Yu. Cements of alkaline activation the possibility of reducing the energy intensity of building composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
8. Муртазаев С-А.Ю., Саламанова М.Ш. Перспективы использования термоактивированного сырья алюмосиликатной природы // Приволжский научный журнал. 2018. Т. 46. № 2. С. 65–70.
8. Murtazayev S-A.Yu., Salamanova M.Sh. Prospects of the use of thermoactivated raw material of alumosilicate nature. Privolzhskii nauchnyi zhurnal. 2018. Vol. 46. No. 2, pp. 65–70. (In Russian).
9. Никифоров Е.А., Логанина В.И., Симонов Е.Е. Влияние щелочной активации на структуру и свойства диатомита // Вестник БГТУ им. В.Г. Шу-хова. 2011. № 2. С. 30–32.
9. Nikiforov E.A., Loganina V.I., Simonov E.E. The effect of alkaline activation on the structure and properties of diatomite. Vestnik BGTU im. V.G. Shu-khova. 2011. No. 2, pp. 65–70. (In Russian).
10. Nesvetaev G., Koryanova Y., Zhilnikova T. Оn effect of superplasticizers and mineral additives on shrinkage of hardened cement paste and concrete. MATEC Web of Conferences. 27th Russian-Polish-Slovak SEMINAR, theoretical foundation of civil engineering (27RSP), TFOCE. Rostov-on-Don, 17–21 September 2018. 04018.
11. Stelmakh S.A., Nazhuev M.P., Shcherban E.M., Yanovskaya A.V., Cherpakov A.V. Selection of the composition for centrifuged concrete, types of centrifuges and compaction modes of concrete mixtures. Physics and Mechanics of New Materials and Their Applications (PHENMA 2018). Abstracts & Schedule. Busan, Republic of Korea, 9–11 August 2018, p. 337.
12. Shuisky A., Stelmakh S., Shcherban E., Torlina E. Recipe-technological aspects of improving the properties of non-autoclaved aerated concrete MATEC Web Conference. Vol. 129. International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2017). 2017. 05011. https://doi.org/10.1051/matecconf/201712905011
13. Солдатов А.А., Сариев И.В., Жаров М.А., Абдураимова М.А. Строительные материалы на основе жидкого стекла. Актуальные проблемы строительства, транспорта, машиностроения и техносферной безопасности: Материалы IV ежегодной научно-практической конференции Севе-ро-Кавказского федерального университета. Н.И. Стоянов (ответственный редактор). Ставрополь. 2016. С. 192–195.
13. Soldatov A.A., Sariev I.V., Zharov M.A., Abduraimova M.A. Building materials based on liquid glass. Actual problems of construction, transport, mechanical engineering and technosphere safety: Materials of the IV annual scientific and practical conference of the North Caucasus Federal University. N.I. Stoyanov (executive editor). Stavropol’. 2016, рр. 192–195. (In Russian).
14. Martschuk V., Stark T.Untersuchungen zurn Frost-Tausalz-Widerstaud von Mochleistungsbetonen. Thesis: Wiss. Z. Bauhaus -Univ. Weimar. 1998. V. 44. No. 1–2, рр. 92–103.
15. Larbi J.A., Bijen J.M. Effect of water-cement ratio, quantity and fineness of sand on the evolution of lime in set Portland cement systems. Cement and Concreate Research. 1990. Vol. 20. No. 5, pp. 783–794.
16. Саламанова М.Ш., Алиев С.А., Муртазаева Р.С.-А.Структура и свойства вяжущих щелочной активации с использованием цементной пыли // Вестник Дагестанского государственного технического университета. Технические науки. 2019. Т. 46. № 2. С. 148–158.
16. Salamanova M.Sh., Aliyev S.A., Murtazayev R. S-A. The structure and properties of binders alkaline activation using cement dust. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2019. Vol. 46. No. 2, pp. 148–158. (In Russian).
17. Kozhukhova N.I., Chizhov R.V., Zhernovsky I.V., Strokova V.V. Structure formation of geopolymer perlite binder vs. Type of alkali activating agent. ARPN Journal of Engineering and Applied Sciences. 2016. Vol. 11. Issue 20, pp. 12275–12281.
18. Удодов С.А., Гиш М.Р. Влияние дозировки редиспергируемого порошка на локализацию полимера и деформационные свойства раствора // Научные труды Кубанского государственного технологического университета. 2015. № 9. С. 164–174.
18. Udodov S.A., Gish M.R. The effect of dosage of redispersible powder on the localization of the polymer and the deformation properties of the solution. Nauchnye trudy Kubanskogo gosudarstvennogo tekhnologicheskogo universiteta. 2015. No. 9, рp. 164–174. (In Russian).
19. Murtazaev S-A.Yu., Salamanova M.Sh., Ismailova Z.Kh. The Use of highly active additives for the рroduction of clinkerless binders. Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” (ISEES 2018). https://doi.org/10.2991/isees-18.2018.68
20. Salamanova M.Sh., Murtazayev S. Yu. Clinker-free binders based on finely dispersed mineral components. 20 Internationale Baustofftagung, Tagungsbericht. 12–14 September 2018, Bauhaus-Universität Weimar. Band 1 und 2. Weimar: 2018. В. 2, рр. 707–714.

For citation: Salamanova M.Sh., Murtazaev S.-A.Yu., Nakhaev M.R. Possible alternative solutions to problems in the cement industry. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 73–77. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-73-77

Application of Filtration Pressing Technology in the Manufacture of Roofing Products

Number of journal: 1-2-2020
Autors:

Sinitsina E.A.,
Nedoseko I.V.,
Khalikov R.M.,
Pudovkin A.N.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-66-72
УДК: 692.415

 

AbstractAbout AuthorsReferences
One of the technological possibilities of filtration pressing of cement-sand compositions with synchronous extraction of squeezed water is investigated. The technology of filtration pressing of compositions containing 20–30% of Portland cement and 70–80% of quartz sand of small fractions with the subsequent addition of water, in an amount of 50–70% of the cement mass, includes processing of samples under the pressure of 5–10 MPa for 2–4 minutes. Through the mold filter, up to 60% of the excess mixing water was removed from the molding mass. The introduction of a micro-filler in the composition when producing cement-sand products using filter-press technology makes it possible to improve significantly the formability of the mixture and the workability under the conditions of pressing, get a more dense structure of the material and increase its durability. It is shown that the filtration pressing technology achieves greater water reduction at relatively moderate pressures from 5 to 10 MPa than when using superplasticizers. Tests of samples of the products obtained have shown that they have a compressive strength (at the age of 28 days) of 100 MPa and more, a bending strength of 20 MPa and more; frost resistance – more than 500 cycles of alternate freezing and thawing; low water absorption (1.5% or less), which can significantly increase the durability of the resulting roofing products.
E.A. SINITSINA1, assistant, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.V. NEDOSEKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.M. KHALIKOV1, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.N. PUDOVKIN2, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ufa State Petroleum Technological University (195, Mendeleeva Street, Ufa, 450080, Russian Federation)
2 Kumertau branch of Orenburg State University (3B, 2nd Lane Soviet, Kumertau, 453300, Russian Federation)

1. Kotlyar V.D., Lapunova K.A., Lazareva I.V., Usepyan I.M. Main trends and prospective types of raw material when producing ceramic tile. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 28–32. (In Russian).
2. Palanisamy M., Jagadeesh M., Bhuvaneswari R., Preethiwini B. Experimental study on self compacting concrete contains partially manufactured sand and recycled clay roof tile. International Journal of Civil Engineering and Technology (IJCIET). 2017. Vol. 8/ Iss. 3, pp. 599–608. http://www.iaeme.com/MasterAdmin/UploadFolder/IJCIET_08_03_059/IJCIET_08_03_059.pdf
3. Patent RF 2201409 Sposob izgotovleniya tsementno-peschanoy cherepitsy [A method of manufacturing a cement-sand tile]. Bikbau M.Ya., Bikbau Ya.M. Declared 14.04.2000. Published 03.27.2003. (In Russian).
4. Lyashkevich I.M., Mitrofanov A.A. Filter-press technology for the production of gypsum boards. Stroitel’nye Materialy [Construction Materials]. 1987. No. 1, pp. 7–9. (In Russian).
5. Babkov V.V., Mokhov V.N., Kapitonov S.M., Komokhov P.G. Strukturoobrazovaniye i razrusheniye tsementnykh betonov [Structuring and destruction of cement concrete]. Ufa: State Unitary Enterprise “Ufa Polygraphic Combine”. 2002. 376 p.
6. Nelubova V.V., Strokova V.V. Technology of silicate pressed materials. Review of innovations for the development of production. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 6–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-6-13
7. Balakshin Yu.Z., Terekhov V.A. Tekhnologiya proizvodstva stenovykh tsementno-peschanykh izdelii [Technology for the production of wall cement-sand products]. Moscow: RIF “STROYMATERIALY”. 2012. 276 p.
8. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Pursheva A.V., Akhmetzyanova M.A., Khudovekova E.A. Low water requirement cements of centri-fugal impact grinding. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 23–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-23-27
9. Sinitsin D.A., Khalikov R.M., Bulatov B.G. et al. Technological approaches to the directional structure formation of building nanocomposites with increased corrosion resistance. Nanotechnology in construction. 2019. Vol. 11. No. 2, pp. 153–164. (In Russian). DOI: 10.15828/2075-8545-2019-11-2-153-164
10. Galuzo G., Povidaiko V., Laptik N. et al. Technology of the filtration method of manufacture and physicotechnical properties of wall and facing products from fine-grained concrete. Newspaper Stroitel’stvo i nedvizhimost’. 1999. No. 18. (Belarus).
11. Belyakov Yu.I., Maul V.P., Grankovsky I.G. Improving the technology of preparation of concrete mix. Izvestiya VUZov. Stroitel’stvo i arkhitektura. 1987. No. 1, pp. 64–67. (In Russian).
12. Solomatov V.I., Bobryshev A.N., Proshin A.P. Clusters in the structure and technology of composite building materials. Izvestiya VUZov. Stroitel’stvo i arkhitektura. 1983. No. 4, pp. 56–61. (In Russian).
13. Itskovich S.M., Lyashkevich I.M. Theory of the process of pressing products from powders and suspensions. Tekhnika, tekhnologiya, organizatsiya i ekonomika stroitel’stva. 1987. Vol. 13, pp. 17–25. (In Russian).
14. Bogdanov R.R., Ibragimov R.A. Composition, properties, and microstructure of modified self-compacting concrete for water proofing of flat roofs of buildings. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 39–43. https://doi.org/10.31659/0585-430X-2017-750-7-39-43 (In Russian).

For citation: Sinitsina E.A., Nedoseko I.V., Khalikov R.M., Pudovkin A.N. Application of filtration pressing technology in the manufacture of roofing products. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-66-72