Log in

Investigation of Thermal Conductivity of Rolled Materials Based on Aerogel

Number of journal: 6-2020
Autors:

Pastushkov P.P.,
Gutnikov S.I.,
Pavlenko N.V.,
Stolyarov M.D.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-39-43
УДК: 544.774.2

 

AbstractAbout AuthorsReferences
In this article, the general information about aerogels as well as application areas of materials based on them are presented. Scientific and technical review on heat conductivity of aerogel-based thermal insulation materials was made. It was determined, that among the Russian studies the results of behaviour of these materials under high temperatures are not presented. Comprehensive studies of thermal characteristics, including heat conductivity values in temperature range of 10–650оС (where 650оС is the maximal operating temperature) for the thermal insulation rolled materials based on SiO2-aerogel DRT06-Z (Alison Aerogel) were carried out. The mathematical relationship between heat conductivity and operating temperature in range of 10–650оС was determined. Using the obtained results, the calculation of thickness of insulation for the studied aerogel-based rolled materials was realized according to the construction rules SP 61.13330.2010, that can be applied for design of high-heat insulation for equipment and pipelines.
Р.P. PASTUSHKOV1, 2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.I. GUTNIKOV2, 3, Candidate of Sciences (Сhemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.V. PAVLENKO1, 2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.D. STOLYAROV1, engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 Lomonosov Moscow State University (1, Leninskie gori, Moscow, 119234, Russian Federation)3 Certification research center «Thermal insulation» (1/77, Leninskie gori, Moscow, 119234, Russian Federation)

1. Бабашов В.Г., Варрик Н.М., Карасева Т.А. Приме-нение аэрогелей для создания теплоизоляционных материалов (обзор) // Труды ВИАМ. 2019. № 6 (78). С. 32–42.
1. Babashov V.G., Varrik N.M., Karaseva T.A. Using of aerogels for production of heat insulative materials (the review). Trudy VIAM. 2019. No. 6 (78), pp. 32–42. (In Russian).
2. Ding B., Si Y., Ge J., Tang X., Huang M., Zhu J., & Jianyong Yu. Three-dimensional fiber-based airgel tissue engineering scaffold and production method thereof. Faming Zhuanli Shenqing. Donghua University, Peop. Rep. China. 2013.
3. Tikhomirov B.A. Sorption of atmospheric gases (N2, O2, Ar, CO2, and H2O) by silica aerogel. Atmospheric and Oceanic Optics. 2018. Vol. 31. No. 3, pp. 232–237.
4. Baskakov S.A., Manzhos R.A., Lobach A.S., Baskakova Y.V., Kulikov A.V., Martynenko V.M., Kabachkov E.N., Krivenko A.G., Shulga Y.M., Milovich F.O., Kumar Y., Michtchenko A. Properties of a granulated nitrogen-doped graphene oxide aerogel. Journal of Non-Crystalline Solids. 2018. Vol. 498, pp. 236–243. DOI: 10.1016/j.jnoncrysol.2018.06.035
5. Singh P., Tan C.M. Time evolution of packaged LED lamp degradation in outdoor applications. Optical Materials. 2018. Vol. 86, pp. 148–154. https://doi.org/10.1016/j.optmat.2018.10.009
6. Kudryavtsev P.G., Figovsky O.L. Nanocomposite organomineral hybrid materials. Part III. Нанотехнологии в строительстве: научный интернет-журнал [Nanotechnologii v stroitel’stve: online scientific journal]. 2016. Vol. 8. No. 3, pp. 16–49.
7. Issa A.A., Luyt A.S. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: a review. Polymers. 2019. Vol. 11. No. 3. 537. https://doi.org/10.3390/polym11030537
8. Воронова М.И., Суров О.В., Рублева Н.В., Кочкина Н.Е., Захаров А.Г. Диспергирование нанокристаллической целлюлозы в органических растворителях // Химия растительного сырья. 2019. № 1. С. 39–50. DOI: https://doi.org/10.14258/jcprm.2019014240
8. Voronova M.I., Surov O.V., Rubleva N.V., Kochkina N.E., Zakharov A.G. Dispersibility of nanocrystalline cellulose in organic solvents. Khimiya Rastitel’nogo Syr’ya, 2019. No. 1, pp. 39–50. (In Russian). https://doi.org/10.14258/jcprm.2019014240
9. Khusain B.K., Shlygina I.A., Brodsky A.R., Zhurinov M.Z. Quantum chemical modeling of regents and products in the process of siloxane airgel formation. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. Vol. 7. No. 5, pp. 3073–3082.
10. Луговской А.А., Осипов К.Ю., Тихомиров Б.А. Сорбция молекул воды нанопорами кремниевого (SiO2) аэрогеля // Оптика атмосферы и океана. 2017. Т. 30. № 2. С. 124–127.
10. Lugovskoy A.A., Osipov K.Yu., Tikhomirov B.A. Sorption of water molecules by silicon (SiO2) airgel nanopores. Optika Atmosfery i Okeana. 2017. Vol. 30. No. 02, pp. 124–127 (In Russian).
11. Lugovskoi A., Duchko A. The D2O absorption spectra in SiO2 airgel pores: technical features of treatment. Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics. 968004. 19 No-vember 2015. https://doi.org/10.1117/12.2205341
12. Sinitsa L., Lugovskoi A. The D2O absorption spectra in the treatment surfaces SiO2 airgel. Proc. SPIE 9292, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 92920N. 25 November 2014. https://doi.org/10.1117/12.2074812.
13. Duchko A., Dudaryenok A., Lugovskoi A., Serdyukov V., Tikhomirov B. The D2O absorption spectra in SiO2 airgel pores: technical features of treatment. 2016. Conference: XXII International Symposium Atmospheric and Ocean Optics. Atmospheric Physics. Tomsk, Russia. Vol. 10035. DOI: 10.1117/12.2249250.
14. Пустовгар А.П., Веденин А.Д. Теплоизоляционные нанокомпозиты на основе аэрогеля кремнезема // Научно-технический вестник Поволжья. 2013. № 1. С. 252–254.
14. Pustovgar A.P., Vedenin A.D. Heat insulative nanocomposites on the base of SiO2-aerogel. Nauchno-tekhnicheskii vestnik Povolzh’ya. 2013. No. 1, pp. 252–254. (In Russian).
15. Baikov I.R., Smorodova O.V., Trofimov A.Y., & Kuznetcova E.V. Experimental study of heat-insulating aerogel-based nanomaterials // Нанотехнологии в строительстве: научный интернет-журнал [Nanotekhnologii v Stroitel’stve: online scientific journal]. 2019. Vol. 11. No. 4, pp. 462–477. DOI: 10.15828/2075-8545-2019-11-4-462-477
16. Шиндряев А.В., Кожевников Ю.Ю., Лебедев А.Е., Меньшутина Н.В. Исследование процесса получения теплоизоляционных материалов на основе аэрогелей // Успехи в химии и химической технологии. 2017. Т. 31. № 6 (187). С. 130–132.
16. Shindryaev A.V., Kozhevnikov Yu.Yu., Lebedev A.E., Menshutina N.V. Study of the process of production of thermal insulation aerоgels-based materials. Uspekhi v khimii i khimicheskoi tekhnologii. 2017. Vol. 31. No. 6 (187), pp. 130–132. (In Russian).
17. Пастушков П.П. О проблемах определения теплопроводности строительных материалов // Строительные материалы. 2019. № 4. С. 57–63. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-57-63
17. Pastushkov P.P. On the problems of determining the thermal conductivity of building materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 57–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-769-4-57-63
18. Huang D., Guo C., Zhang M., Shi L. Characteristics of nanoporous silica aerogel under high temperature from 950оC to 1200оC. Materials & Design. Vol. 129, pp. 82–90. DOI: 10.1016/j.matdes.2017.05.024
19. Lyu S., Yang X., Shi D. Effect of high temperature on compression property and deformation recovery of ceramic fiber reinforced silica aerogel composites. Science China Technological Sciences. 2017. Vol. 60, pp. 1681–1691.
20. Nasibullin R.T., Ponomarev Y.N., Cherepanov V.N. Interaction potential of H2O molecules and water layer adsorbed on surface of aerogel nanopores. Proceedings of SPIE – The International Society for Optical Engineering. 2018. 1083304. DOI: 10.1117/12.2503791

For citation: Pastushkov P.P., Gutnikov S.I., Pavlenko N.V., Stolyarov M.D. Investigation of thermal conductivity of rolled materials based on aerogel. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 39–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-39-43

Sorption of Water Vapor Materials of Mineral Wool Products of Modern Manufacture. Part II

Number of journal: 6-2020
Autors:

Gagarin V.G.,
Pastushkov P.P.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-33-38
УДК: 666.198

 

AbstractAbout AuthorsReferences
The article is devoted to studies of the relationship of sorption humidity with a porous structure on the example of thermal insulation products made of mineral (glass) wool produced by “URSA Eurasia”. Experimental studies of water vapour sorption on the materials of URSA 6 brands of glass wool products of modern production were carried out. The obtained sorption isotherms of all the studied brands were close to each other, and only the maximum sorption humidity significantly differed depending on the brand. The relationship between the sorption of water vapour and density of the product is not installed. It is hypothesized that the sorption of water vapour significantly depends on the content of all organic substances (not only the binder) in the mineral wool. An averaged isotherm of sorption of mineral wool products URSA was constructed, which can be used for calculating the humidity regime of building envelope structures. Based on experimentally obtained sorption isotherms, the specific surface area of the studied materials was determined, and conclusions were made about the predominant role of mesoporisity of glass fiber products in the process of water vapour sorption. The results of the study of structural characteristics can be used in the further study of their impact on the performance of mineral wool products. These aspects will be reflected in the following parts of the work.
V.G. GAGARIN1, 2, 3, Doctor of Sciences, (Engineering), Corresponding Member RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.P. PASTUShKOV1, 2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 Institute of Mechanics Lomonosov Moscow State University (1, Michurinsky Avenue, Moscow, 119192, Russian Federation)3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Gagarin V.G. Sorbtsiya i desorbtsiya vodyanogo para materialami ograzhdayushchei konstruktsii / V kn. Rossiiskaya arkhitekturno-stroitel’naya entsiklopediya» [Sorption and desorption of water vapor of the building envelope materials. In the book. «Russian Architectural and Construction Encyclopedia»]. Vol. 2. Moscow: Ministry of Construction of the Russian Federation. 1995, pp. 425–427.
2. Gagarin V.G. Theory of state and moisture transfer in building materials and heat-shielding properties of enclosing structures of buildings. Doctor diss. (Engineering). Moscow. 2000. 396 p. (In Russian).
3. Gagarin V.G., Pastushkov P.P. Sorption of water vapor materials of mineral wool products of modern manufacture. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 40–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-40-43
4. Pastushkov P.P. On the problems of determining the thermal conductivity of building materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 57–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-769-4-57-63
5. Kupriyanov V.N., Yuzmuhametov A.M., Safin I.Sh. The effect of moisture on the thermal conductivity of wall materials. State of the matter. Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2017. No. 1 (39), pp. 102–110. (In Russian).
6. Kiselyov I.Ya. Influence of equilibrium sorption humidity of building materials on resistance to heat transfer of external enveloping structures of buildings. Zhilishchnoe Stroitel’stvo [Housing construction]. 2013. No. 6, pp. 40. (In Russian).
7. Gagarin V.G., Mekhnetsov I.A., Ivakina Yu.Yu. Water vapor sorption by materials of heat-insulating plates manufactured by URSA EURASIA. Stroitel’nye Materialy [Construction Materials]. 2007. No. 10, pp. 41–50. (In Russian).
8. De Burgh J.M., Foster S.J., Valipour H.R. Prediction of water vapour sorption isotherms and microstructure of hardened Portland cement pastes. Cement and Concrete Research. 2016. Vol. 81, pp. 134–150. https://doi.org/10.1016/j.cemconres.2015.11.009
9. De Burgh J.M., Foster S.J. Influence of temperature on water vapour sorption isotherms and kinetics of hardened cement paste and concrete. Cement and Concrete Research. 2017. Vol. 92, pp. 37–55. https://doi.org/10.1016/j.cemconres.2016.11.006
10. Kiselev I.Ya. Improving the accuracy of determining the thermophysical properties of insulating building materials with regard to their structure and characteristics of operational impacts. Doctor diss. (Engi-neering). Moscow. 2006. 366 p. (In Russian).
11. Kymäläinen M., Ben Mlouka S., Belt T., Merk V., Liljeström V., Hänninen T., Rautkari L. Chemical, water vapour sorption and ultrastructural analysis of Scots pine wood thermally modified in high-pressure reactor under saturated steam. Journal of Materials Science. 2018. Vol. 53 (4), pp. 3027–3037. https://doi.org/10.1007/s10853-017-1714-1
12. Greg S., Sing K. Adsorbtsiya, udel’naya poverkhnost’, poristost’ [Adsorption, specific surface area, porosity]. Moscow: Mir. 1984. 306 p.
13. Gagarin V.G. On the modification of the t-method for determining the specific surface of macro- and mesoporous adsorbents. Zhurnal fizicheskoy khimii. 1985. Vol. 59. No. 5, pp.1838-1839. (In Russian).
14. Hosseinpourpia R., Adamopoulos S., Holstein N., Mai C. Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris L.) wood pre-treated with proton acid. Polymer Degradation and Stability. 2017. Vol. 138, pp. 161–168. DOI: 10.1016/j.polymdegradstab.2017.03.009
15. Gagarin V.G., Pastushkov P.P. Determination of the calculated moisture content of building materials. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 8, pp. 28–33. (In Russian).

For citation: Gagarin V.G., Pastushkov P.P. Sorption of water vapor materials of mineral wool products of modern manufacture. Part II. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 33–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-33-38

Modeling of Mass Transfer Dynamics in the Processes of Liquid Corrosion of Cement Concretes with Due Regard for the Phenomenon of Colmatation

Number of journal: 6-2020
Autors:

Fedosov S.V.,
Rumyantseva V.E.,
Konovalova V.S.,
Evsyakov A.S.,
Kasyanenko N.S.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-27-32
УДК: 666.972: 620.193

 

AbstractAbout AuthorsReferences
The results of studies of mass transfer processes occurring in the porous structure of cement concrete under liquid corrosion, taking into account the process of colmatation, are presented. The developed mathematical model of pore colmatation of cement concretes was tested by a full-scale experiment, which resulted in obtaining information about the elemental composition of the sample surface after exposure to a liquid medium, which makes it possible to judge the degree of aggressive action. Using a scanning electron microscope, the depth of penetration of the aggressive medium into the sample was determined and the change in the concentration of reacting ions along the thickness of the sample was set. Based on the data obtained, the values of the mass conductivity and mass transfer coefficients in the system under study were calculated. The calculated mass transfer characteristics indicate that due to pore colmatation, the intensity of mass exchange processes occurring in the sample pores decreases. Using the developed mathematical model of pore colmatation of cement concretes under liquid corrosion, the values of the colmatation rate and the thickness of the colmatant layer in the sample under study were determined. The values obtained during the processing of experimental data are found in the intervals of values of the corresponding values calculated using the mathematical model, which vary exponentially in the thickness of the sample. The mathematical model of concrete pore colmatation based on mass transfer equations makes it possible to estimate the depth of concrete corrosion damages in environments of different degrees of aggressiveness.
S.V. FEDOSOV1, Doctor of Sciences (Engineering), Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.E. RUMYANTSEVA2, Doctor of Sciences (Engineering), Adviser of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.S. KONOVALOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. EVSYAKOV2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.S. KASYANENKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Ivanovo State Polytechnical University (21, Sheremetevsky Avenue, Ivanovo, 153000, Russian Federation)

1. Lykov A.V. Yavleniya perenosa v kapillyarno-poristyh telah [Transfer phenomena in capillary-porous bodies]. Moscow: State publishing house of technical and theoretical literature. 1954. 298 p.
2. Rosental N.K., Usachev I.N., Chehniy G.V. Durable reinforced concrete for the Arctic regions of Russia. Regional’naja jenergetika i jenergosberezhenie. 2017. No. 2, pp. 58–60. (In Russian).
3. Girskas G., Nagrockiene. D., Skripkiu-nas G. Frost resistance of hardened cement paste modified with synthetic zeolite. Engineering Structures and Technologies. 2013. Vol. 5. No. 1, pp. 30–36. DOI: https://doi.org/10.3846/2029882X.2013.777119
4. Zarauskas L., Skripkiunas G., Girskas G. Influence of aggregate granulometry on air content in concrete mixture and freezing-thawing resistance of concrete. Procedia Engineering. 2017. Vol. 172, pp. 1278–1285. DOI: https://doi.org/10.1016/j.proeng.2017.02.153
5. Bertolini L., Elsener B., Pedeferri P., Redaelli E., Polder R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Viernheim: John Wiley & Sons. 2013. 434 p.
6. Powers T.C. Structure and physical properties of hardened Portland cement paste. Journal of American Ceramic Society. 1958. Vol. 41. No. 1, pp. 1–6. DOI: http://dx.doi.org/10.1111/j.1151-2916.1958.tb13494.x
7. Phung Q.T., Maes N., Jacques D., De Schutter G., Ye G. Effects of W/P ratio and limestone filler on permeability of cement pastes. International RILEM Conference Materials, Systems and Structures in Civil Engineering 2016. At Lyngby, Denmark, pp. 141–151. DOI: 10.13140/RG.2.2.14118.93766
8. Fedyuk R.S. Design of cement composites with increased impermeability. Vestnik MGSU. 2016. No. 5, pp. 72–81. (In Russian).
9. Antonyan A.A. Resistance of concrete with superplasticizers. Tekhnologii betonov. 2017. No. 3–4 (128–129), pp. 36-39. (In Russian).
10. Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
11. Stauffer D., Aharony A. Introduction to Percolation Theory. London: Taylor&Francis. 1992. 192 p.
12. Lotov V.A. Periodicity of processes of cement hydration and hardening. Stroitel’nye Materialy [Construction Materials]. 2018. No. 7, pp. 55–59. DOI: 10.31659/0585-430X2018-761-7-55-59 (In Russian).
13. Gusev B.V., Fayvusovich A.S. Mathematical theory of processes of concrete corrosion. Promyshlennoe i grazhdanskoe stroitel’stvo. 2019. No. 7, pp. 58–63. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2019.07.58-63
14. Shi C.J., Deng D.H., Xie Y.J. Pore structure and chloride ion transport mechanisms in concrete. Key Engineering Materials. 2006. Vol. 302–303, pp. 528–535. DOI: https://doi.org/10.4028/www.scientific.net/KEM.302-303.528
15. Yu Z., Ni C., Mingliang T., Shen X. Relationship between water permeability and pore structure of Portland cement paste blended with fly ash. Construction and Building Materials. 2018. Vol. 175, pp. 458–466. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.147
16. Kayumov R.A., Kashafdinova A.F. Method of describing the degradation process of concrete constructions under the influence of salt corrosion. Izvestija Kazanskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2018. No. 2 (44), pp. 288–295. (In Russian).
17. Osipov S.N., Zakharenko A.V., Chik V.M. Some stochastic specific features of concrete and reinforced concrete carbonization. Nauka i tehnika. 2019. Vol. 18. No. 2, pp. 127–136. (In Russian). DOI: https://doi.org/10.21122/2227-1031-2019-18-2-127-136
18. Marcus P. Corrosion mechanisms in theory and practice: Third edition. Boca Raton: CRC Press, Taylor & Francis Group. 2011. 941 p.
19. Lubomirskiy N.V., Fedorkin S.I., Ryzhakov A.N. The modeling of half-dry pressure lime stone forced carbonation processes. Part 1. The mathematical model. Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Serija: Materialy. Konstrukcii. Tehnologii. 2017. No. 2, pp. 14–25. (In Russian).
20. Chalabi H., Bezzar A.-I., Abdelhafid K. Chloride transport in partially saturated cementitious material: Influence of hydric state and binding chloride. Magazine of Concrete Research. 2017. Vol. 69. Iss. 21, pp. 1103–1114. DOI: https://doi.org/10.1680/jmacr.16.00342
21. Claisse P. Transport Properties of Concrete: Measurements and Applications. Cambridge: Woodhead Publishing. 2014. 312 p.
22. omodíková M., Strauss A., Zambon I., Teplý B. Quantification of parameters for modeling of chloride ion ingress into concrete. Structural Concrete. 2018. Vol. 20. Iss. 1, pp. 519–536. DOI: https://doi.org/10.1002/suco.201800049
23. Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Evsyakov A.S. Colmatation: phenomenon, theory, prospects of using for control over concrete corrosion processes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 10–17. DOI: https://doi.org/10.31659/0585-430X-2017-753-10-10-17. (In Russian).
24. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Konovalova V.S., Evsyakov A.S. Mathematical modeling of the colmatation of concrete pores during corrosion. Inzhenerno-stroitel’nyj zhurnal. 2018. No. 7 (83), pp. 198–207. DOI: 10.18720/MCE.83.18.

For citation: Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Evsyakov A.S., Kasyanenko N.S. Modeling of mass transfer dynamics in the processes of liquid corrosion of cement concretes with due regard for the phenomenon of colmatation. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-27-32

High-Frost-Resistant Concrete without air Entrainment

Number of journal: 6-2020
Autors:

Shuldyakov K.V.,
Trofimov B.Ya.,
Kramar L.Ya.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-18-26
УДК: 666.972.53

 

AbstractAbout AuthorsReferences
One of the traditional methods of increasing the frost resistance of concrete is the introduction of air-entraining additives, but this approach, along with increasing density, cement consumption and decreasing water-cement ratio, does not make it possible to obtain high performance concretes with mark on frost resistance F2450 and higher what is needed for the harsh operating conditions of the Arctic and the Far North. Methods were adopted to ensure the frost resistance based on the idea of the mechanism of destruction of water-saturated concrete during cyclic freezing and thawing due to ice formation in macro-capillaries. However, this concept takes into account only the pore space of the cement stone and ignores its microstructure. In the literature, there is information about the production of frost-resistant concrete with water-cement ratio less than 0.3 without the use of air-entraining additives. This article deals with the issue of directional formation of a highly functional concrete cement stone structure that is resistant to cyclical influences. It is established that when superplasticisers and microsilica additives are added to the concrete mix, it is possible to obtain high-functional concrete with a frost resistance rating from F2300 to F2500 without special air entrainment due to modification of the hydrate phases of the cement stone. It is proved that the grade of concrete frost resistance depends on the Genesis of the superplasticizer used: polycarboxylate simultaneously shows plasticizing and modifying properties, compared with naphthalene formaldehyde. This is manifested in a decrease in the amount of Ca(OH)2 in the cement stone by ~2%, which contributes to the formation of gel-like low-basic hydrate phases that are more resistant to cyclic impacts. In addition, for high-functional concretes, the dependence between the nature of saturation with 5% NaCl solution and the stability of the structure of the hydrate phases of cement stone was noted in the process of testing for frost resistance by the third accelerated method in accordance with GOST 10060.
K.V. SHULDYAKOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
B.Ya. TROFIMOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.Ya. KRAMAR, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

South Ural State University (National Research University) (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)

1. Aitcin P.-C. High-performance concrete. Quebec: E&FnSpon, 2004. 364 p.
2. Powers T.C. The air requirement of frost-resistant concrete. Highway Research Board Proceedings. 1949. No. 29, pp. 184–202.
3. Сordon W.A. Freezing and thawing of concrete. Mechanisms and control. JACI. 1966. Vol. 53. No. 5, pp. 613–618.
4. Mac Innis C., Beaudoin G.G. Pore structure and frost durability. Proceedings. International Symposium Rilem/IUPAC. Prague. 1973, pp. 3–15.
5. Powers T.C. A working hypothesis for further studies of frost resistance of concrete. Proc. ACI. 1945. 41, pp. 245–272.
6. Powers T.C., Brownyard T.L. Studies of the physical properties of hardened Portland cement paste. JACI. 1980. Vol. 77. No. 4, pp. 264–268.
7. Баженов Ю.М., Демьянова В.С., Калашников В.И. Модифицированные высококачественные бетоны. М.: АСВ, 2006. 370 с.
7. Bazhenov Yu.M., Dem’yanova V.S., Kalashnikov V.I. Modifitsirovannye vysokokachestvennyes betony [Modified high quality concrete]. Moscow: ASV. 2006. 370 p.
8. Кузнецова Т.В., Самченко С.В. Микроскопия материалов цементного производства. М.: МИКХиС, 2007. 304 с.
8. Kuznetsova T.V., Samchenko S.V. Mikroskopiya materialov tsementnogo proizvodstva [Microscopy of cement production materials]. Moscow: MIKKhiS. 2007. 304 p.
9. Бутт Ю.М., Сычев М.М., Тимашев В.В. Химиче-ская технология вяжущих веществ. М.: Высшая школа, 1980. 471 с.
9. Butt Yu.M., Sychev M.M., Timashev V.V. Khimicheskaya tekhnologiya vyazhushchikh veshchestv [Chemical technology of binders]. Moscow: Vysshaya shkola. 1980. 471 p.
10. Горшков В.С., Тимашев В.В., Савельев В.Г. Методы физико-химического анализа вяжущих веществ. М.: Высшая школа, 1981. 335 с.
10. Gorshkov V.S., Timashev V.V., Savel’ev V.G. Metody fiziko-khimicheskogo analiza vyazhushchikh veshchestv [Methods of physico-chemical analysis of binders]. Moscow: Vysshaya shkola, 1981. 335 p.
11. Бугрим С.Ф., Слепокурова Е.И., Мухаметгалеева С.П. К вопросу замерзания воды в капиллярно-пористых телах. Способы строительства и материалы, применяемые при нефтегазовом строительстве в условиях Севера: Сборник научных трудов. Москва, 1980. С. 89–96.
11. Bugrim S.F., Slepokurova E.I., Mukhametgaleeva S.P. To the question of freezing water in capillary-porous bodies. Proceedings: Methods of construction and materials used in oil and gas construction in the North. Moscow. 1980, pp. 89–96. (In Russian).
12. Shuldyakov K.V., Kirsanova A.A., Kramar L. Ya, Trofimov B. Ya. Hardened cement paste microstructure as the main factor of concrete durability. IV International Young Researchers Conference «Youth, Science, Solutions: Ideas and Prospects» (YSSIP-2017): MATEC Web of Conferences. 2018. Vol. 143. 02011. https://doi.org/10.1051/matecconf/201814302011
13. Андреев В.В., Слепокуров Е.И. Исследования фазовых переходов влаги в цементном камне. Тепловая обработка строительных материалов продуктами сгорания природного газа и их применение: ВНИИСТ. Москва. 1981. С. 59–69.
13. Andreev V.V., Slepokurov E.I. Studies of the phase transitions of moisture in a cement stone. Heat treatment of building materials with natural gas combustion products and their application: VNIIST. Moscow. 1981, pp. 59–69. (In Russian).
14. Fagerlund G. Frost Destruction of concrete – a study of the validity of different mechanisms. Nordic Concrete Research. 2018. Iss. 1. Vol. 58, pp. 35–54. https://doi.org/10.2478/ncr-2018-0003
15. Трофимов Б.Я., Крамар Л.Я., Шулдяков К.В. Структурообразование гидратных фаз цементного камня при циклическом замораживании. Строительство и экология: теория, практика, инновации: Материалы 1 межд. науч. практ. конф. Челябинск. 2015. С. 168–175.
15. Trofimov B.Ya., Kramar L.Ya., Shuldyakov K.V. Structural formation of hydrated phases of cement stone during cyclic freezing. Proceedings of the first international practical conference. Construction and the environment: theory, practice, innovation. Chelyabinsk. 2015, pp. 168–175. (In Russian).
16. Волженский А.В. Влияние дисперсности портландцемента и В/Ц на долговечность камня и бетонов // Бетон и железобетон. 1990. № 10. С. 16–17.
16. Volzhenskii A.V. The effect of dispersion of Portland cement and W/C on the durability of cement stone and concrete. Beton i zhelezobeton. 1990. No. 10, pp. 16–17. (In Russian).
17. Шулдяков К.В., Трофимов Б.Я., Крамар Л.Я. Морозостойкость дорожного бетона. Фундаментальные и прикладные науки – основа современной инновационной системы: материалы международной научно-практической конференции студентов, аспирантов и молодых ученых. Омск. 2015. С. 209–216.
17. Shuldyakov K.V., Trofimov B.Ya., Kramar L.Ya. Frost resistance of road concrete. Basic and applied science – the basis of the modern innovation system: materials of the international scientific-practical conference of students, graduate students and young scientists. Omsk. 2015, pp. 209–216. (In Russian).
18. Ильина Л.В., Хакимуллина С.А., Кадоркин Д.А. Влияние дисперсных минеральных добавок на прочность мелкозернистого бетона // Фундаментальные исследования. 2017. №4. С. 34–38.
18. Il’ina L.V., Khakimullina S.A., Kadorkin D.A. The effect of dispersed mineral additives on the strength of fine-grained concrete. Fundamental’nye issledovaniya. 2017. No. 4, pp. 34–38. (In Russian).
19. Баженов Ю.М. Технология бетона. Учебник. М.: АСВ, 2011. 528 с.
19. Bazhenov Yu.M. Tekhnologiya betona [Concrete technology]. Moscow: ASV. 2011. 528 p.
20. Zhang Y., Kong X. Correlations of the dispersing capability of NSF and PCE types superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cement and concrete research. 2015. Vol. 69, pp. 1–9.
21. Hammer T.A. Sellevold E.J. Frost resistance of high-strength concrete. ACI. 1990. SP-121. pp. 457–487.

For citation: Shuldyakov K.V., Trofimov B.Ya., Kramar L.Ya. High-frost-resistant concrete without air entrainment. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 18–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-18-26

Changes in the Prismatic Strength and Elastic Modulus of High-Strength Steel Fiber Concrete and its Matrix Depending on the Age

Number of journal: 6-2020
Autors:

Moiseenko G.A.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-13-17
УДК: 666.98

 

AbstractAbout AuthorsReferences
When constructing unique, including high-rise, structures under the conditions of increasing massiveness of monolithic structures, the use of high-strength concrete becomes especially relevant. Fine-grained high-strength concretes that have a micro-porous structure with a minimum number of defects have a number of positive qualities and open up wide prospects for monolithic construction. The main disadvantage of such concretes is their increased fragility. One of the ways to reduce the negative impact of this factor is the introduction of dispersed reinforcing with steel fiber. In this regard, high-strength steel fiber concrete has recently attracted increasing scientific and practical interest. However, its wide application is limited by the lack of a full regulatory framework and insufficient knowledge of the properties of this material. This paper presents a theoretical treatment of the results of experimental studies of the main physical and mechanical properties of high-strength steel-fiber concrete: prismatic strength and elastic modulus under short-term compression. Concrete prepared from domestic components with steel fiber content at the lower efficiency threshold of 1.5 wt. % is studied. For comparison, similar characteristics of the matrix – fine-grained high-strength concrete without the addition of fiber – are studied in parallel. As a result of theoretical processing of experimental data, the dependencies describing the change in these characteristics depending on the age were corrected.
G.A. MOISEENKO, Leading Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Beddar M. Fiber reinforced concrete: past, present and future. The present and future of fiber-reinforced concrete. Concrete and reinforced concrete are development paths. Scientific works of the 2nd All-Russian (international) conference on concrete and reinforced concrete. Vol. 3. Section reports, section Concrete technology. October 5–9, 2005. Moscow, pp. 228–234.
2. Voilokov I.A. Fiber-concrete – history, regulatory framework, problems and solutions. ALITInform Inter-national Analytical Review. 2009. No. 2, pp. 44–53. (In Russian).
3. Korsun V., Vatin N., Franchi A., Korsun A., Crespi P., Mashtaler S. The strength and strain of high-strength concrete elements with confinement and steel fiber reinforcement including the conditions of the effect of elevated temperatures. International Scientific Conference Urban Civil Engineering and Municipal Facilities, SPbUCEME, 2015. Procedia Engineering. 2015. No. 117, pp. 975–984. DOI: https://doi.org/10.1016/j.proeng.2015.08.192
4. Mashtaler S.N., Korsun V.I. The effect of short-term heating on the strength and deformation of high-strength steel fiber reinforced concrete under axial compression and tension. The collection of abstracts on the materials of the conference “Scientific and technological achievements of students, graduate students, young scientists of the construction and architectural industry”. Makeevka, 2016. 142 p. (In Russian).
5. Abbas S., Nehdi M. L., Saleem M. A. Ultra-high performance concrete: mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials. 2016. Vol. 10. No. 3, pp. 271–295.
6. Gu C., Ye G., Sun W. Ultrahigh performance concrete-properties, applications and perspectives. Science China Technological Sciences. 2015. Vol. 58. Iss. 4, pp. 587–599. DOI: 10.1007/s11431-015-5769-4
7. Aitcin P.С. High-performance concrete. London: E&FN SPON, 1998. 591 p.
8. Mishina A.V. The study of creep deformation of high-strength steel fiber reinforced concrete during unloading. Academia. Arkhitektura i stroitel’stvo. 2013. No. 3, pp. 111–113. (In Russian).
9. Mishina A.V., Bezgodov I.M., Andrianov A.A. Prediction of maximum creep strain of high performance steel fiber concrete. Vestnik MGSU. 2012. No. 12, pp. 66–70. (In Russian).
10. Karpenko N.I., Travush V.I., Kapriyelov S.S., Mishina A.V., Andrianov A.A., Bezgodov I.M. Study of the physico-mechanical and rheological properties of high-strength steel fiber concrete. Academia. Arkhitektura i stroitel’stvo. 2013. No. 1, pp. 106–113. (In Russian).
11. Karpenko N.I., Kaprielov S.S., Petrov A.N., Bezgodov I.M., Moiseenko G.A., Stepanov M.V., Chilin I.A. The study of the physico-mechanical and rheological properties of high-strength steel fiber concrete from self-compacting mixtures. Basic, exploratory and applied research of RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2017. Moscow. 2018. Vol. 2, pp. 237–246. (In Russian).
12. Kaprielov S.S., Sheinfeld A.V., Kardumyan G.S. Novyye modifitsirovannyye betony [New modified concrete]. Moscow: Printing House Paradise LLC. 2010.258 p.
13. Kaprielov S.S., Chilin I.A. Ultra-high-strength self-compacting fibrous concrete for monolithic structures. Stroitel’nye Materialy [Construction Materials]. 2013. No. 7, pp. 28–30. (In Russian).
14. Kapriyelov S.S., Sheynfel’d A.V., Kardumyan G.S., Dondukov V.G. Modified high-strength fine-grained concrete with improved deformation characteristics. Beton i zhelezobeton. 2006. No. 2, pp. 2–7. (In Russian).

For citation: Moiseenko G.A. Changes in the prismatic strength and elastic modulus of high-strength steel fiber concrete and its matrix depending on the age. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 13–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-13-17

Highly Efficient New Generation Concretes in the Construction of High-Rise Buildings in the Republic of Bashkortostan

Number of journal: 6-2020
Autors:

Sinitsin D.A.,
Salov A.S.,
Terekhov I.G.,
Timofeev A.A.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-8-12
УДК: 666.972.55

 

AbstractAbout AuthorsReferences
The results of experimental studies on the production of high-strength heavy concretes (compression strength class B60 and higher) using raw materials of the Republic of Bashkortostan, as well as practical experience in the use of increased strength concretes (compression strength class B45–B55) and high-strength concretes are presented. The prospect of using such concretes is associated with the fact that if the current maximum height of civil buildings in Ufa is 99.9 m, then in the coming years it is planned to build several high-rise buildings (42–50 floors, height of more than 100 m) with a bearing reinforced concrete monolithic frame. The results of tests of samples of heavy concrete of the B60 compressive strength class show the possibility of its production from both gabbrodiorite (from igneous rocks) and limestone (from sedimentary rocks) rubble, while the strength of concrete samples made using gabbrodiorite rubble is on average 10 MPa higher than the strength of concrete of a similar composition on limestone rubble. The destruction of samples of high-strength heavy concrete on limestone rubble occurs mainly on the crushed stone grains themselves, the destruction of concrete samples on gabbrodiarite rubble occurs on the cement stone or along the cement stone – aggregate border.
D.A. SINITSIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. SALOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.G. TEREKHOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. TIMOFEEV

Ufa State Petroleum Technological University (195, Mendeleeva Street, Ufa, 450062, Russian Federation)

1. Kaprielov S.S., Sheinfeld A.V., Ferdzhulyan A.G. et al.. Experience in the use of high-strength concrete. Montazhnye i special’nye raboty v stroitel’stve. 2002. No. 8, pp. 33–37. (In Russian).
2. Zhitkevich R.K., Lazopulo L.L., Sheinfeld A.V. et al. Experience of using high-strength modified concrete at the facilities of Mospromstroy. Beton i zhelezobeton. 2005. No. 2, pp. 2–8. (In Russian).
3. Kaprielov S.S., Travush V.I., Karpenko N.I. et al. Modified concrete of a new generation in the structures of the Moscow-City MIBC. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10, pp. 13–17. (In Russian).
4. Kaprielov S.S., Sheinfeld A.V., Kiseleva Yu.A. et al. Experience in the construction of unique structures of modified concrete at the construction of the Federation complex. Promyshlennoe i grazhdanskoe stroitel’stvo. 2006. No. 8, pp. 20–22. (In Russian).
5. Batyanovsky E.I., Yakimovich V.D. Features of high-strength concrete technology, formation of properties and the use of complex chemical additives. Tekhnologii betonov. 2014. No. 8, pp. 53–55. (In Russian).
6. Baranov I.M., Yusupov R.K., Tarasov A.S., Soldatova N.I. Realities and prospects of increasing the strength of extra-strong concrete. Stroitel’nye Materialy [Construction Materials]. 2013. No. 11, pp. 50–53. (In Russian).
7. Solovyova V.A., Stepanova I.V. et al. Designing high-strength concrete with improved physical and mechanical characteristics. Beton i zhelezobeton. 2007. No. 3, pp. 16–18. (In Russian).
8. Yuai Yuan, Wang Lin, Tian Pe. Vysokokachestvennyy tsementobeton s uluchshennymi svoystvami [High-quality cement concrete with improved properties]. Moscow: ASV. 2014. 448 p.
9. Krot A.Yu., Ryazanova V.A., Gabitov A.I., Salov A.S., Rolnik L.Z. Resource-saving technologies for advanced concrete in the Republic of Bashkortostan. MATEC Web of Conferences. 7th International Scientific Conference “Reliability and Durability of Railway Transport Engineering Structures and Buildings” (Transbud-2018). 2018. Vol. 230 Art. num. No. 3009. DOI: https://doi.org/10.1051/matecconf/201823003009
10. Bedov A.I., Gabitov A.I., Znamensky V.V. Otsenka tekhnicheskogo sostoyaniya, vosstanovlenie i usilenie osnovanii i stroitel’nykh konstruktsii ekspluatiruemykh zdanii i sooruzhenii. Chast’ I. Obsledovanie i otsenka tekhnicheskogo sostoyaniya osnovanii i stroitel’nykh konstruktsii ekspluatiruemykh zdanii i sooruzhenii [Assessment of the technical condition, restoration and strengthening of foundations and building structures of operated buildings and structures. Part I. Inspection and assessment of the technical condition of foundations and building structures of operated buildings and structures]. Moscow: ASV. 2014. 705 p.
11. Bedov A.I., Gabitov A.I., Znamensky V.V. Otsenka tekhnicheskogo sostoyaniya, vosstanovlenie i usilenie osnovanii i stroitel’nykh konstruktsii ekspluatiruemykh zdanii i sooruzhenii [Assessment of the technical condition, restoration and strengthening of the foundations and building structures of operated buildings and structures]. Moscow: ASV. 2017. 924 p.
12. Bedov A.I., Salov A.S., Gabitov A.I. CAD in interdisciplinary integration as a tool to increase specialist training quality in “Construction” education. VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018). MATEC Web of Conferences. 2018. Vol. 251. https://doi.org/10.1051/matecconf/201825102011

For citation: Sinitsin D.A., Salov A.S., Terekhov I.G., Timofeev A.A. Highly efficient new generation concretes in the construction of high-rise buildings in the Republic of Bashkortostan. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 8–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-8-12

Comprehensive Approach to Quality Control of High-Strength Concrete During Operation

Number of journal: 6-2020
Autors:

Rimshin V.I.,
Truntov P.S.,
Ketsko E.S.,
Nagumanova A.S.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-4-7
УДК: 691.3

 

AbstractAbout AuthorsReferences
The behavior of high-strength concretes manifests itself in the operation of buildings. This raises the question how to conduct quality control of structures made of high-strength concrete. This work considers the features of behavior of high-strength concrete during operation. The nature of the behavior is considered in connection with the principle of calibration of devices when controlling the quality, options for a comprehensive approach to quality control of high-strength concrete during operation. In the course of the study, various methods of quality control of high-strength concrete during operation are analyzed, options for optimal combinations of test methods that ensure correct calibration are described, and the influence of shrinkage cracks when controlling the quality is indicated. Quality control of high-strength concrete and structures made of it must be carried out through the integrated use of destructive and non-destructive methods. In turn, shrinkage cracks formed during operation do not affect the bearing capacity of structures made of high-strength concretes. High-strength concretes and structures made of them have a number of specific features that make themselves felt at different stages of the building’s life.
V.I. RIMSHIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.S. TRUNTOV1, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.S. KETSKO2, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.S. NAGUMANOVA3, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
3 Russian State Agrarian University - Moscow Agricultural Academy named after K.A. Timiryazev (49, Timiryazevskaya Street, Moscow, 127550, Russian Federation)

1. Kaprielov S.S., Sheinfeld A.V., Kiseleva Yu.A. Peculiarities of system of control of high-strength concretes quality. Stroitel’nye Materialy [Construction Materials]. 2012. No. 2, pp. 63–67. (In Russian).
2. Nesvetaev G.V., Kolleganov A.V., Kolleganov N.A. Features of non-destructive testing of concrete strength of operated reinforced concrete structures. Internet-Journal Naukovedenie. 2017. Vol. 9. No. 2. (In Russian).
3. Nesvetaev G.V. Prospects for the use of the ultrasonic sounding method in the examination and design of reinforced concrete structures. Bezopasnost’ truda v promyshlennosti. 2008. No. 2, pp. 62–66. (In Russian).
4. Rimshin V.I., Kurbatov V.L., King E.A., Kuzina E.S., Sattarov S.A. To the question of the residual resource of reinforced concrete structures during transverse bending by the strength of normal sections. Construction system engineering. Cyber-physical building systems – 2019. Collection of materials of the All-Russian Scientific and Practical Conference. Moscow. November 25, 2019, pp. 440–444. (In Russian).
5. Varlamov A., Rimshin V., Tverskoi S. A method for assessing the stress-strain state of reinforced concrete structures. E3S Web of Conferences. 2019. Vol. 91. 02046.
6. Krishan A.L., Rimshin V.I., Troshkina E.A. Strength of short concrete filled steel tube columns of annular cross section. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463. Part 1. 022062.
7. Krishan A.L., Rimshin V.I., Astafeva M.A. Deformability of a volume-compressed concrete. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463. Part 1. 022063.
8. Kuzina E., Rimshin V., Kurbatov V. The reliability of building structures against power and environmental degradation effects. IOP Conference Series: Materials Science and Engineering. 2018. Electronic edition. Vol. 463. Part 3. 042009.
9. Rimshin V.I., Gavrilov V.B., Varlamov A.A. Assessment of the mechanical and macrostructural characteristics of concrete by local fracture. Byulleten’ stroitel’noi tekhniki. 2018. No. 12 (1012), pp. 24–26. (In Russian).
10. Varlamov A.A., Rimshin V.I., Tverskoi S.Y. Durability of buildings in urban environment. Materials Science Forum. 2018. Vol. 931 MSF, pp. 340–345.
11. Krishan A.L., Rimshin V.I., Astafieva M.A. Strength of centrally compressed pipe-concrete elements of advanced design. Stroitel’stvo i rekonstruktsiya. 2018. No. 3 (77), pp. 12–21. (In Russian).
12. Krishan A.L., Rimshin V.I., Troshkina E.A. Strength of short concrete filled steel tube columns of annular cross section. IOP Conference Series: Materials Science and Engineering. 2018. 022062.
13. Valevich D.M., Gavrilova N.G., Rimshin V.I. On the issue of confirming the physicomechanical properties of concrete under the influence of various operational factors. Universitetskaya nauka. 2018. No. 1 (5), pp. 41–43. (In Russian).
14. Rimshin V.I., Varlamov A.A. Volumetric models of the elastic behavior of the composite. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2018. No. 3 (375), pp. 63–68. (In Russian).
15. Kuzina E., Rimshin V. Strengthening of concrete beams with the use of carbon fiber. Advances in Intelligent Systems and Computing. 2019. Vol. 983, pp. 911–919.

For citation: Rimshin V.I., Truntov P.S., Ketsko E.S., Nagumanova A.S. Comprehensive approach to quality control of high-strength concrete during operation. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 4–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-4-7

Use of Lightweight Expanded Clay for Insulation of Attic Floors

Number of journal: 4-5-2020
Autors:

Shigapov R.I.,
Sinitsin D.A.,
Biktasheva A.R.,
Nedoseko I.V.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-104-108
УДК: 666.6

 

AbstractAbout AuthorsReferences
The vast majority of domestic buildings for civilian purposes of small and medium floors (up to 5 floors inclusive) have pitched roofs with a cold ventilated attic space. With all the obvious advantages of this design solution, the problem of the formation of ice and icicles on the roof due to heat leaks in the attic space continues to be very acute. Obviously, the most effective solution to this problem is to increase the level of thermal protection of the attic floor. To warm attic floors, it is recommended to use lightweight expanded clay gravel with a bulk density of 200–250 kg/m3, which, unlike mineral wool boards of increased stiffness, is non-combustible, does not lose operational properties for a long time (50 years or more ) and does not require a device on top of the insulating layer of a protective screed made of cement-sand mortar. The insulation of the attic floor in the form of a backfill made of lightweight expanded clay gravel 350-400 mm thick fully complies with modern heat-technical standards for central Russia and is much cheaper than the traditional version of insulation with mineral wool slabs and cement-sand screed.
R.I. SHIGAPOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. SINITSIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.R. BIKTASHEVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.V. NEDOSECO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Ufa State Petroleum Technical University (195, Mendeleeva Street, Ufa, 450080, Russian Federation)

1. Druzhinin P.V., Yurchik E.Yu. Mechanism of formation of floats and icicles on roofs of houses. Tekhniko-tekhnologicheskie problemy servisa. 2012. No. 1 (19), pp. 66–71. (In Russian).
2. Anisimov M.V. Thermal protection of attic floor of apartment building with atypical roof during major repairs. Izvestiya Tomskogo politekhnicheskogo universiteta: Tekhnika i tekhnologii v energetike. 2014. T. 324. No. 4, pp. 15–21. (In Russian).
3. Drozdyuk T.A., Aizenshtadt A.M., Tutygin A.S., Frolova M.A. Inorganic binding agents for mineral wool heat insulation. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 86–88. (In Russian).
4. Rumyantsev B.M., Zhukov A.D., Bobrova E.Yu. and other. Technological aspects of the operational stability of mineral fibers. Promyshlennoye i grazhdanskoye stroitel’stvo. 2015. No. 1, pp. 32–36. (In Russian).
5. Perfilov V.A., Pilipenko A.S., Pyataev E.R. The operational resistance of mineral fiber product. Vestnik MGSU. 2016. No. 3, pp. 79–85. (In Russian).
6. Melnikov V.S., Kirillov S.V., Melnikov M.V. Mineral wool – thermal insulation of facade and roofing systems in a strait and smoldering fire. Internet-journal Naukovedenie. 2016. Vol. 8. No. 6. https://naukovedenie.ru/PDF/63TVN616.pdf
7. Belykh A.F., Fakhrislamov R. 3. Problems of reducing heat loss and ensuring fire safety of thermal insulation structures. Pozharovzryvobezopasnost’. 2010. No. 7, pp. 22–28. (In Russian).
8. Ershov M.N., Babiy I.N., Meneilyuk I.A. Analysis of technological features of the use of facade insulation systems. Tekhnologiya i organizatsiya stroitel’nogo proizvodstva. 2015. No. 4–1, pp. 43–47. (In Russian).
9. Egorova O.V., Timofeev G.A. Manege of Engineer Betancourt. Vestnik MGSU. 2012. No. 4, pp. 6–16. (In Russian).
10. Nedoseko I.V., Babkov V.V., Aliev R.R. and others. Application of structural-heat-insulating ceramic concrete in construction and reconstruction of housing and civil buildings. Izvestiya KGASU. 2010. No. 1, pp. 325–330. (In Russian).
11. Semenov A.A. State of the Russian market of haydite. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 4–5. (In Russian).
12. Sadykov R.K., Sabitov A.A., Kabirov R.R. Prospects of using the mineral-raw material base of haydite raw materials in the Republic of Tatarstan. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 4–7. (In Russian).
13. Petrov V.P. Issues of energy, ecology and economy of porous fillers production. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 11–13. (In Russian).
14. Leonovich S.N., Sviridov D.V., Belanovich A.L., Karpushenkova L.S., Karpushenkov S.A. Porous ceramic material based on clay and waste of production of granite rubble. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-45-50

For citation: Shigapov R.I., Sinitsin D.A., Biktasheva A.R., Nedoseko I.V. The use of lightweight expanded clay for insulation of attic floors. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 104–108. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-104-108

Features of Black Clinker Brick Production

Number of journal: 4-5-2020
Autors:

Kotlyar V.D.,
Nebezhko N.I.,
Terekhina Yu.V.,
Popov Yu.V.,
Nebezhko Yu.I.,
Yashchenko R.A.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-97-102
УДК: 691.421.24

 

AbstractAbout AuthorsReferences
The results of studies on the influence of a number of factors on obtaining wall and road clinker brick of black color are presented. Examples of products and architectural solutions are given, problems and main technological tasks for obtaining a dark color of products are reflected, data on types of clays most suitable for producing clinker brick are given, principles of obtaining the optimal structure of burnt material are considered. The characteristics of chromophore elements are given taking into account their availability for obtaining black brick clinker. Brief chromophore properties of the selected elements and compositions of the most common black ceramic pigments are given. The question of the most stable crystalline compounds that give color to the ceramic material – spinel, garnet, forsterite, diopside, and others – is examined. Efficient black crystalline compounds are selected to produce a brick with a corresponding color. The influence of the glassy phase on the color saturation of the ceramic material and the relationship with the physical and technical properties of the products are shown. The main recommendations for determining the possibility of obtaining clinker brick of black color on the basis of various types of clay raw materials and technological principles of production based on the creation of a special matrix structure of ceramic material, taking into account the durability and color preservation of the products, are presented.
V.D. KOTLYAR1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.I. NEBEZHKO2, Engineer;
Yu.V. TEREKHINA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.V. POPOV3, Candidate of Sciences (Geology and Mineralogy) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.I. NEBEZHKO4, Director;
R.A. YASHCHENKO1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Don state technical University (1, Gagarin Square, Rostov-on-Don, 344000, Russian Federation)
2 Individual Entrepreneur (108, Prosvesheniia Street, Novocherkassk, 346000, Russian Federation)
3 Southern Federal University (105/42, Bolshaya Sadovaya Street, Rostov-on-Don, 344006, Russian Federation)
4 Elitnaya stroitel’naya keramika (86A, Aleksandrovskaya Street, Novocherkassk, Rostov Region, 346421, Russian Federation)

1. Lapunova K.A., Kotlyar V.D., Terekhina Yu.V. Shaped ceramic brick based on opes: classification and production. Stroitel’nye Materialy [Construction Materials]. 2011. No. 12, pp. 17–19. (In Russian).
2. Kotlyar V.D., Terekhina Yu.V., Kotlyar A.V., Yashchenko R.A., Popov Yu.V. Features of application of road clinker brick of light color. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 44–49. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-44-49 (In Russian)
3. Martynov M.A., Vizir V.A. Tehnologija proizvodstva keramicheskih krasok [Ceramic paint production technology]. Kiev: Gosudarstvennoe izdatel’stvo tehnicheskoj literatury. 1956. 180 p.
4. Vizir V.A., Martynov M.A. Keramicheskie kraski [Ceramic-based paints]. Кiev: Tehnika. 1964. 255 p.
5. Pish I.V., Maslennikova G.N. Keramicheskie pigmenty [Ceramic pigments]. Мinsk: Vyshjejnaja shkola. 1987. 132 p.
6. Maslennikova G.N., Pish I.V. Keramicheskie pigmenty [Ceramic pigments] Moscow: RIF «Strojmaterialy». 2009. 224 p.
7. Zubehin A.P., Yatcenko N.D., Golovanova S.P. Teoreticheskie osnovy belizny i okrashivanija keramiki i portlandcementa [Theoretical basis of whiteness and coloring of ceramics and Portland cement]. Moscow: RIF «Strojmaterialy». 2014. 152 p.
8. Kotlyar V.D., Yavruyan H.S., Gaishun E.S., Terekhina Yu.V. Integrated approach in the processing of East Donbass coal waste. Upravlenie municipal’nymi othodami kak vazhnyj faktor ustojchivogo razvitija megapolisa. 2018. No. 1, pp. 115–118. (In Russian).
9. Yavruyan K., Gaishun E., Teryokhina Y., Kotlyar V. Тhe research on the sifting from processing of east Donbass refuse heap for manufacturing wall ceramics goods. MATEC Web of Conferences. 2018, pp. 04055.
10. Kotlyar V.D., Kozlov G.A., Zhivotkov O.I., Lapunova K.A. Рaving clinker of low-temperature sintering on the basis of opokamorphic rocks. Materials Science Forum. 2018. Т. 931 MSF, pp. 568–572.
11. Kotlyar V.D., Kozlov G.A, Zhivotkov O.I., Lapunova K.A. Prospects of the use of siliceous opoka-like rocks for production of paving clinker of low-temperature sintering. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 13–16. DOI: https://doi.org/10.31659/0585-430X-2018-758-4-13-16 (In Russian).
12. Stolboushkin A., Akst D., Fomina O., and Ivanov A. Structure and properties of ceramic brick colored by manganese-containing wastes. MATEC Web of Conferences. 2018. Vol. 143, pp 1–8.
13. Stolboushkin A., Akst D., Fomina O., Ivanov A. Use of industrial wastes in painting ceramic matrix composites based on natural and man-made raw materials. Durability of building materials, products and designs: materials of the All-Russian scientific technical conference. Saransk: Publishing House of Mordovia University. 2016, pp. 154–160. (In Russian).
14. Stolboushkin A., Akst D., Fomina O., Ivanov A., Druzhinin M.S. Production of decorative wall ceramics from argillous raw material and wastes of manganese ore mining. Stroitel’nye Materialy [Construction Materials]. 2016. No. 12, pp. 38–45. (In Russian).
15. Stolboushkin A.Yu., Akst D.V. Investigation of the Decorative Ceramics of Matrix Structure from Iron-Ore Waste with Vanadium Component Additio. Materials Science Forum. 2018. Vol. 931, pp 520–525.

For citation: Kotlyar V.D., Nebezhko N.I., Terekhina Yu.V., Popov Yu.V., Nebezhko Yu.I., Yashchenko R.A. Features of black clinker brick production.. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 97–102. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-97-102

Structural Flow Model of Plasticized Cement-Mineral Mixtures

Number of journal: 4-5-2020
Autors:

Inozemtsev A.S.,
Korolev E.V.,
Doung T.Q.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-90-96
УДК: 666.96

 

AbstractAbout AuthorsReferences
The complex type of the flow curve of cement-mineral mixtures plasticized by a polycarboxylate plasticizer is described in this work. The sections on the rheological curve which consistently characterize a pseudoplastic, adilatant or apsevdoplastic (anomalous section), dilatant and pseudoplastic flow type are identified. It is noted that various concepts for explaining the rheological behavior of disperse systems do not allow to analyze the anomalous section. Shear stratification or stalling of the flow explains the presence of such a section. It is established that the cause of the rheological anomaly on the flow curve of the studied plasticized cement mixtures is the formation of structural heterogeneity in a system with a uniform initial distribution of water. The intensity of the rheological anomaly is determined by a change in the structural ratio of the thickness of the interlayer to the diameter of the particle relative to the initial value. A structural model of the process of formation of the heterogeneity of the structure of the studied mixtures is proposed. A geometric criterion that takes into account the structure parameters of the mixture and allows one to establish the boundaries of the flow anomaly is proposed.
A.S. INOZEMTSEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. KOROLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.Q. DOUNG, graduate student

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Kalashnikov V.I., Tarakanov O.V. On the use of complex additives in new generation concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 62–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-745-1-2-62-67
2. Molchanov A.O., Neljubova V.V., Kuz’mina N.O., Strokova V.V. Evaluation of the effectiveness of plasticizers of various origins. Resursojenergojeffektivnye tehnologii v stroitel’nom komplekse regiona. 2016. No. 7, pp. 73–76. (In Russian).
3. Larsen O.A., Djatlov A.K. Improving the efficiency of fine concrete with polycarboxylate plasticizers for monolithic housing construction. Tehnologii betonov. 2013. No. 10 (87), pp. 14–15. (In Russian).
4. Gorbunov S.P., Fedorov Ju.B., Trofimov B.Ja., Gamalij E.A. The effectiveness of plasticizing additives in self-compacting mortar mixtures. Vestnik Juzhno-Ural’skogo gosudarstvennogo universiteta. Serija: Stroitel’stvo i arhitektura. 2005. No. 13 (53), pp. 43–49. (In Russian).
5. Lesovik V.S., Degtev Ju.V., Voronov V.V. Cementing agents for small architectural forms made of self-compacting concrete. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2014. No. 5, pp. 85–90. (In Russian).
6. Pustovgar A.P., Buryanov A.F., Vasilik P.G. Features of the use of hyperplasticizers in dry building mixtures. Stroitel’nye materialy [Construction Materials]. 2010. No. 12, pp. 62–65. (In Russian).
7. Petrova T.M., Smirnova O.M., Frolov S.T. Properties of plasticized Portland cement-blast furnace slag compositions taking into account electro-surface phenomena. Vestnik grazhdanskih inzhenerov. 2011. No. 2 (27), pp. 118–123. (In Russian).
8. Plank J., Hirsch C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cement and Concrete Research. 2007. Vol. 37. Iss. 4, pp. 537–542.
9. Inozemcev A.S., Korolev E.V., Duong T.Q. Rheological features of cement-mineral systems plasticized by polycarboxylate plasticizer. Regional’naja arhitektura i stroitel’stvo. 2019. No. 3 (40), pp. 24–34. (In Russian).
10. Pivinskij Ju.E. Reologija dilatantnyh i tiksotropnyh dispersnyh sistem [Rheology of dilatant and thixotropic disperse systems]. Saint Petersburg: RIO SPbGTI (TU). 2001. 174 p. (In Russian).
11. Kirsanov E.A., Matveenko V.N. Nen’jutonovskoe techenie dispersnyh, polimernyh i zhidkokristallicheskih sistem. Strukturnyj podhod [Non-Newtonian flow of disperse, polymer and liquid crystal systems. Structural approach]. Moscow: Tehnosfera. 2016. 379 p.
12. Ur’ev N.B. Fiziko-khimicheskie osnovy tekhnologii dispersnykh sistem i materialov [Physico-chemical principles of dispersed systems and materials technology]. M.: Himija. 1988. 256 p. (In Russian).
13. Inozemtcev A., Korolev E., Duong T.Q. Study of mineral additives for cement materials for 3D-printing in construction. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. 032009.
14. Schatzmann M., Bezzola G.R., Minor H.-E., Windhab E. J., Fischer P. Rheometry for large-particulated fluids: analysis of the ball measuring system and comparison to debris flow rheometry. Rheol Acta. 2009. No. 48, pp. 715–733.
15. Korolev E.V., Bazhenov Ju.M., Al’bakasov A.I. Radiatsionno-zashchitnye i khimicheski stoikie sernye stroitel’nye kompozity [Radiation-protective and chemically resistant sulfur composite building]. Penza, Orenburg: IPK OGU. 2010. 364 p. (In Russian).

For citation: Inozemtsev A.S., Korolev E.V., Doung T.Q. Structural flow model of plasticized cement-mineral mixtures. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 90–96. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-90-96

On Strengthening Temporary Logging Road Clay Soil by Industrial Waste and Metallurgical Slags

Number of journal: 4-5-2020
Autors:

Shtefan Y.V.,
Bondarev B.A.,
Yankovsky L.V.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-80-89
УДК: 625.089.2

 

AbstractAbout AuthorsReferences
The application of this waste in asphalt concrete compositions as part of the complex binder makes it possible to increase wear resistance and inter-repair life, expand the raw material base of road-building materials and to reduce the logging road construction cost, as well as to increase the strength and water resistance of the permanent surfaces and bases of logging roads. For temporary roads on clay soils, a method is proposed of replacing the traditionally used plank-roads and plank beds working on the pontoon bridge principle by a structure based on flexible road pavements which is equivalent in its bearing capacity. The mixes of steel slag and the given CHP plant waste in them due to the interaction of clay components and the mix provide an increasing bearing capacity for logging roads characterized by increased loads from the logging trucks. The issues are considered of mechanizing the temporary logging road construction process via the application of modern domestic road-building machinery which is traditionally used for logging road construction.
Y.V. SHTEFAN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. BONDAREV2, 3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
L.V. YANKOVSKY3, Candidate of Sciences (Engineering)

1 Moscow Automobile and road construction state technical university (MADI), (64, Leningradsky prospect, Moscow , 125319, Russian Federation)
2 Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398000, Russian Federation)
3 LLC LipetskNITSstroyproyekt (11, Balmochnyh S.F. Street, Lipetsk, 398006, Russian Federation)

1. Baran S., Wójcikowska-Kapusta A., Żukowska G., Bik-Małodzińska M., & Wesołowska-Dobruk S. (2015). Influence of sludge-ash composts on some properties of reclaimed land. Arkhivy okhrany okruzhayushchei sredy. No. 41 (2), pp. 82–88. DOI: https://doi.org/10.1515/aep-2015-0022. (In Polish).
2. Kondrashova E.V., Skrypnikov A.V., Skvorcova T.V. Model for defining the economic boundaries of the areas of operation of suppliers of materials in conditions of probabilistic nature of road construction of forest roads. Fundamental’nye issledovaniya. 2011. No. 8, pp. 379–385. (In Russian).
3. Shtephan Yu.V., Bondarev B.A., Yankovskii L.V. The use of cubical cast slag crushed stone for construction and repair of trunk logging roads. Remont, Vosstanovlenie, Modernizatsiya. 2016. No. 10, pp. 11–16. (In Russian).
4. Shtephan Yu.V., Bondarev B.A. Quantitative risk assessment of engineering slag asphalt mixes for urban roads. Proceedings of the International Conference «Actual Issues of Mechanical Engineering» (AIME 2018). Novosibirsk. 2018, pp.  570 – 573. DOI: https://doi.org/10.2991/aime-18.2018.109
5. Liu G, Chen S, Zeng Z, Cui H, Fang Y, Gu D, Yin Z, Wang Z. Risk factors for extremely serious road accidents: Results from national road accident statistical annual report of China. Plos One. 2018. No. 13 (8), pp. 1–11. DOI: https://doi.org/10.1371/journal.pone.0201587.
6. Babapour R., Naghdi R., Ghajar I., Mortazavi Z. Forest road profile optimization using meta-heuristic techniques. Applied soft computing. 2018. No. 64, pp. 126–137. DOI: https://doi.org/10.1016/j.asoc.2017.12.015.
7. Kochetkov A.V., Chvanov A.V., Arzhanukhina S.P. Scientific fundamentals of norm-setting for uneven surfaces of road pavement. Vestnik VolgGASU. Stroitelstvo I Architectura. 2009. No. 14, pp. 80–86. (In Russian).
8. Maharaj C., White D., Maharaj R., Morin C. Re-use of steel slag as an aggregate to asphaltic road pavement surface. Cogent Engineering. 2017. No. 4 (1). DOI: https://doi.org/10.1080/23311916.2017.1416889.
9. Podolsky V.P., Lukashuk A.G., Tykov E.B. Slag – soil composites application for service performance enhancement of the roads with low traffic density. Indexed journal international journal of applied engineering research (ISAER). 2016. Vol. 11. No. 8, pp. 5817–5821. (In Russian).
10. Podolsky V.P., Lukashuk A.G. Results of studies of dependence of physical and mechanical parameters of steel-melting slag samples on content of high-modulus liquid glass. Dorogi I Mosty. 2015. No. 2 (34), pp. 23–38. (In Russian).
11. Kovalev N.S. Substantiation of climatic factors exposure duration when modeling accelerated test of asphalt concrete from slag materials. Vestnik Voronezhskogo Gosudarstvennogo Agrarnogo Universiteta. 2014. No. 3 (42), pp. 163–171. (In Russian).
12. Balovnev V.I., Seliverstov N.D., Danilov R.G. Research of mill operation of ripping-mixing aggregate of recycler. Russian Engineering Research. 2017. No. 10, pp. 46–48. (In Russian).
13. Balovnev V.I., Seliverstov N.D. Determination of the parameters of milling and granulation mixing unit of road recycler. Mekhanizaciya Stroitelstva. 2015. No. 2 (848), pp. 16–19. (In Russian).

For citation: Shtefan Y.V., Bondarev B.A., Yankovsky L.V. On strengthening temporary logging road clay soil by industrial waste and metallurgical slags. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 80–89. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-80-89

Evaluation of the Comparative Durability of Modified Asphalt Concretes with Limestone Crushing Waste by Artificial Aging at High Temperature

Number of journal: 4-5-2020
Autors:

Salihov M.G.,
Malyanova L.I.,
Veyukov E.V.,
Vainshtein V.M.

DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-75-79
УДК: 625.855.3

 

AbstractAbout AuthorsReferences
The results of an experimental study of changes in the physical and mechanical properties of modified asphalt concrete after long-term exposure to high temperature are presented. When studying of aging processes modified by adding still residues of chemical production of asphalt concretes with the waste of crushing local low-strength limestones, a new technique is proposed that makes it possible to track the aging processes of experimental samples using a dimensionless indicator – coefficients of aging and intensity. The nature of the change in values of property indicators over time during heating at a high temperature (150oC) for 0–7 hours, expressed as an indicator of the intensity of aging, shows the comparative stability of materials over time, i.e. their stability in extreme conditions. Under the influence of high temperature, the group composition of petroleum bitumen changes rapidly, which leads to a decrease in its adhesive ability and, accordingly, asphalt concretes with their use. There is a need to predict these processes. Due to the fact that until recently there is no unified methodology for evaluating the aging processes of asphalt concrete, the staff of Volga State University proposed to evaluate the comparative durability of the materials under study by the rate of change of individual indicators using the aging coefficient and the intensity of aging.
M.G. SALIHOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
L.I. MALYANOVA2,3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. VEYUKOV1, Candidate of Sciences (Engineering),
V.M. VAINSHTEIN1, Candidate of Sciences (Engineering)

1 Volga State University of Technology (3, Lenin Sq., Yoshkar-Ola, the Republic of Mari El, 424000, Russian Federation)
2 I.N. Lenin Chuvash State University (15, Moskovsky Prospect, Cheboksary, Chuvash Republic, 428015, Russian Federation)
3 Cheboksary Institute (branch) of Moscow Polytechnic University (54, Karl Marx Prospect, Cheboksary, Chuvash Republic, 428000, Russian Federation)

1. Patent RF 2426704. Sposob polucheniya shchebenochno-mastichnykh asfal’tobetonov s dobavkami otsevov drobleniya izvestnyakov M 400 [Method for obtaining crushed-mastic asphalt concrete with additives of limestone crushing screenings M 400]. Salikhov M.G., Vaynstein E.V., Vaynstein V.M. Declared 02.04.2009. (In Russian).
2. Patent RF 2494988. Sposob polucheniya shchebenochno-mastichnogo asfal’tobetona [Method for obtaining crushed-mastic asphalt concrete]. Ilivanov V.Yu., Salikhov M.G., Malyanova L.I., Krivoruchko S.V., Endyuskin V.P., Filippov V.M. Declared 28.12.2011. (In Russian).
3. Patent RF 2503633. Sposob polucheniya goryachei shchebenochnoi asfal’tobetonnoi smesi s dobavkoi otsevov drobleniya izvestnyakov marki 400 [A method for obtaining hot crushed asphalt concrete mix with the addition of crushing screenings of 400-grade limestones]. Salikhov M.G., Malyanova L.I., Ilivanov V.Yu. Application 18.11.2011. (In Russian).
4. Salikhov M.G., Malyanova L.I. Influence of additives of cubic residues in the production of aniline on the temperature stability of viscous road bitumen and asphaltic concrete with limestone crushing waste. Vestnik PGTU. Seriya: Les. Ekologiya. Prirodopol’zovanie. 2016. No. 2, pp. 74–81. (In Russian).
5. Salikhov M.G., Ilivanov V.Yu., Malyanova L.I. Proposal for the study of aging processes of organic concretes under the influence of high temperatures. Vestnik PGTU. Seriya: Les. Ekologiya. Prirodopol’zovanie. 2015. No. 1, pp. 59–65. (In Russian).
6. Patent RF 2654954. Predlozhenie k izucheniyu protses-sov stareniya organicheskikh betonov pri vozdeistvii vysokikh temperatur [Method for determining the speed and intensity of aging of asphalt concrete]. Salikhov M.G, Veyukov E.V., Sabirov L.R., Malyanova L.I. Declared 13.02.2017. (In Russian).
7. Malyanova L.I. Study of the possibility of using the modification of expensive bitumens by waste from the local chemical industry of Chuvashia. Materials of the international scientific and practical conference “ Modernization and scientific research research in the transport complex “ of the Perm national research Polytechnic University (PNRPU) and the Russian Academy of transport (RAT) 2013. Perm: PNIPU, 2013. Pp. 267–272.
8. Malyanova L.I., Salikhov M.G. Modifitsirovannye bitumy i eksperimental’nye issledovaniya ikh fiziko-mekhanicheskikh svoistv [Modified bitumens and experimental studies of their physical and mechanical properties]. In book: Road transport complex: state, problems and prospects of development. Cheboksary: VF MADI. 2016, pp. 155–161.
9. Malyanova L.I. Modified asphalt concrete with limestone crushing waste in road pavement. Stroitel’nye Materialy [Construction Materials]. 2018. No. 7, pp. 24–27. DOI: 10.31659/0585-430Х-2018-761-7-24-27 (In Russian).
10. Malyanova L.I. Modified bitumen with stillage bottoms when producing aniline (ASD). Stroitel’nye Materialy [Construction Materials]. 2018. No. 10, pp. 49–52. DOI: https://doi.org/10.31659/0585-430X-2018-764-10-49-52 (In Russian).
11. Salikhov M.G., Veyukov E.V., Malyanova L.I. Modifitsirovannye asfal’tobetony s otkhodami drobleniya izvestnyakov. Yoshkar-Ola: Volga state technological University, 2019. 160 p.
12. Malianova L.I. Stroitel’nye materialy [Construction materials]. Cheboksary: Publishing House of Chuvash University, 2019. 248 p.
13. Yang Peng. A study on aging kinetics of Anshan paving asphalt. Petroleum science and technology. 2002. Vol. 20. No. 9–10, pp. 951–960.
14. Yutiu Q. Study of serial reaction kinetics and changes of group compositions of petrole-um asphalts in continuosheat and air aging. Petroleum science and technology. 2000. Vol. 18. No. 7–8, pp. 929–944.
15. Skripkin A.D., Starkov G. B., Kolesnik D. A. Starenie bituma v tekhnologiche-skom protsesse i ego podgotovki dlya proizvodstva asfal’tobetonnykh smesei [Aging of bitumen in the technological process and its preparation for production]. Moscow: MadGTU (MADI), 2010, pp. 46–53.
16. FriedbacherЕ., SchindibauerН. Quantitative Auswer-tung von TLC/FID – Bitumenanalysen. Bitumen. 1994. No. 3, pp. 105–108.

For citation: Salihov M.G., Malyanova L.I., Veyukov E.V., Vainshtein V.M. Evaluation of the comparative durability of modified asphalt concretes with limestone crushing waste by artificial aging at high temperature. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 75–79. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-75-79