Modeling of Mass Transfer Dynamics in the Processes of Liquid Corrosion of Cement Concretes with Due Regard for the Phenomenon of Colmatation

Number of journal: 6-2020
Autors:

Fedosov S.V.,
Rumyantseva V.E.,
Konovalova V.S.,
Evsyakov A.S.,
Kasyanenko N.S.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-27-32
УДК: 666.972: 620.193

 

AbstractAbout AuthorsReferences
The results of studies of mass transfer processes occurring in the porous structure of cement concrete under liquid corrosion, taking into account the process of colmatation, are presented. The developed mathematical model of pore colmatation of cement concretes was tested by a full-scale experiment, which resulted in obtaining information about the elemental composition of the sample surface after exposure to a liquid medium, which makes it possible to judge the degree of aggressive action. Using a scanning electron microscope, the depth of penetration of the aggressive medium into the sample was determined and the change in the concentration of reacting ions along the thickness of the sample was set. Based on the data obtained, the values of the mass conductivity and mass transfer coefficients in the system under study were calculated. The calculated mass transfer characteristics indicate that due to pore colmatation, the intensity of mass exchange processes occurring in the sample pores decreases. Using the developed mathematical model of pore colmatation of cement concretes under liquid corrosion, the values of the colmatation rate and the thickness of the colmatant layer in the sample under study were determined. The values obtained during the processing of experimental data are found in the intervals of values of the corresponding values calculated using the mathematical model, which vary exponentially in the thickness of the sample. The mathematical model of concrete pore colmatation based on mass transfer equations makes it possible to estimate the depth of concrete corrosion damages in environments of different degrees of aggressiveness.
S.V. FEDOSOV1, Doctor of Sciences (Engineering), Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.E. RUMYANTSEVA2, Doctor of Sciences (Engineering), Adviser of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.S. KONOVALOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. EVSYAKOV2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.S. KASYANENKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Ivanovo State Polytechnical University (21, Sheremetevsky Avenue, Ivanovo, 153000, Russian Federation)

1. Lykov A.V. Yavleniya perenosa v kapillyarno-poristyh telah [Transfer phenomena in capillary-porous bodies]. Moscow: State publishing house of technical and theoretical literature. 1954. 298 p.
2. Rosental N.K., Usachev I.N., Chehniy G.V. Durable reinforced concrete for the Arctic regions of Russia. Regional’naja jenergetika i jenergosberezhenie. 2017. No. 2, pp. 58–60. (In Russian).
3. Girskas G., Nagrockiene. D., Skripkiu-nas G. Frost resistance of hardened cement paste modified with synthetic zeolite. Engineering Structures and Technologies. 2013. Vol. 5. No. 1, pp. 30–36. DOI: https://doi.org/10.3846/2029882X.2013.777119
4. Zarauskas L., Skripkiunas G., Girskas G. Influence of aggregate granulometry on air content in concrete mixture and freezing-thawing resistance of concrete. Procedia Engineering. 2017. Vol. 172, pp. 1278–1285. DOI: https://doi.org/10.1016/j.proeng.2017.02.153
5. Bertolini L., Elsener B., Pedeferri P., Redaelli E., Polder R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Viernheim: John Wiley & Sons. 2013. 434 p.
6. Powers T.C. Structure and physical properties of hardened Portland cement paste. Journal of American Ceramic Society. 1958. Vol. 41. No. 1, pp. 1–6. DOI: http://dx.doi.org/10.1111/j.1151-2916.1958.tb13494.x
7. Phung Q.T., Maes N., Jacques D., De Schutter G., Ye G. Effects of W/P ratio and limestone filler on permeability of cement pastes. International RILEM Conference Materials, Systems and Structures in Civil Engineering 2016. At Lyngby, Denmark, pp. 141–151. DOI: 10.13140/RG.2.2.14118.93766
8. Fedyuk R.S. Design of cement composites with increased impermeability. Vestnik MGSU. 2016. No. 5, pp. 72–81. (In Russian).
9. Antonyan A.A. Resistance of concrete with superplasticizers. Tekhnologii betonov. 2017. No. 3–4 (128–129), pp. 36-39. (In Russian).
10. Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
11. Stauffer D., Aharony A. Introduction to Percolation Theory. London: Taylor&Francis. 1992. 192 p.
12. Lotov V.A. Periodicity of processes of cement hydration and hardening. Stroitel’nye Materialy [Construction Materials]. 2018. No. 7, pp. 55–59. DOI: 10.31659/0585-430X2018-761-7-55-59 (In Russian).
13. Gusev B.V., Fayvusovich A.S. Mathematical theory of processes of concrete corrosion. Promyshlennoe i grazhdanskoe stroitel’stvo. 2019. No. 7, pp. 58–63. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2019.07.58-63
14. Shi C.J., Deng D.H., Xie Y.J. Pore structure and chloride ion transport mechanisms in concrete. Key Engineering Materials. 2006. Vol. 302–303, pp. 528–535. DOI: https://doi.org/10.4028/www.scientific.net/KEM.302-303.528
15. Yu Z., Ni C., Mingliang T., Shen X. Relationship between water permeability and pore structure of Portland cement paste blended with fly ash. Construction and Building Materials. 2018. Vol. 175, pp. 458–466. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.147
16. Kayumov R.A., Kashafdinova A.F. Method of describing the degradation process of concrete constructions under the influence of salt corrosion. Izvestija Kazanskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2018. No. 2 (44), pp. 288–295. (In Russian).
17. Osipov S.N., Zakharenko A.V., Chik V.M. Some stochastic specific features of concrete and reinforced concrete carbonization. Nauka i tehnika. 2019. Vol. 18. No. 2, pp. 127–136. (In Russian). DOI: https://doi.org/10.21122/2227-1031-2019-18-2-127-136
18. Marcus P. Corrosion mechanisms in theory and practice: Third edition. Boca Raton: CRC Press, Taylor & Francis Group. 2011. 941 p.
19. Lubomirskiy N.V., Fedorkin S.I., Ryzhakov A.N. The modeling of half-dry pressure lime stone forced carbonation processes. Part 1. The mathematical model. Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Serija: Materialy. Konstrukcii. Tehnologii. 2017. No. 2, pp. 14–25. (In Russian).
20. Chalabi H., Bezzar A.-I., Abdelhafid K. Chloride transport in partially saturated cementitious material: Influence of hydric state and binding chloride. Magazine of Concrete Research. 2017. Vol. 69. Iss. 21, pp. 1103–1114. DOI: https://doi.org/10.1680/jmacr.16.00342
21. Claisse P. Transport Properties of Concrete: Measurements and Applications. Cambridge: Woodhead Publishing. 2014. 312 p.
22. omodíková M., Strauss A., Zambon I., Teplý B. Quantification of parameters for modeling of chloride ion ingress into concrete. Structural Concrete. 2018. Vol. 20. Iss. 1, pp. 519–536. DOI: https://doi.org/10.1002/suco.201800049
23. Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Evsyakov A.S. Colmatation: phenomenon, theory, prospects of using for control over concrete corrosion processes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 10–17. DOI: https://doi.org/10.31659/0585-430X-2017-753-10-10-17. (In Russian).
24. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Konovalova V.S., Evsyakov A.S. Mathematical modeling of the colmatation of concrete pores during corrosion. Inzhenerno-stroitel’nyj zhurnal. 2018. No. 7 (83), pp. 198–207. DOI: 10.18720/MCE.83.18.

For citation: Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Evsyakov A.S., Kasyanenko N.S. Modeling of mass transfer dynamics in the processes of liquid corrosion of cement concretes with due regard for the phenomenon of colmatation. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-27-32


Print   Email