High-Frost-Resistant Concrete without air Entrainment

Number of journal: 6-2020
Autors:

Shuldyakov K.V.,
Trofimov B.Ya.,
Kramar L.Ya.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-18-26
УДК: 666.972.53

 

AbstractAbout AuthorsReferences
One of the traditional methods of increasing the frost resistance of concrete is the introduction of air-entraining additives, but this approach, along with increasing density, cement consumption and decreasing water-cement ratio, does not make it possible to obtain high performance concretes with mark on frost resistance F2450 and higher what is needed for the harsh operating conditions of the Arctic and the Far North. Methods were adopted to ensure the frost resistance based on the idea of the mechanism of destruction of water-saturated concrete during cyclic freezing and thawing due to ice formation in macro-capillaries. However, this concept takes into account only the pore space of the cement stone and ignores its microstructure. In the literature, there is information about the production of frost-resistant concrete with water-cement ratio less than 0.3 without the use of air-entraining additives. This article deals with the issue of directional formation of a highly functional concrete cement stone structure that is resistant to cyclical influences. It is established that when superplasticisers and microsilica additives are added to the concrete mix, it is possible to obtain high-functional concrete with a frost resistance rating from F2300 to F2500 without special air entrainment due to modification of the hydrate phases of the cement stone. It is proved that the grade of concrete frost resistance depends on the Genesis of the superplasticizer used: polycarboxylate simultaneously shows plasticizing and modifying properties, compared with naphthalene formaldehyde. This is manifested in a decrease in the amount of Ca(OH)2 in the cement stone by ~2%, which contributes to the formation of gel-like low-basic hydrate phases that are more resistant to cyclic impacts. In addition, for high-functional concretes, the dependence between the nature of saturation with 5% NaCl solution and the stability of the structure of the hydrate phases of cement stone was noted in the process of testing for frost resistance by the third accelerated method in accordance with GOST 10060.
K.V. SHULDYAKOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
B.Ya. TROFIMOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.Ya. KRAMAR, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

South Ural State University (National Research University) (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)

1. Aitcin P.-C. High-performance concrete. Quebec: E&FnSpon, 2004. 364 p.
2. Powers T.C. The air requirement of frost-resistant concrete. Highway Research Board Proceedings. 1949. No. 29, pp. 184–202.
3. Сordon W.A. Freezing and thawing of concrete. Mechanisms and control. JACI. 1966. Vol. 53. No. 5, pp. 613–618.
4. Mac Innis C., Beaudoin G.G. Pore structure and frost durability. Proceedings. International Symposium Rilem/IUPAC. Prague. 1973, pp. 3–15.
5. Powers T.C. A working hypothesis for further studies of frost resistance of concrete. Proc. ACI. 1945. 41, pp. 245–272.
6. Powers T.C., Brownyard T.L. Studies of the physical properties of hardened Portland cement paste. JACI. 1980. Vol. 77. No. 4, pp. 264–268.
7. Баженов Ю.М., Демьянова В.С., Калашников В.И. Модифицированные высококачественные бетоны. М.: АСВ, 2006. 370 с.
7. Bazhenov Yu.M., Dem’yanova V.S., Kalashnikov V.I. Modifitsirovannye vysokokachestvennyes betony [Modified high quality concrete]. Moscow: ASV. 2006. 370 p.
8. Кузнецова Т.В., Самченко С.В. Микроскопия материалов цементного производства. М.: МИКХиС, 2007. 304 с.
8. Kuznetsova T.V., Samchenko S.V. Mikroskopiya materialov tsementnogo proizvodstva [Microscopy of cement production materials]. Moscow: MIKKhiS. 2007. 304 p.
9. Бутт Ю.М., Сычев М.М., Тимашев В.В. Химиче-ская технология вяжущих веществ. М.: Высшая школа, 1980. 471 с.
9. Butt Yu.M., Sychev M.M., Timashev V.V. Khimicheskaya tekhnologiya vyazhushchikh veshchestv [Chemical technology of binders]. Moscow: Vysshaya shkola. 1980. 471 p.
10. Горшков В.С., Тимашев В.В., Савельев В.Г. Методы физико-химического анализа вяжущих веществ. М.: Высшая школа, 1981. 335 с.
10. Gorshkov V.S., Timashev V.V., Savel’ev V.G. Metody fiziko-khimicheskogo analiza vyazhushchikh veshchestv [Methods of physico-chemical analysis of binders]. Moscow: Vysshaya shkola, 1981. 335 p.
11. Бугрим С.Ф., Слепокурова Е.И., Мухаметгалеева С.П. К вопросу замерзания воды в капиллярно-пористых телах. Способы строительства и материалы, применяемые при нефтегазовом строительстве в условиях Севера: Сборник научных трудов. Москва, 1980. С. 89–96.
11. Bugrim S.F., Slepokurova E.I., Mukhametgaleeva S.P. To the question of freezing water in capillary-porous bodies. Proceedings: Methods of construction and materials used in oil and gas construction in the North. Moscow. 1980, pp. 89–96. (In Russian).
12. Shuldyakov K.V., Kirsanova A.A., Kramar L. Ya, Trofimov B. Ya. Hardened cement paste microstructure as the main factor of concrete durability. IV International Young Researchers Conference «Youth, Science, Solutions: Ideas and Prospects» (YSSIP-2017): MATEC Web of Conferences. 2018. Vol. 143. 02011. https://doi.org/10.1051/matecconf/201814302011
13. Андреев В.В., Слепокуров Е.И. Исследования фазовых переходов влаги в цементном камне. Тепловая обработка строительных материалов продуктами сгорания природного газа и их применение: ВНИИСТ. Москва. 1981. С. 59–69.
13. Andreev V.V., Slepokurov E.I. Studies of the phase transitions of moisture in a cement stone. Heat treatment of building materials with natural gas combustion products and their application: VNIIST. Moscow. 1981, pp. 59–69. (In Russian).
14. Fagerlund G. Frost Destruction of concrete – a study of the validity of different mechanisms. Nordic Concrete Research. 2018. Iss. 1. Vol. 58, pp. 35–54. https://doi.org/10.2478/ncr-2018-0003
15. Трофимов Б.Я., Крамар Л.Я., Шулдяков К.В. Структурообразование гидратных фаз цементного камня при циклическом замораживании. Строительство и экология: теория, практика, инновации: Материалы 1 межд. науч. практ. конф. Челябинск. 2015. С. 168–175.
15. Trofimov B.Ya., Kramar L.Ya., Shuldyakov K.V. Structural formation of hydrated phases of cement stone during cyclic freezing. Proceedings of the first international practical conference. Construction and the environment: theory, practice, innovation. Chelyabinsk. 2015, pp. 168–175. (In Russian).
16. Волженский А.В. Влияние дисперсности портландцемента и В/Ц на долговечность камня и бетонов // Бетон и железобетон. 1990. № 10. С. 16–17.
16. Volzhenskii A.V. The effect of dispersion of Portland cement and W/C on the durability of cement stone and concrete. Beton i zhelezobeton. 1990. No. 10, pp. 16–17. (In Russian).
17. Шулдяков К.В., Трофимов Б.Я., Крамар Л.Я. Морозостойкость дорожного бетона. Фундаментальные и прикладные науки – основа современной инновационной системы: материалы международной научно-практической конференции студентов, аспирантов и молодых ученых. Омск. 2015. С. 209–216.
17. Shuldyakov K.V., Trofimov B.Ya., Kramar L.Ya. Frost resistance of road concrete. Basic and applied science – the basis of the modern innovation system: materials of the international scientific-practical conference of students, graduate students and young scientists. Omsk. 2015, pp. 209–216. (In Russian).
18. Ильина Л.В., Хакимуллина С.А., Кадоркин Д.А. Влияние дисперсных минеральных добавок на прочность мелкозернистого бетона // Фундаментальные исследования. 2017. №4. С. 34–38.
18. Il’ina L.V., Khakimullina S.A., Kadorkin D.A. The effect of dispersed mineral additives on the strength of fine-grained concrete. Fundamental’nye issledovaniya. 2017. No. 4, pp. 34–38. (In Russian).
19. Баженов Ю.М. Технология бетона. Учебник. М.: АСВ, 2011. 528 с.
19. Bazhenov Yu.M. Tekhnologiya betona [Concrete technology]. Moscow: ASV. 2011. 528 p.
20. Zhang Y., Kong X. Correlations of the dispersing capability of NSF and PCE types superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cement and concrete research. 2015. Vol. 69, pp. 1–9.
21. Hammer T.A. Sellevold E.J. Frost resistance of high-strength concrete. ACI. 1990. SP-121. pp. 457–487.

For citation: Shuldyakov K.V., Trofimov B.Ya., Kramar L.Ya. High-frost-resistant concrete without air entrainment. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 18–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-18-26


Print   Email