Log in

Reuse of Concrete Waste as Input Products for Cement Concretes

Number of journal: 1-2-2020
Autors:

Krasinikova N.M.,
Kirillova E.V.,
Khozin V.G.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-56-65
УДК: 691.3

 

AbstractAbout AuthorsReferences
The paper explores the comprehensive application of concrete waste as (recycled) crushed stone instead of natural cement in cement concrete across cement strength classes above B35 as established by GOST 26633–15 as well as looking into its use as a recycled bonding material. It has been established that recycled crushed stone made of concrete waste with a crushing grade of M600 can be used for producing concretes with a class of B40 and a frost resistance of F1 200 with its properties in no way inferior to natural filler-based concretes with a crushing grade of 1200. The paper also presents the findings of experimental studies involving replacing Portland cement by a recycled bonding material. It is shown that the superplasticizer which is part of the composition of the concrete also happens to serve as its grinding intensifier and the efficiency of the recycled bonding material depends on the initial composition of crushed concrete, while replacing Portland cement with a recycled bonding material will save from 20 to 40% of that bonding material. The multiplicity factor of disposal of the same concrete has been determined. The authors of the paper have shown that the secondary use of concrete waste allows for increasing amounts which can be put to effective use not only as recycled crushed stone in high-quality concretes of widespread classes, but also as an active mineral additive. These study materials will be of use to manufacturers of concrete and concrete products.
N.M. KRASINIKOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. KYRILLOVA, Bachelor (master’s student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.G. KHOZIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)

1. Komarov S.M. Ragman’s civilization. Khimiya i zhizn’. 2013. No. 12, pp. 2–7. (In Russian).
2. Evans. L. Mutter M. Ecological rating of cement. Tsement i ego primenenie. 2019. No. 4, pp. 24–27. (In Russian).
3. Butkevich G.R. Industry of nonmetallic building materials. Prospection. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 32–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-32-36
4. Itskovich S.M., Chumakov L.D., Bazhenov Yu.M. Tekhnologiya zapolnitelei betona [Technology of fillers of concrete]. Moscow: Vysshaya shkola. 1991. 272 p.
5. Gusev B.V., Khomeriki V.K. Environmental issues and the re-use of concrete. Materials of the 1st All-Russian Conference on Concrete and Reinforced Concrete. Concrete at the Turn of the Third Millennium. Book 3. Moscow: Assotsiatsiya «Zhelezobeton». 2001, pp. 1571–1582. (In Russian).
6. Oleinik P.P., Oleinik S.P. Organizatsiya sistemy pererabotki stroitel’nykh otkhodov [Organization of the construction waste recycling system]. Moscow: MGSU, 2009. 251 p.
7. Prokhotskii Yu.M., Lunev G.G. Organizational and economic problems of using secondary construction resources in reconstruction of real estate facilities. Innovatika i ekspertiza: nauchnye trudy. 2010. No. 1 (4), pp. 81–94. (In Russian).
8. Zvezdov A.I., Malinina L.A., Rudenko I.F. Tekhnologiya betona i zhelezobetona v voprosakh i otvetakh [Concrete and reinforced concrete techno-logy in questions and answers]. Moscow: NIIZhB. 2005. 446 p.
9. Goncharova M.A., Borkov P.V., Al-Surraivi Hamid Galib Hussain. Recycling of large-capacity concrete and reinforced concrete waste in the context of realization of full life cycle contracts. Stroitel’nye Materialy [Construction Materials]. 2019. No. 12, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-777-12-52-57
10. Efimenko A.Z. Concrete waste – raw materials for production of efficient building materials. Tekhnologii betonov. 2014. No. 2, pp. 17–21. (In Russian).
11. Dvorkin L.I., Dvorkin O.L. Stroitel’nye materialy iz otkhodov promyshlennosti [Construction materials from industrial waste]. Rostov-on-Don: Feniks. 2007. 368 p.
12. Zabegaev A.V., Alimov L.A., Voronin V.V., Golovin N.G. Use of processing products of reinforced concrete structures of demolished buildings and structures. Materials of the 1st All-Russian Conference on Concrete and Reinforced Concrete. Concrete at the Turn of the Third Millennium. Book 3. Moscow: Assotsiatsiya «Zhelezobeton». 2001, pp. 1590–1594. (In Russian).
13. Golovin N.G., Alimov L.A., Voronin V.V. Reinforced concrete recycling: problem and potential solutions. Vestnik MGSU. 2011. No. 2, pp. 65–71. (In Russian).
14. Afanas’ev D.A., Sarkisov Yu.S., Gorlenko N.P., Shepelenko T.S., Tsvetkov N.A., Zubkova O.A., Shevchenko M.Yu. Increase of cement hydraulic activity by spin chemistry methods. Fundamental’nye issledovaniya. 2017. No. 7, pp. 15–19. http://fundamental-research.ru/ru/article/view?id=41576 (Date of access 24.07.2019). (In Russian).

For citation: Krasinikova N.M., Kirillova E.V., Khozin V.G. Reuse of concrete waste as input products for cement concretes. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 56–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-56-65

Synergistic Effect during the Introduction of Human-Induced Additives in the Gypsum Composition

Number of journal: 1-2-2020
Autors:

Gumeniuk A.N.,
Polyanskikh I.S.,
Yakovlev G.I.,
Gordina A.F.,
Shevchenko F.E.,
Bazhenova I.S.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-48-55
УДК: 691.553

 

AbstractAbout AuthorsReferences
The presented article focuses on the comparative analysis of the physicomechanical and physicochemical properties of the modified gypsum stone and the control compositions. The paper presents the results of a study of the synergistic effect manifested by the influence of additives of fusible finely dispersed clay (siltstone) and dispersed waste powder of the fuel and energy industry in the form of industrial sulfur on the properties of gypsum stone after heat treatment. Analyzing the results showed that along with the joint introduction of additives into the gypsum composition during the mixing process, followed by heat treatment of the products, the strength and water resistance of the final samples increase, for sample GM-3 the strength is 11.7 MPa in 7 days, but for the sample without any additives the strength is 8.28 MPa. Sulfur and siltstone particles are actively involved in the structure formation of gypsum stone, creating conditions for a complex influence due to the modifying effect, which appears as a change in the structure and properties of the composite.
A.N. GUMENYUK1, Engineer, Head of Innovation Development (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
F.E. SHEVCHENKO2, Engineer,
I.S. BAZHENOVA1, Bachelor

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Megapolis OOO (of. 1, 279a, Pushkinskaya Street, 4 Izhevsk, 26011, Russian Federation)

1. Kurmangalieva A.I., Doroshenko L.O. Possible usages of aerated gypsum based materials. Investments, construction, real estate are the basic constituents of an economy development: Proceedings of VII International conference. Tomsk State University of Architecture and Building. Tomsk. 2017, pp. 373–376. (In Russian).
2. Belov V.V., Bur’yanov A.F., Yakovlev G.I., Fisher H.B., Petropavlovskaya V.B., Maeva I.S., Novichenkova T.B. Modifikatsiya struktury i svoistv materialov na osnove gipsa [Modification of structure and properties gypsum based materials]. Мoscow. Publishing house «De Nova». 2012. 196 p.
3. Jansen D., Spies A., Neubauer J., Ectors D., Goetz-Neunhoeffer F. Studies on the early hydration of two modifications of ye’elimite with gypsum. Cement and Concrete Research. 2017. Vol. 91, pp. 106–116. https://doi.org/10.1016/j.cemconres.2016.11.009
4. Trofimov B.Ya., Shuldyakov K.V., Chernykh T.N. Properties of gypsum building materials. In the collection: KNAUF in the world building complex Materials of the Tenth scientific and practical conference. 2017б pp. 75–93. (In Russian).
5. Sikora P., Łukowski P., Cendrowski K., Horszczaruk E. The effect of nanosilica on the mechanical properties of polymer-cement composites (PCC). Procedia Engineering. 2015. Vol. 108, pp. 139–145. https://doi.org/10.1016/j.proeng.2015.06.129
6. Arikan M., Sobolev K. The optimization of a gypsum-based composite material. Cement and Concrete Research. 2002. Vol. 32. Iss. 11, pp. 1725–1728. https://doi.org/10.1016/S0008-8846(02)00858-X
7. Zavadko M.Y., Babaev D.D., Petropavlovskaya V.B. On the effect of freeplast additives on the basic properties of gypsum composites modified with basalt dust. Collection of the 7th International Youth Scientific Conference dedicated to the 55th anniversary of the South-Western State University “Future of science-2019”. Kursk, 2019, pp. 46–49.
8. Osman Gencel, Juan Josedel Coz Diaz, Mucahit Sutcu, Fuat Koksal, F.P. Alvarez Rabanal, Gonzalo Martinez-Barrera, Witold Brostowf. Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy and Buildings. 2014. Vol. 70, pp. 135–144. https://doi.org/10.1016/j.enbuild.2013.11.047
9. Korolev E.V., Kiselev D.G., Proshina N.A., Albaka-sov A.I. Thermophysical properties of sulfur buil-ding materials. Vestnik MGSU. 2011. Vol. 8. No. 2, pp. 249–253. (In Russian).
10. Paturoev V.V. Polimerbetony [Polymer concrete]. Moscow: Stroyizdat. 1987. 286 p.
11. Mohamed A.-M.O., El-Gamal M. Sulfur concrete for the construction industry: a sustainable development approach. J. RossPublishing, 2010. 448 p.
12. Mikhailov K.V., Paturoev V.V., Krais R. Polimerbetony i konstruktsii na ikh osnove / Pod red. V.V. Patu-roeva [Polymer concrete and constructions based on them. Ed. by V.V. Paturoev]. Moscow: Stroyizdat. 1989. 301 p.
13. Bazhenov Y.M. Betonopolimer [Concrete Polymers]. Moscow: Stroyizdat. 1983. 472 p.
14. Gurieva V.A., Doroshin A.V., Vdovin K.M., Andree-va Yu.E. Porous ceramics on the basis of low-melting clays and slurries. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 32–36. DOI: https://doi.org/10.31659/0585-430X-2017-747-4-32-36. (In Russian).
15. Nikonov M.R., Paturoev V.V. Concrete polymers and characteristic features of their structure. Beton i zhelezobeton. 1974. Iss. 4. No. 8. (In Russian).
16. Nelson Flores Medinaa, M. Mar Barbero-Barreraa Mechanical and physical enhancement of gypsum composites through a synergic work of polypropylene fiber and recycled isostatic graphite filler. Construction and Building Materials. 2017. Vol. 131, pp. 165–177. https://doi.org/10.1016/j.conbuildmat.2016.11.073

For citation: Gumeniuk A.N., Polyanskikh I.S., Yakovlev G.I., Gordina A.F., Shevchenko F.E., Bazhenova I.S. Synergistic effect during the introduction of human-induced additives in the gypsum composition. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 48–55. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-48-55

Rheological Activation of Fluoroanhydrite Compositions with Polycarboxylate Esters

Number of journal: 1-2-2020
Autors:

Kalabina D.A.,
Yakovlev G. I.,
Drochitka R.,
Grakhov V. P.,
Pervushin G.N.,
Bazhenov K.A.,
Troshkova V.V.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-38-47
УДК: 691.5

 

AbstractAbout AuthorsReferences
The aim of this study was to reduce the water-binding ratio and increase the physicomechanical characteristics of compositions based on technogenic anhydrite in order to expand the field of their use. The authors studied the dependence of the physicomechanical properties of high-strength and lightweight fluoroanhydrite compositions upon the introduction of a plasticizer based on polycarboxylate esters, doped with multi-walled carbon nanotubes. The results of the experiments show that the introduction of a 2% aqueous plasticizer solution into the composition led to a decrease in the water demand of the mixtures, an increase in the tensile strength of the set cement by 20% and the compressive strength by 46% compared to the control sample. In addition, due to the compaction of the structure of the obtained compositions, water absorption decreased and the water resistance of the material increased (by 28%). The improvement of physical and mechanical characteristics was due to a change in the morphology of crystalline hydrate formations, an increase in the contact area between new formations due to the synergistic effect of the combined effect on the structures of multilayer carbon nanotubes and carboxylate esters, which is confirmed by analysis of the microstructure of the samples. X-ray microanalysis of amorphous neoplasms in the matrix structure made it possible to establish the formation of calcium hydrosilicates, which provide an additional increase in the strength of the material. The developed compositions can be used in the construction of self-leveling high-strength screeds and floors with reduced thermal conductivity.
D.A. KALABINA1, Engineer (Postgraduate Student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R. DROCHITKA2, Doctor of Sciences (Engineering);
V.P. GRAKHOV1, Doctor of Sciences (Economic) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. PERVUSHIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.A. BAZHENOV1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. TROSHKOVA1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Brno Technical University (95, Vevery Street, Brno, 60200, Czech Republic)

1. Akhverdov I.N. Osnovy fiziki betona [Fundamentals of concrete physics]. Moscow: Stroyizdat, 1981. 464 р.
2. Bumanis G., Zorica J., Bajare D., Korjakins A. Effect of water-binder ratio on properties of phosphogypsum binder. IOP Conf. Series: Materials Science and Engineering. 2019. Vol. 660 012071 doi:10.1088/1757-899X/660/1/012071
3. Batrakov V.G. Modifitsirovannye betony. Teoriya i praktika [Modified concrete. Theory and practice]. Moscow: Tekhnoproekt. 1998. 768 р.
4. Khozin V.G., Maysuradze N.V., Mustafina A.R., Kornyanen M.E. Influence of the chemical nature of plasticizers on the properties of gypsum paste and stone. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 35–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-35-39
5. Gaifullin A.R., Rakhimov R.Z., Khaliullin M.I., Stoyanov O.V. The effect of superplasticizers on the properties of composite gypsum binders. Bulletin of Kazan Technological University. 2013. Vol. 16. No. 5, pp. 119–121. (In Russian).
6. Fedorova V.V., Sycheva L.I. The effect of plasticizing additives on the properties of gypsum binders. Uspekhi v khimii i khimicheskoi tekhnologii. 2015. Vol. XXIX. No. 7, pp. 78–80. (In Russian).
7. Pustovgar A.P., Bur’yanov A.F., Vasilik P.G. Features of the use of hyperplasticizers in dry building mixes. Stroitel’nye Materialy [Construction Materials]. 2010. No. 12, pp. 62–65. (In Russian).
8. Hongbo Tan, Xiufeng Deng, Benqing Gu, Baoguo Ma, Shuqiong Luo, Zhenzhen Zhi, Yulin Guo, Fubing Zou. Effect of borax and sodium tripolyphosphate on fluidity of gypsum paste plasticized by polycarboxylate superplasticizer. Construction and Building Materials. 2018. Vol. 176, рр. 394–402. https://doi.org/10.1016/j.conbuildmat.2018.05.005
9. Neuville M., Bossis G., Persello J., Volkova O., Boustingory P., Mosquet M., Rheology of a gypsum suspension in the presence of different superplasticizers. Journal of Rheology. 2012. Vol. 56 (2), рр. 435–451. DOI: 10.1122/1.3693272
10. Guan B.H., Ye Q.Q., Zhang J.L., Lou W.B., Wu Z.B. Interaction between alphacalcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process. Cement and Concrete Research. 2010. Vol. 40 (2), pp. 253–259. DOI: 10.3390/ma12010163.
11. Redlikh V.V., Kudyakov A.I. Gypsum mixtures with plasticizers and dispersed mineral additives. Materials of the 56th scientific and technical conference of students and young scientists. 2010, pp. 98–101. (In Russian).
12. Sakthieswaran N., Sophia M. Effect of superplasticizers on the properties of latex modified gypsum plaster. Construction and Building Materials. 2018. Vol. 179, pp. 675–691. https://doi.org/10.1016/j.conbuildmat.2018.05.150
13. Wei Pan, Peiming Wang. Effect of compounding of sodium tripolyphosphate and super plasticizers on the hydration of α-calcium sulfate hemihydrate. Journal of Wuhan University of Technology-Mater Sci Ed. 2011. Vol. 26. Iss. 4, pp. 737–744. DOI: 10.1007/s11595-011-0303-4
14. Potorochina S.A., Novikova V.A., Gordina A.F. The effect of polycarboxylate plasticizer on the technical parameters of gypsum. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2015. Vol. 1. No. 3, pp. 14–19. (In Russian).
15. EP3176141A1. European Patent Office. Plasticizer composition for producing gypsum boards / Daniel Martin. 2015 https://patents.google.com/patent/EP3176141A1/en.
16. Müller M., Hampel Ch. Multi-functional polymers for increased gypsum board production efficiency. 20th International Building Materials Conference «Ibausil». 2018. Band 2, pp. 96–104.
17. Qiang Wang, Ruiquan Jia. A novel gypsum-based self-leveling mortar produced by phosphorus building gypsum. Construction and Building Materials. 2019. Vol. 226, рр. 11–20. https://doi.org/10.1016/j.conbuildmat.2019.07.289
18. Dolgorev V.A., Dolgorev A.V., Remnev V.V. Light-weight building mixes for floor insulation. Materials of the IV Seminar Volgograd-2008. September 24–26, 2008. Volgograd, pp. 60–64. (In Russian).
19. Patent RF 2382743. The method of obtaining anhydrite binder. Pureskina O.A., Gashkova V.I., Petrov N.S., Katyshev S.F. Declared 08.12.2008. Published 02.27.2010. (In Russian).
20. Yakovlev G.I., Pervushin G.N., Grakhov V.P., Kalabina D.A., Gordina A.F., Ginchitskaya Yu.N., Bazhenov K.A., Troshkova V.V., Drokhitka R., Khozin V.G. Structural and heat-insulating material based on high-strength anhydrite binder. Intellektual’nye sistemy v proizvodstve. 2019. Vol. 17. No. 1, pp. 144–151. DOI: 10.22213/2410-9304-2019-1-144-151 (In Russian).
21. Fedorchuk Yu.M. Development of methods for involving calcium sulfate waste from hydrogen fluoride industries in the cycle of industrial use. Mezhdunarodnyj zhurnal prikladnyh i fundamental’nyh issledovaniy. 2013. No. 11-2, pp. 151–155. (In Russian).
22. Sedira N., Castro-Gomes J., Kastiukas G., Zhou X., Vargas A. A review on mineral waste for chemical-activated binders: mineralogical and chemical characteristics. Journal of Mining Science. 2017. Vol. 24, pp. 29–58. DOI: 10.5277/msc172402
23. Yakovlev G.I., Tulegenova A.V., Pervushin G.N., Keriene J., Gordina A.F., Bazhenov K.A., Ali Elsayed Elrefaei. Multifunctional admixture used for activating fluoroanhydrite. 20th International Building Materials Conference «Ibausil». 2018. Band 2, pp. 559–568.
24. Yakovlev G.I., Kalabina D.A., Grakhov V.P., Buryanov A.F., Gordina A.F., Bazhenov K.A., Nikitina S.V. Fluoro-anhydrite compositions with a light filler based on expanded perlite sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 57–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-57-61

For citation: Kalabina D.A., Yakovlev G. I., Drochitka R., Grakhov V. P., Pervushin G.N., Bazhenov K.A., Troshkova V.V. Rheological activation of fluoroanhydrite compositions with polycarboxylate esters. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 38–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-38-47

Estimation of Efficiency of Applying Aqueous Dispersion of Carbon Particles in Anhydrite Binder

Number of journal: 1-2-2020
Autors:

Tokarev Yu.V.,
Volkov M.A.,
Ageev A.V.,
Kuzmina N.V.,
Grakhov V.P.,
Yakovlev G.I.,
Khazeev D.R.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-24-35
УДК: 691.553

 

AbstractAbout AuthorsReferences
The study focuses on the mechanical properties and structure of a binder based on natural anhydrite in the presence of an aqueous dispersion of carbon particles: industrial soot and isostatic graphite. Granulometric analysis shows that soot particles have higher dispersion compared to graphite, the main range for soot particles being from 50 to 500 nm. The use of soot in the form of tinting paste and graphite, a production waste, provides an increase in mechanical properties up to 25% with an optimal content of additive of 0.001% and 0.005%, respectively. The analysis of the results of the samples with the addition of soot obtained by differential scanning calorimetry and IR analysis shows the presence of changes in the environment of crystalline hydrate structures. The microstructural analysis has revealed the presence of both homogeneous and heterogeneous parts of the structure of gypsum stone. At the same time, the study has established the presence of orderly accumulation of well-formed and closely packed crystals of calcium sulfate dihydrate, presumably over the surface of soot particles, the presence of crystals with concave surfaces, and the presence of tight contacts between crystals which increase the density of the interfacial surface and the strength of the anhydrite matrix. Adding a plasticizer to the composition of anhydrite binder in an amount of 0.8% along with soot provides an increase of up to 45% in the late stages of hardening and a significant decrease in the early stages of hardening.
Yu.V. TOKAREV, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. VOLKOV, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. AGEEV, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KUZMINA, Engineer (postgraduate) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.P. GRAKHOV, Doctor of Science (Economics) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.R. KHAZEEV, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Sedaghatdoost A., Behfarnia K. Mechanical properties of Portland cement mortar containing multiwalled carbon nanotubes at elevated temperatures. Construction and Building Materials. 2018. Vol. 176, pp. 482–489. https://doi.org/10.1016/j.conbuildmat.2018.05.095
2. Letenko D.G., Mokrova M.V., Matveeva L.Yu., Tikhonov Yu.M. The influence of the size distribution of nanomodified latex particles on the structure of gypsum materials // Vestnik grazhdanskikh inzhenerov. 2019. No. 4 (75), pp. 95–101. (In Russian).
3. Derevyanko V.N., Chumak A.G., Vaganov V.E. The effect of nanoparticles on hydration processes of semiaquatic gypsum. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 22–24. (In Russian).
4. Alatawna A., Birenboim M., Nadiv R., Buzaglo M., Peretz-Damari S., Peled A., Regev O., Sripada R. The effect of compatibility and dimensionality of carbon nanofillers on cement composites. Construction and Building Materials. 2020. Vol. 232. https: //doi.org/10.1016/j.conbuildmat.2019.117141.
5. R.A. e Silva, P. de Castro Guetti, M.S. da Luz, F. Rouxinol, R. Valentim Gelamo. Enhanced properties of cement mortars with multilayer graphene nanoparticles. Construction and Building Materials. 2017. Vol. 149, pp. 378–385. https://doi.org/10.1016/j.conbuildmat.2017.05.146
6. Liu Ji., Fu Ji., Yang Ya., Gu Ch. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Construction and Building Materials. 2019. Vol. 199, pp. 1–11. https:// doi.org/10.1016/j.conbuildmat.2018.12.006
7. Ho V.D., Ng Ching-Tai, Coghlan C.J., Goodwin A., Mc Guckin C., Ozbakkaloglu T., Losic D. Electrochemically produced graphene with ultra large particles enhances mechanical properties of Portland cement mortar. Construction and Building Materials. 2020. Vol. 234. 117403. https://doi.org/10.1016/j.conbuildmat.2019.117403
8. Zadneprovskii R.P. On the effectiveness and prospects of using nanocarbon microadditives for building mixtures. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka. 2011. No. 8 (151), pp. 22–25. (In Russian).
9. Gyul’misaryan T.G., Kapustin V.M. Dispersion systems – the main raw material for the production of carbon black. Neftekhimiya. 2016. Vol. 56. No. 4, p. 346. (In Russian).
10. Kozlov A.N., Yurlov A.S. Physico-chemical properties, composition and structure of soot particles. Aktual’nye voprosy sovershenstvovaniya tekhnologii proizvodstva i pererabotki produktsii sel’skogo khozyaistva. 2017. No. 19, pp. 341–346. (In Russian).
11. Bulgakov B.I., Tang V.L., Aleksandrova O.V. The influence of nanosized soot particles on the strength of cement stone at an early age. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2016. No. 11, pp. 18–22. (In Russian).
12. Ignatova O.A., Makarova N.V. The effect of ultrafine soot pigment additives on the properties of gypsum-cementpozzolanic binder. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2017. No. 11–12 (707–708), pp. 31–41. (In Russian).
13. Yakovlev G.I., Pervushin G.N., Gordina A.F., Shaibadulina A.V., Saidova Z.S., Protod’yakonova T.L., Bur’yanov A.F., Nikitina S.V. Modification of the structure and properties of gypsum binder by dispersion of technical soot. Intellektual’nye sistemy v proizvodstve. 2019. Vol. 17. No. 1, pp. 138–143. (In Russian).
14. Sultanova V.M., Pudov I.A. Study of the effect of graphite on the properties of gypsum binder. Nauka, obrazovanie i kul’tura. 2019. No. 5 (39), pp. 5–9. (In Russian).
15. M. del Mar Barbero-Barrera, N. Flores-Medina, V. Perez-Villar. Assessment of thermal performance of gypsum-based composites with revalorized graphite filler. Construction and Building Materials. 2017. Vol. 142, pp. 83–91. https://doi.org/10.1016/j.conbuildmat.2017.03.060
16. Medina N.F., Barbero-Barrera M.M., Bustamante R. Improvement of the properties of gypsum-based composites with recycled isostatic graphite powder from the milling production of molds for Electrical Discharge Machining (EDM) used as a new filler. Construction and Building Materials. 2016. Vol. 107. 2016, pp. 17–27. DOI: 10.1016/j.conbuildmat.2015.12.194
17. Barbero-Barrera M.M., Medina N.F., GuardiaMartin C. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes. Construction and Building Materials. 2017. Vol. 149, pp. 599–611. https://doi.org/10.1016/j.conbuildmat.2017.05.156
18. Medina N.F., Barbero-Barrera M.M., Jove-Sandoval F. Improvement of the mechanical and physical properties of cement pastes and mortars through the addition isostatic graphite. Construction and Building Materials. 2018. Vol. 189, pp. 898–905. https://doi.org/10.1016/j.conbuildmat.2018.09.055
19. Tokarev Yu.V., Ageev A.V., Volkov M.A., Kuzmina N.V., Yakovlev G.I. Properties and structure of anhydrite binder of Ergachinsky deposit in the presence of phosphate activators and aleurolite. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 46–52. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-46-52
20. Yakovlev G.I., Fedorova G.D., Polyanskikh I.S. High strength concrete with dispersed additives. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 2, pp. 35–42. (In Russian).
21. Levashova A.K., Sycheva L.I. The effect of the nature of the plasticizer on the properties of anhydrite binder. Uspekhi v khimii i khimicheskoi tekhnologii. 2016. Vol. 30. No. 7 (176), pp. 58–60. (In Russian).

For citation: Tokarev Yu.V., Volkov M.A., Ageev A.V., Kuzmina N.V., Grakhov V.P., Yakovlev G.I., Khazeev D.R. Estimation of efficiency of applying aqueous dispersion of carbon particles in anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 24–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-24-35

Activation of Structure-forming Properties of Graphene Oxide in Cement Composites

Number of journal: 1-2-2020
Autors:

Fedorova G.D.,
Alexandrov G.N.,
Scryabin A.P.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-17-23
УДК: 691.545:539.2

 

AbstractAbout AuthorsReferences
The article shows that a significant amount of work is being done to study graphene oxide as an additive for cement materials abroad. Most of these studies are aimed at studying of mechanical strength, cement hydration, cement stone structure, including the effect of graphene oxide on formation of cement matrix structure. As researchers note, graphene oxide is involved in cement hydration reaction and is a promising additive with which it will be possible in the future to control the formation of microstructure of cement matrix, which makes it possible to obtain a material with desired properties. Of particular note is the fact that due to the presence of carboxyl groups on graphene oxide, it can react with cement hydration products С–S–H and Ca(ОН)2. The results of study of graphene oxide effect in an amount of 0.05% of cement weight on the strength of cement mortar with additional introduction of 0.1% Al(NO3) 3 and 0.1% Ca (NO3)2 into the water are presented. As experimental results showed, addition of aluminum nitrate and calcium nitrate enhanced the effect of graphene oxide on the strength properties of cement mortar. At the same time, increase in bending and compression strength of solution was 24.8 and 19.7%, respectively, compared with control composition (without additives), and when using only graphene oxide in amount of 0.05% of cement weight, only 2.2 and 4.6% respectively. By studying the microstructure of hardened cement stone using a JEOL JSM-7800F scanning electron microscope, it was found that introduction of additives significantly affects the morphology and distribution of cement hydration products, as well as distribution and diameter of pores.
G.D. FEDOROVA, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. ALEKSANDROV, Engineer,
A.P. SCRYABIN, Engineer (postgraduate)

North-Eastern Federal University in Yakutsk (58, Belinskogo Street, Yakutsk, 677000, Russian Federation)

1. Каприелов С.С., Шейнфельд А.В., Аль-Омаис Д., Зайцев А.С. Высокопрочные бетоны в конструкции фундаментов высотного комплекса ≪OKO≫ в ММДЦ ≪Москва-Сити≫ // Промышленное и гражданское строительство. 2017. № 3. С. 53–57.
1. Kaprielov S.S., Sheynfeld A.V., Al-Omais D., Zaitsev A.S. High-strength concretes in constructions of foundations of the high-rise complex “OKO” in MIBC “Moscow-City”. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 3, pp. 53–57. (In Russian).
2. Калашников В.И., Тараканов О.И. О применении комплексных добавок в бетонах нового поколения // Строительные материалы. 2017. № 1–2. С. 62–67.
2. Kalasnikov V.I., Tarakanov O.V. About the use of complex additives in concretes of a new generation. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 62–67. (In Russian).
3. Nesvetaev G.V., Korchagin I.V., Lopatina Yu.Yu. About influence of superplasticizers and mineral additives on creep factor of hardened cement paste and concrete. Solid State Phenomena. 2017. Vol. 265, pp. 109–113 https://doi.org/10.4028/www.scientific.net/SSP.265.109
4. Чернышов Е.М., Артамонова О.В., Славчева Г.С. Прикладные нанотехнологические задачи повышения эффективности процессов твердения цементных бетонов // Нанотехнологии в строительстве. 2017. Т. 9. № 1. С. 25–41.
4. Chernishov E.M., Artamonova O.V., Slavcheva G.S. Nanotechnological applied tasks of the increase in the efficiency of the hardening processes of cement concrete. Nanotehnologii v stroitel’stve. 2017. Vol. 9. No. 1, pp. 25–41. (In Russian).
5. Синицин Д.А., Халиков Р.М., Булатов Б.Г., Галицков К.С., Недосеко И.В. Технологичные подходы направленного структурообразования нанокомпозитов строительного назначения с повышенной коррозионной устойчивостью // Нанотехнологии в строительстве. 2019. Т. 11. № 2. С. 153–164. DOI: 10.15828/2075-8545-2019-11-2-153-164.
5. Sinitsin D.A., Khalikov R.M., Bulatov B.G., Galitskov K.S., Nedoseko I.V. Technological approaches to directed structure formation of construction nanocomposites with increased corrosion resistance. Nanotehnologii v stroitel’stve. 2019. Vol. 11. No. 2, pp. 153–164. DOI: 10.15828/2075-8545-2019-11-2-153-164 (In Russian).
6. Яковлев Г.И., Дрохитка Р., Первушин Г.Н., Грахов В.П., Саидова З.С., Гордина А.Ф., Шайбадуллина А.В., Пудов И.А., Эльрефаи А.Э.М.М. Мелкозернистый бетон, модифицированный суспензией хризотиловых нановолокон // Строительные материалы. 2019. № 1–2. С. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10
6. Yakovlev G.I., Drochytka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina А.F., Shaybadullina A.V., Pudov I.A., Elrefaei A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10 (In Russian).
7. Федорова Г.Д., Александров Г.Н., Смагулова С.А. Исследование устойчивости водной суспензии оксида графена // Строительные материалы. 2015. № 2. С. 15–21.
7. Fedorova G.D., Alexandrov G.H., Smagulova S.A. Research of stability of water suspension of grapheme oxide. Stroitel’nye Materialy [Concstruction Materials]. 2015. No. 2, pp. 21–26. (In Russian).
8. Федорова Г.Д., Александров Г.Н., Смагулова С.А. К вопросу применения оксида графена в цементных системах // Строительные материалы. 2016. № 1–2. С. 21–26.
8. Fedorova G. D., Alexandrov G. H., Smagulova S. A. The study of graphene oxide use in cement systems. Stroitel’nye Materialy [Concstruction Materials]. 2016. No. 1–2, pp. 21–26. (In Russian).
9. Федорова Г.Д., Баишев К.Ф., Скрябин А.П. Оксид графена как перспективный наноматериал для цементных композитов // Научное обозрение. 2017. № 12. С. 36–41.
9. Fedorova G.D., Baishev K.F., Skryabin A.P. Graphene oxide as a promising nanomaterial for cement. Nauchnoe obozrenie [Science review]. 2017. No. 12, pp. 36–41. (In Russian).
10. Федорова Г.Д., Александров Г.Н., Скрябин А.П., Баишев К.Ф. Влияние oксида графена на прочность при сжатии цементного камня // Строительные материалы. 2018. № 1–2. С. 11–17. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-11-17
10. Fedorova G.D., Alexandrov G.N., Scryabin A.P., Baishev K.F. Influence of graphene oxide on compressive strength of cement paste. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 11–17. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-11-17 (In Russian).
11. Федорова Г.Д., Скрябин А.П., Александров Г.Н. Исследование влияния оксида графена на прочность цементного раствора // Строительные материалы. 2019. № 1–2. С. 16–22. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
11. Fedorova G.D., Skriabin A.P., Aleksandrov G.N. The study of the influence of graphene oxide on the strength of cement stone using river sand. Stroitel’nye Materialy [Construction Materials]. 2019. № 1–2. С. 16–22. (In Russian).DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
12. Xu Y., Zeng J., Chen W. Jin R., Li B., Pan Z. A holistic rewiev of cement composites reinforced with graphene oxide. Construction and Building Materials 2018. Vol. 171, pp. 291–302. http://dx.doi.org/10.1016/j.conbuildmat.2018.03.147
13. Patent WO 2013096990 AI. Graphene oxide reinforced cement and concrete. Pan Z., Duan W.H., Li D., Collins F. Declared 21.12.2012. Published 04.07.2013.
14. Wang Q., Wang J., Lu C-x., Lie Bo-w, Jang R., Li C-z.. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. Xinxing Tan Cailiao / New Carbon Materials. 2015. Vol. 30. Iss. 4, pp. 349–359. DOI: 10.1016/S1872-5805(15)60194-9
15. Hu M., Cuo J., Li P., Chen D., Xu Y., Feng Y., Yu Y., Zhang H. Effect of characteristics of chemical combine of grapheme oxide-nanosilica nanocomposite fillers on properties of cement-based materials // Construction and Building Materials. 2019. No. 225, pp. 745–758. http://dx.doi.org/10.1016/j.conbuildmat.2019.07.079
16. Lin J., Shamsael E., Souza F. B., Sagoe-Crentsil K., Duan W. H. Dispersion of grapheme oxide-silica nanohybrids in alkaline environment for improving ordinary Portland cement composites. Cement and Concrete Composites. 2020. Vol. 106. 103488 http://dx.doi.org/10.1016/j.cemconcomp.2019.103488
17. Liu H., Yu Y., Liu H., Jin J., Liu S. Hybrid effects of nano-silica and graphene oxide on mechanical properties and hydration products of oil well cement. Construction and Building Materials. 2018. Vol. 191, pp. 311–319. http://dx.doi.org/10.1016/j.conbuildmat.2018.10.029
18. Newell M., Garcia-Taengua E. Fresh and hardened state properties of hybrid grapheme oxide/nanosilica cement composites. Construction and Building Materials. 2019. Vol. 221. 433–442. http://dx.doi.org/10.1016/j.conbuildmat.2019.06.066
19. Indukuri C. S. R., Nerella R., Madduru S. R. C. Effect of grapheme oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites. Construction and Building Materials. 2019. Vol. 229. 116863. http://dx.doi.org/10.1016/j.conbuildmat.2019.116863
20. Li Z., Guo X., Liu Y., Zhao Y. and etc. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mrchanical behavior of grapheme oxide reinforced cement composites. Construction and Building Materials. 2018. Vol. 190, pp. 150–163. http://dx.doi.org/10.1016/j.conbuildmat.2018.09.105

For citation: Fedorova G.D., Aleksandrov G.N., Scryabin A.P. Activation of structure-forming properties of graphene oxide in cement composites. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 17–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-17-23

Photocatalytic Self-Cleaning Fine-Grained Concrete

Number of journal: 1-2-2020
Autors:

Lukuttsova N.P.,
Efremochkin R.A.,
Borsuk O.I.,
Golovin S.N.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-8-15
УДК: 691.3

 

AbstractAbout AuthorsReferences
The results of evaluating the ability of fine-grained concrete (FGC) modified with titanium dioxide (anatase) to self-cleaning, based on oxidation-reduction reaction of decomposition and removal of pollutants, are given. Different variants of introducing the modified anatase additive into the FGC composition and the finish surface are considered. According to the methodology of GOST R 57255–2016, the values of the contact wetting angle (CWA) of fine-grained concrete without an additive, with an additive into the FGC and the finishing layer, as well as on the surface of the finishing coating are defined. Three variation periods of the contact wetting angle are recorded. The first period is characterized by an intense decrease in the CWA. The most significant reduction occurs during the first 30 minutes of UV radiation exposure, then the process slows down (the second period), and stabilizes (the third period). The contact wetting angle is reduced to less than 5о within 60 minutes of UV radiation exposure. This effect is achieved due to the modified anatase nanoparticles of less than 90 nm. The effectiveness of surface application of the modified anatase additive in comparison with its volume content is shown. The contact wetting angle decreases from 53.4о to 5.1о after 30 minutes of UV radiation exposure. At that, the CWA in the samples with TiO2 as a part of the finishing layer changes to a lesser extent.
N.P. LUKUTTSOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.A. EFREMOCHKIN, Master of engineering and technology, direction of “Construction” (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.I. BORSUK, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.N. GOLOVIN, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Bryansk State Engineering and Technology University (3, Stanke Dimitrova Street, Bryansk, 241037, Russian Federation)

1. Freint M.A., Lyapidevskaya O.B. The use of photocatalytic concrete to improve the environment in the Moscow region. Nauchnoye obozreniye. 2015. No. 14, pp. 177–180. (In Russian).
2. Kurbatov V.L., Dayronas M.V. Ecological effect of photocatalytic concrete. Universitetskaya nauka. 2019. No. 1 (7), pp. 24–27. (In Russian).
3. Bazhenov V.K., Chervontseva M.A. The effectiveness of the use of photocatalytic concrete in urban construction. Vestnik Moskovskogo informatsionno-tekhnologicheskogo universiteta – Moskovskogo arkhitekturnostroitel’nogo instituta. 2018. No. 3, pp. 27–31. (In Russian).
4. Fujishima A., Rao T., Tryk D. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C Photochemistry Reviews. 2000. Vоl. 1 (1), pp. 1–21. DOI: 10.1016/S1389-5567(00)00002-2
5. Hela R., Bodnarova L. Research of possibilities of testing effectiveness of photoactive TIO2 in concrete. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 77–81. (In Russian).
6. Falikman V.R., Weiner A.Ya. New highly effective nanoadditives for photocatalytic concrete: synthesisand research. Nanotechnologii v stroitel’stve: an online  scientific journal. 2015. Vol. 7. No. 1, pp. 18–28.  (In Russian).
7. Tang H., Berger H., Schmid P.E., Levy F., Burri G. Optical properties of anatase (TiO2). Solid State Communications. 1993. Vol. 87. Iss. 9, pp. 847–850. DOI: https://doi.org/10.1016/0038-1098(93)90427-O
8. Simons P.Y., Dachille F. The structure of TiO2II, a high-pressure phase of TiO2. Acta Crystallographica. 1967. Iss. 23, pp. 334–336. https://doi.org/10.1107/S0365110X67002713
9. Kovalev I.A. The study of redox reactions in the Ti-O system in the process of obtaining ceramic materials and products with functional properties. Diss ... Cand. of Sciences (Engineering). Moscow. 2018. 149 p. (In Russian).
10. Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews. 1995. Vol. 95. Iss. 3, pp. 735–758.  https://doi.org/10.1021/cr00035a013
11. Munuera G., Gonzalez-Elipe A.R., Rives-Arnau V., Navio A., Malet P., Sokia J., Conesa J.C., Sanz J. Photo-adsorption of oxygen on acid and basic TiO2 surfaces. Studies in Surface Science and Catalysis. 1985. Vol. 21, pp. 113–126. https://doi.org/10.1016/S0167-2991(08)64915-0
12. Peng T., Zhao D., Dai K. et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. Journal of Physical Chemistry B. 2005. Vol. 109. No. 11. pp. 4947–4952. https://doi.org/10.1021/jp044771r
13. Gavrilov V.Yu., Zenkovets G.A. The effect of the deposition of the titanium dioxide hydrogel on the porous structure of the xerogel. Kinetika i kataliz. 1990. Vol. 31, pp. 168–173. (In Russian)
14. Lukuttsova N.P., Ustinov A.G., Grebenchenko I.Yu. A new type of the modifier of concrete structure is an additive on the basis of bio-silicified nano-tubes. Stroitel’nye Materialy [Construction Materials]. 2015. No. 11, pp. 5–8. (In Russian).
15. Lukutsova N.P., Efremochkin R.A. and Golovin S.N. Study of the suspension stability of titanium dioxide of anatase modification for self-purifying fine concrete. Solid State Phenomena. 2020. Vol. 299, pp. 157–162. https://doi.org/10.4028/www.scientific.net/SSP.299.157
16. Golfman M.I., Kovalevich O.V., Yustratov V.P. Kolloidnaya khimiya [Colloid chemistry]. Saint Petersburg: Lan’. 2010. 336 p.

For citation: Lukuttsova N.P., Efremochkin R.A., Borsuk O.I., Golovin S.N. Photocatalytic self-cleaning fine-grained concrete. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 8–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-8-15

Research of the Influence of Pyrogenic Nanosilica on the Heat Hydration and Cement Stone Microstructure

Number of journal: 1-2-2020
Autors:

Urkhanova L.A.,
Lkhasaranov S.A.,
Badmaevа E.V.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-3-7
УДК: 691.33

 

AbstractAbout AuthorsReferences
The article presents the results of studies to determine the kinetics of heat generation, which makes it possible to judge the rate of binder hydration during cement hydration without additives and with the addition of superplasticizer and nanodispersed silicon dioxide – nanosilica. The kinetics of heat release during hydration of cement was determined by an indirect method to change the hydration temperature of the system via the logger Testo-176T4 temperature. With the introduction of superplasticizer, the hydration of cement slows down due to the adsorption of the additive on the surface of the cement grain, which prevents the access of the liquid phase. This leads to a drop in the temperature of the hydrated binder in the post-induction period of hydration. With the introduction of nanosilica in optimal amounts, the induction period of hydration is reduced due to the interaction of nanosilica with cement hydration products. It is shown that the combined use of superplasticizer and nanodispersed silicon dioxide accelerates cement hydration due to the dispersion of cement grain in the presence of superplasticizer and the interaction of nanosilica with portlandite with the formation of an additional amount of calcium hydrosilicates. The data of electron microscopy analysis are presented, which prove the change in the microstructure of cement stone with the addition of additives, which leads to an improvement in the physicomechanical characteristics of hydrated stone not only in the early but also in the later stages of hardening.
L.A. URKHANOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
S.A. LKHASARANOV, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
E.V. BADMAEVА, Eengineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

East Siberia State University of Technology and Management (40V, Klyuchevskaya Street, Ulan-Ude, Republic of Buryatia, 670013, Russian Federation)

1. Chernyshov E.M., Artamonova O.V., Slavcheva G.S.Applied nanotechnological tasks of increasing the efficiencyof cement concrete hardening processes.Nanotekhnologii v stroitel’stve: scientific Internetjournal.2017. No. 1, pp. 25–41. (In Russian).
2. Korolev E.V. Nanotechnology in building materialsscience. Analysis of status and achievements. Ways ofdevelopment. Stroitel’nye Materialy [ConstructionMaterials]. 2014. No. 11, pp. 47–79. (In Russian).
3. Khozin V.G., Khokhryakov O.V., Nizamov R.K.,Kashapov R.R., Baishev D.I. Experience of nanomodificationof low water demand cements.Promyshlennoe i grazhdanskoe stroitel’stvo. 2018.No. 1, pp. 53–57. (In Russian).
4. Tyukavkina V.V., Kasikov A.G., Gurevich B.I.Structure formation of cement stone modified withadditive of nano-disperse silicon dioxide. Stroitel’nyeMaterialy [Construction Materials]. 2018. No. 11,pp. 31–35. DOI: https://doi.org/10.31659/0585-430X-2018-765-11-31-35 (In Russian).
5. Sorvacheva Yu.A. The effect of nano-silica on the kineticsof alkaline corrosion of concrete. IzvestijaPeterburgskogo universiteta putej soobshhenija. 2014.No. 2 (39), pp. 118–123. (In Russian).
6. Flores Y.C., Cordeiro G.C., Toledo Filho R.D. andTavares L.M. Performance of Portland cementpastes containing nano-silica and different types ofsilica. Construction and Building Materials. 2017.146, pp. 524–530. DOI: 10.1016/j.conbuildmat.2017.04.069
7. Khrustalev B.M., Leonovich S.N., Yakovlev G.I.,Polyansky I.S., Lahaene O., Eberhardsteiner J.,Skripkiunas G., Pudov I.A., Karpova E.A. Structuralmodification of neoplasms in a cement matrix using adispersion of carbon nanotubes and nanosilica. Naukai tehnika. 2017. Vol. 16. No. 2, pp. 93–103. (In Russian).
8. Potapov V.V., Grushevskaya E.N., Leonovich S.N.Modification of materials on the basis of cementwith hydrothermal nano-silica. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 4–9. DOI: https://doi.org/10.31659/0585-430X-2017-750-7-4-9 (In Russian).
9. Rai S., Tiwari S. Nano silica in cement hydration.Materials Today: Proceedings. 2018. Vol. 5, Iss. 3,pp. 9196–9202. https://doi.org/10.1016/j.matpr.2017.10.044
10.
Chernyshov E.M., Artamonova O.V. Concept andbases of technologies of nano-modification of buildingcomposites structures. Part 7. Final: ActualGeneralization. Stroitel’nye Materialy [ConstructionMaterials]. 2019. No. 11, pp. 3–14. (In Russian).DOI: https://doi.org/10.31659/0585-430X-2019-776-11-3-14
11.
Kaprielov S.S., Sheinfeld A.V., Kardumyan G.S.,Chilin I.A. About selection of compositions of highqualityconcretes with organic-mineral modifiers.Stroitel’nye Materialy [Construction Materials]. 2017.No. 12, pp. 58–63. (In Russian).
12. Kaprielov S.S., Sheinfeld A.V., Dondukov V.G.Cements and additives for producing high-strengthconcretes. Stroitel’nye Materialy [ConstructionMaterials]. 2017. No. 11, pp. 4–10. (In Russian).
13. Yakovlev G.I., Drochytka R., Pervushin G.N.,Grakhov V.P., Saidova Z.S., Gordina А.F.,Shaybadullina A.V., Pudov I.A., Elrefaei A.E.M.M.Fine-grained concrete modified with a suspensionof chrysotile nanofibers. Stroitel’nye Materialy[Construction Materials]. 2019. No. 1–2,pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10 (In Russian).
14. Kosmachev P.V., Demyanenko O.V., Vlasov V.A.,Kopanitsa N.O., Skripnikova N.K. Composite materialsbased on cement with nanosized silica // VestnikTomskogo gosudarstvennogo arhitekturno-stroitel’nogouniversiteta. 2017. No. 4 (63), pp. 139–146.(In Russian).
15. Zhang B., Tan H., Shen W., Xu G., Ma B. and Ji X.Nano-silica and silica fume modified cement mortarused as Surface Protection Material to enhance theimpermeability. Cement and Concrete Composites.2018. Vol. 92, pp. 7–17. https://doi.org/10.1016/j.cemconcomp.2018.05.012
16.
Mchedlov-Petrosyan O.P., Usherov-Marshak A.V.,Urzhenko A.M. Teplovydelenie pri tverdenii vjazhushhihveshhestv i betona [Heat release during hardeningof binders and concrete]. Мoscow: Stroyizdat, 1984.224 p. (In Russian).
17. Usherov-Marshak A.V., Kabus A.V. Functionalkineticanalysis of the effect of additives on cementhardening. Neorganicheskie materialy. 2016. Vol. 52.No. 4, pp. 479–484. (In Russian).
18. Ivanov I.M., Matveev D.V., Orlov A.A., Kramar L.Ya.Effect of water-cement ratio and superplasticizers onthe processes of heat release, hydration and hardeningof cement. Vestnik Juzhno-Ural’skogo gosudarstvennogouniversiteta. Serija «Stroitel’stvo i arhitektura». 2017.Vol. 17. No. 2, pp. 42–49. DOI: 10.14529/build170206(In Russian).

For citation: Urkhanova L.A., Lkhasaranov S.A., Badmaevа E.V. Research of the influence of pyrogenic nanosilica on the heat hydration and cement stone microstructure. Stroitel’nyeMaterialy [Construction Materials]. 2020. No. 1–2, pp. 3–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-3-7

https://www.traditionrolex.com/10