Activation of Structure-forming Properties of Graphene Oxide in Cement Composites

Number of journal: 1-2-2020
Autors:

Fedorova G.D.,
Alexandrov G.N.,
Scryabin A.P.

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-17-23
УДК: 691.545:539.2

 

AbstractAbout AuthorsReferences
The article shows that a significant amount of work is being done to study graphene oxide as an additive for cement materials abroad. Most of these studies are aimed at studying of mechanical strength, cement hydration, cement stone structure, including the effect of graphene oxide on formation of cement matrix structure. As researchers note, graphene oxide is involved in cement hydration reaction and is a promising additive with which it will be possible in the future to control the formation of microstructure of cement matrix, which makes it possible to obtain a material with desired properties. Of particular note is the fact that due to the presence of carboxyl groups on graphene oxide, it can react with cement hydration products С–S–H and Ca(ОН)2. The results of study of graphene oxide effect in an amount of 0.05% of cement weight on the strength of cement mortar with additional introduction of 0.1% Al(NO3) 3 and 0.1% Ca (NO3)2 into the water are presented. As experimental results showed, addition of aluminum nitrate and calcium nitrate enhanced the effect of graphene oxide on the strength properties of cement mortar. At the same time, increase in bending and compression strength of solution was 24.8 and 19.7%, respectively, compared with control composition (without additives), and when using only graphene oxide in amount of 0.05% of cement weight, only 2.2 and 4.6% respectively. By studying the microstructure of hardened cement stone using a JEOL JSM-7800F scanning electron microscope, it was found that introduction of additives significantly affects the morphology and distribution of cement hydration products, as well as distribution and diameter of pores.
G.D. FEDOROVA, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. ALEKSANDROV, Engineer,
A.P. SCRYABIN, Engineer (postgraduate)

North-Eastern Federal University in Yakutsk (58, Belinskogo Street, Yakutsk, 677000, Russian Federation)

1. Каприелов С.С., Шейнфельд А.В., Аль-Омаис Д., Зайцев А.С. Высокопрочные бетоны в конструкции фундаментов высотного комплекса ≪OKO≫ в ММДЦ ≪Москва-Сити≫ // Промышленное и гражданское строительство. 2017. № 3. С. 53–57.
1. Kaprielov S.S., Sheynfeld A.V., Al-Omais D., Zaitsev A.S. High-strength concretes in constructions of foundations of the high-rise complex “OKO” in MIBC “Moscow-City”. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 3, pp. 53–57. (In Russian).
2. Калашников В.И., Тараканов О.И. О применении комплексных добавок в бетонах нового поколения // Строительные материалы. 2017. № 1–2. С. 62–67.
2. Kalasnikov V.I., Tarakanov O.V. About the use of complex additives in concretes of a new generation. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 62–67. (In Russian).
3. Nesvetaev G.V., Korchagin I.V., Lopatina Yu.Yu. About influence of superplasticizers and mineral additives on creep factor of hardened cement paste and concrete. Solid State Phenomena. 2017. Vol. 265, pp. 109–113 https://doi.org/10.4028/www.scientific.net/SSP.265.109
4. Чернышов Е.М., Артамонова О.В., Славчева Г.С. Прикладные нанотехнологические задачи повышения эффективности процессов твердения цементных бетонов // Нанотехнологии в строительстве. 2017. Т. 9. № 1. С. 25–41.
4. Chernishov E.M., Artamonova O.V., Slavcheva G.S. Nanotechnological applied tasks of the increase in the efficiency of the hardening processes of cement concrete. Nanotehnologii v stroitel’stve. 2017. Vol. 9. No. 1, pp. 25–41. (In Russian).
5. Синицин Д.А., Халиков Р.М., Булатов Б.Г., Галицков К.С., Недосеко И.В. Технологичные подходы направленного структурообразования нанокомпозитов строительного назначения с повышенной коррозионной устойчивостью // Нанотехнологии в строительстве. 2019. Т. 11. № 2. С. 153–164. DOI: 10.15828/2075-8545-2019-11-2-153-164.
5. Sinitsin D.A., Khalikov R.M., Bulatov B.G., Galitskov K.S., Nedoseko I.V. Technological approaches to directed structure formation of construction nanocomposites with increased corrosion resistance. Nanotehnologii v stroitel’stve. 2019. Vol. 11. No. 2, pp. 153–164. DOI: 10.15828/2075-8545-2019-11-2-153-164 (In Russian).
6. Яковлев Г.И., Дрохитка Р., Первушин Г.Н., Грахов В.П., Саидова З.С., Гордина А.Ф., Шайбадуллина А.В., Пудов И.А., Эльрефаи А.Э.М.М. Мелкозернистый бетон, модифицированный суспензией хризотиловых нановолокон // Строительные материалы. 2019. № 1–2. С. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10
6. Yakovlev G.I., Drochytka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina А.F., Shaybadullina A.V., Pudov I.A., Elrefaei A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10 (In Russian).
7. Федорова Г.Д., Александров Г.Н., Смагулова С.А. Исследование устойчивости водной суспензии оксида графена // Строительные материалы. 2015. № 2. С. 15–21.
7. Fedorova G.D., Alexandrov G.H., Smagulova S.A. Research of stability of water suspension of grapheme oxide. Stroitel’nye Materialy [Concstruction Materials]. 2015. No. 2, pp. 21–26. (In Russian).
8. Федорова Г.Д., Александров Г.Н., Смагулова С.А. К вопросу применения оксида графена в цементных системах // Строительные материалы. 2016. № 1–2. С. 21–26.
8. Fedorova G. D., Alexandrov G. H., Smagulova S. A. The study of graphene oxide use in cement systems. Stroitel’nye Materialy [Concstruction Materials]. 2016. No. 1–2, pp. 21–26. (In Russian).
9. Федорова Г.Д., Баишев К.Ф., Скрябин А.П. Оксид графена как перспективный наноматериал для цементных композитов // Научное обозрение. 2017. № 12. С. 36–41.
9. Fedorova G.D., Baishev K.F., Skryabin A.P. Graphene oxide as a promising nanomaterial for cement. Nauchnoe obozrenie [Science review]. 2017. No. 12, pp. 36–41. (In Russian).
10. Федорова Г.Д., Александров Г.Н., Скрябин А.П., Баишев К.Ф. Влияние oксида графена на прочность при сжатии цементного камня // Строительные материалы. 2018. № 1–2. С. 11–17. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-11-17
10. Fedorova G.D., Alexandrov G.N., Scryabin A.P., Baishev K.F. Influence of graphene oxide on compressive strength of cement paste. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 11–17. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-11-17 (In Russian).
11. Федорова Г.Д., Скрябин А.П., Александров Г.Н. Исследование влияния оксида графена на прочность цементного раствора // Строительные материалы. 2019. № 1–2. С. 16–22. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
11. Fedorova G.D., Skriabin A.P., Aleksandrov G.N. The study of the influence of graphene oxide on the strength of cement stone using river sand. Stroitel’nye Materialy [Construction Materials]. 2019. № 1–2. С. 16–22. (In Russian).DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
12. Xu Y., Zeng J., Chen W. Jin R., Li B., Pan Z. A holistic rewiev of cement composites reinforced with graphene oxide. Construction and Building Materials 2018. Vol. 171, pp. 291–302. http://dx.doi.org/10.1016/j.conbuildmat.2018.03.147
13. Patent WO 2013096990 AI. Graphene oxide reinforced cement and concrete. Pan Z., Duan W.H., Li D., Collins F. Declared 21.12.2012. Published 04.07.2013.
14. Wang Q., Wang J., Lu C-x., Lie Bo-w, Jang R., Li C-z.. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. Xinxing Tan Cailiao / New Carbon Materials. 2015. Vol. 30. Iss. 4, pp. 349–359. DOI: 10.1016/S1872-5805(15)60194-9
15. Hu M., Cuo J., Li P., Chen D., Xu Y., Feng Y., Yu Y., Zhang H. Effect of characteristics of chemical combine of grapheme oxide-nanosilica nanocomposite fillers on properties of cement-based materials // Construction and Building Materials. 2019. No. 225, pp. 745–758. http://dx.doi.org/10.1016/j.conbuildmat.2019.07.079
16. Lin J., Shamsael E., Souza F. B., Sagoe-Crentsil K., Duan W. H. Dispersion of grapheme oxide-silica nanohybrids in alkaline environment for improving ordinary Portland cement composites. Cement and Concrete Composites. 2020. Vol. 106. 103488 http://dx.doi.org/10.1016/j.cemconcomp.2019.103488
17. Liu H., Yu Y., Liu H., Jin J., Liu S. Hybrid effects of nano-silica and graphene oxide on mechanical properties and hydration products of oil well cement. Construction and Building Materials. 2018. Vol. 191, pp. 311–319. http://dx.doi.org/10.1016/j.conbuildmat.2018.10.029
18. Newell M., Garcia-Taengua E. Fresh and hardened state properties of hybrid grapheme oxide/nanosilica cement composites. Construction and Building Materials. 2019. Vol. 221. 433–442. http://dx.doi.org/10.1016/j.conbuildmat.2019.06.066
19. Indukuri C. S. R., Nerella R., Madduru S. R. C. Effect of grapheme oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites. Construction and Building Materials. 2019. Vol. 229. 116863. http://dx.doi.org/10.1016/j.conbuildmat.2019.116863
20. Li Z., Guo X., Liu Y., Zhao Y. and etc. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mrchanical behavior of grapheme oxide reinforced cement composites. Construction and Building Materials. 2018. Vol. 190, pp. 150–163. http://dx.doi.org/10.1016/j.conbuildmat.2018.09.105

For citation: Fedorova G.D., Aleksandrov G.N., Scryabin A.P. Activation of structure-forming properties of graphene oxide in cement composites. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 17–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-17-23


Print   Email