Mechanical Characteristics of Vacuum Thermal Insulation Panels: Deformation Diagrams, Strength, Deformation Modules

Number of journal: 10-2020
Autors:

Selyaev V.P.,
Kupriyashkina L.I.,
Kechutkina E.L.,
Kiselev H.H.,
Liyaskin O.V.

DOI: https://doi.org/10.31659/0585-430X-2020-785-10-44-51
УДК: 699.86

 

AbstractAbout AuthorsReferences
The results of studying the mechanical properties of vacuum insulation panels are presented. The compressive strength and deformation modules (elastic and secant) under compression and shear are determined. The dependence of the mechanical characteristics of vacuum insulation panels (VIP) on the type and quantitative ratio of fillers is shown. It is established that the diagram of deformation of the VIP under compression can be described by an analytical function. Experimental studies of the properties of VIP have established that the deformation diagram of VIP has the form characteristic for materials that self-strengthen during loading with a compressive load and is adequately described by the function of G. V. Bulfinger. A method is proposed for determining the coefficients α and β that makes it possible to verify the approximating function using experimental data. Polynomial models describing the dependence of the elastic modulus, strength, and thermal conductivity coefficient on the composition and quantitative ratio of fiber and powder fillers are developed. It is established that the numerical values of the strain modulus depend on the type, amount of powder filler, and their ratio to the fibrous filler. The values of strain and strength models increase with increasing content and size of filler particles. A method for determining the shear modulus for VIP has been developed. It has been experimentally established that the value of the shear modulus for VIP depends on both the filler composition and the characteristics of the panel film shell.
V.P. SELYAEV, Doctor of Sciences (Engineering), Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.I. KUPRIYASHKINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.L. KECHUTKINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.N. KISELEV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. LIYASKIN, Post-graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 430005, Republic of Mordovia, Russian Federation)

1. Selyaev V.P., Neverov V.A., Osipov A.K. and others. Teploizolyatsionnyye materialy i izdeliya na osnove vakuumirovannykh dispersnykh poroshkov mikrokremnezema i diatomita [Heat-insulating materials and products based on evacuated dispersed powders of silica fume and diatomite]. Saransk: Publishing house of the Mordovian university. 2013. 220 p.
2. Danilevsky L.N. Vacuum insulation and prospects for its use in construction. Arkhitektura i stroitel’stvo. 2006. No. 5, pp. 114–117. (In Russian).
3. Schwab H., Wachtel J., Heinemann U., Beck A., Fricke J. Vakuum isolations paneele unter baupraktischen Bedingungen. 1 Conference “VIP-Bau”, proceedings. Rostock-Warnemünde. 2003, pp. 68–76.
4. Simmler H., Brunner S., Heinemann U., Schwab H., Kumaran K., Mukhopadhyaya P., Quénard D., Sallée H., Noller K., Kücükpinar-Niarchos E., Stramm C., Tenpierik M.J., Cauberg J.J. M., Erb M. Vacuum insulation panels. Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A): IEA/ECBCS Annex 39 High Performance Thermal Insulation (HiPTI). 2005. 159 p.
5. Selyaev V.P., Neverov V.A., Nurlybaev R.E., Selyaev P.V., Kechutkina E.L., Liyaskin O.V. Synthesis of amorphous silicon dioxide nanopowders for the construction industry. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 15–25. (In Russian) DOI: https://doi.org/10.31659/0585-430X-2019-776-11-15-25
6. Selyaev V.P., Kupriyashkina L.I., Kiselev N.N., Selyaev P.V. Optimization of the filler composition of a vacuum thermal insulation panel based on fumed silica fume. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2017. No. 5 (701), pp. 36–42. (In Russian)
7. Simmler H., Brunner S. Aging and service life of VIP in buildings. 7th International Vacuum Insulation Symposium. Empa, Duebendorf–Zurich, Switzerland. September 28–29, 2005, pp. 15–22.
8. Liyaskin O.V., Kiselev N.N., Mashtaev O.G. Vacuum insulation panels. Effective building structures: theory and practice: collection of articles of the XV International scientific and technical conference. Penza. 2015, pp. 108–111. (In Russian).
9. Selyaev V.P., Osipov A.K., Kupriyashkina L.I., Sedova A.A., Kechutkina E.L., Suponina L.A. The possibility of creating heat-insulating materials based on nanostructured silica fume from diatomite. Nauka: 21 vek. 2011. No. 3 (15), pp. 76–86. (In Russian).
10. Caps R., Hetfleisch J., Rettelbach Th., Fricke J. Thermal conductivity of spun glass fibers as filler material for vacuum insulations. Thermal Conductivity 23. 1996, pp. 373–382.
11. Patent RF 2144595. Vakuumnoye teploizolyatsionnoye izdeliye [Vacuum thermal insulation product]. Kokoev M.N., Fedorov V.T. Declared 26.11.97. Published 20.01.00. (In Russian)
12. Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozitsionnykh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad: Energiya. 1974. 264 p.
13. Selyaev P.V., Kiselev N.N., Liyaskin O.V. Principles of creating powder thermal insulation based on silica fume. Regional’naya arkhitektura i stroitel’stvo. 2016. No. 3 (28), pp. 55–59. (In Russian).
14. Minevich V.E., Nikiforov E.A., Vinitsky A.L. and others. Highly effective heat-insulating materials based on diatomaceous earth. Stroitel’nye Materialy [Construction Materials]. 2012. No. 11 (695), pp. 18–22. (In Russian).
15. Dulnev G.N., Sigalova G.V. Thermal conductivity of mono- and polydisperse granular materials. Stroitel’naya teplofizika. 1966, pp. 40–47. (In Russian).

For citation: Selyaev V.P., Kupriyashkina L.I., Kechutkina E.L., Kiselev H.H., Liyaskin O.V. Mechanical characteristics of vacuum thermal insulation panels: deformation diagrams, strength, deformation modules. Stroitel’nye Materialy [Construction Materials]. 2020. No. 10, pp. 44–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-785-10-44-51


Print   Email