Analysis of Structure Formation of Composites Using Fractal Dimension

Number of journal: 9-2020
Autors:

Korolev E.V.,
Grishina A.N.,
Ayzenshtadt A.M.

DOI: https://doi.org/10.31659/0585-430X-2020-784-9-54-61
УДК: 691

 

AbstractAbout AuthorsReferences
The results of the analysis of the dependence of strength on the concentration of defects in the structure of composites are presented. The results obtained are consistent with the concept of material destruction proposed by E.E. Damaskinskaya and A.G. Kadomtsev, which provides for two stages in the evolution of cracks: the first stage is the origin of cracks with dimensions depending on the parameters of the material structure, and the second stage is the development of characteristic initial cracks capable of self – development. It is shown that the fractal dimension calculated from the test results makes it possible to analyze the processes of material structure formation and estimate the geometric dimension of the elements of characteristic cracks depending on the concentration of structural defects. It is shown that for materials with a low concentration of structural defects, the fractal dimension can vary in a wide range of values, which indicates the possibility of implementing various evolutionary routes of crack development. For materials with a high concentration of defects, only one crack development scenario can be implemented. The maximum concentration of structural defects is 0.865, and the maximum sensitivity of the material to the concentration of structural defects should be observed in materials with a strength of 13.5% of the maximum strength. A dependence for calculating the specific volume surface energy and a method for determining the distribution of cracks by relative characteristic dimensions for a given value of the fractal dimension are proposed.
E.V. KOROLEV1, Doctor of Sciences (Engineering);
A.N. GRISHINA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. AYZENSHTADT3, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 St. Petersburg State University of Architecture and Civil Engineering (4, 2-nd Krasnoarmeyskaya Street, St. Petersburg, 190005, Russian Federation)
2 National Recearch Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
3 Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)

1. Bazhenov Yu.M., Garkina I.A., Danilov A.M., Korolev E.V. Sistemnyj analiz v stroitel’nom materialovedenii [Systems analysis in construction materials science]. Moscow: MGSU. 2012. 432 p.
2. Budylina E.A., Garkina I.A., Danilov A.M. Formalized description of building materials particular criteria. Regional’naya Arhitektura i Stroitel’stvo. 2020. No. 1 (42), pp. 25–31. (In Russian).
3. Garkina I.A., Danilov A.M. Application of systems analysis for desing of composites. Regional’naya Arhitektura i Stroitel’stvo. 2020. No. 1 (42), pp. 63–68. (In Russian).
4. Selyaev V.P., Selyaev P.V., Kechutkina E.L., Danilov A.M., Garkina I.A. Composite materials as complex systems: control of properties. Regional’naya Arhitektura i Stroitel’stvo. 2019. No. 3 (40), pp. 35–43. (In Russian).
5. Budylina E.A., Garkina I.A., Danilov A.M. Systems theory and decomposition during design of composites. Regional’naya Arhitektura i Stroitel’stvo. 2019. No. 3 (40), pp. 44–49. (In Russian).
6. Garkina I.A., Danilov A.M., Korolev E.V. Brief review of analytical methods for the synthesis of complex systems. Regional’naya Arhitektura i Stroitel’stvo. 2018. No. 4 (37), pp. 48–54. (In Russian).
7. Danilov A.M., Garkina I.A. Conceptual models of composites as complex systems: current state and prospects. Regional’naya Arhitektura i Stroitel’stvo. 2018. No. 3 (36), pp. 56–61. (In Russian).
8. Korolev E.V., Samoshin A.P., Smirnov V.A., Korolev O.V., Grishina A.N. Metodiki i algoritm sinteza radiacionno-zashchitnyh materialov novogo pokoleniya [Selection of algorithm for the synthesis of new-generation radiation-protective materials]. Penza: PGUAS. 2009. 132 p.
9. Bobryshev A.N., Erofeev V.T., Kozomazov V.N. Fizika i sinergetika dispersno-neuporyadochennyh kondensirovannyh kompozitnyh sistem [Physics and synergystics of disperse disordered condensed composites]. St. Petersburg: Nauka. 2012. 476 p.
10. Bobryshev A.N. Kozomazov V.N., Lakhno A.V., Tuchkov V.V. Prochnost’ i dolgovechnost’ polimernyh kompozicionnyh materialov [Strength and durability of polymer composite materials]. Lipetsk: RPGF “Yulis”. 2006. 170 p.
11. Budylina E.A., Garkina I.A., Danilov A.M., Sorokin D.S. Synthesis of composites: models based on logical algorithms. Sovremennye Problemy Nauki i Obrazovaniya. 2014. No. 5, pp. 149–156. (In Russian).
12. Korolev E.V. Bazhenov Yu.M., Albakasov A.I. Radiacionno-zashchitnye i himicheski stojkie sernye stroitel’nye materialy [Radiation-protectice and chemicaly resistant sulpur building materials]. Penza-Orenburg: IPK OGU, 2010. 364 p.
13. Grishina A.N., Korolev E.V. Zhidkostekol’nye stroitel’nye materialy special’nogo naznacheniya [Special-purpose building materials based on liquid glass]. Moscow: Moscow State University, 2015. 224 p.
14. Ivanova V.S., Balankin A.S., Bunin I.Z., Oksogoev A.A. Sinergetika i fraktaly v materialovedenii [Synergetics and fractals in materials science]. Moscow: Nauka. 1994. 383 p.
15. Ivanova V.S., Zakirnichnaya M.M., Kuzeev I.R. Sinergetika i fraktaly. Universal’nost’ mekhanicheskogo povedeniya materialov [Synergetics and fractals. The universal character of material’s mechanics. Part 1]. Ufa: UGNTU. 1998. 144 p.
16. Damaskinskaya E.E., Kadomtsev A.G. Features of the stages of the process of destruction during deformation of heterogeneous natural materials. Vestnik TGU. 2015. Vol. 20 (1), pp. 77–84. (In Russian).
17. Gusev B.V., Korolev E.V., Grishina A.N. Models of polydisperse systems: evaluation’s criteria and analysis of performance factors. Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2018. No. 8, pp. 31–39. (In Russian).
18. Uryev N.B., Potanin A.A. Tekuchest’ suspenzij i poroshkov [Fluidity of suspensions and powders]. Moscow: Himiya. 1992. 252 p.
19. Korolev E.V., Grishina A.N. Fractal dimension as a universal characteristic of material structure and strength parameters. Regional’naya Arhitektura i Stroitel’stvo. 2020. No. 1 (42), pp. 5–15. (In Russian).

For citation: Korolev E.V., Grishina A.N., Ayzenshtadt A.M. Analysis of structure formation of composites using fractal dimension. Stroitel’nye Materialy [Construction Materials]. 2020. No. 9, pp. 54–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-784-9-54-61


Print   Email