Log in

On Influence Mechanism of Magnesite-Based Active Additives and Carbon Nanotubes on Structure and Properties of Anhydrite Binder

Number of journal: 2-2015
Autors:

Tokarev Yu.V.
Golovin D.V.
Buryanov A.F.
Xiao Huigang
Du Tao

DOI: https://doi.org/10.31659/0585-430X-2015-722-2-59-62
УДК: 666.913.5:539.2

 

AbstractAbout AuthorsReferences
The substantiation of the necessity to use a complex of additives to improve properties of anhydrite binder and influence mechanism on structure with the help of methods of quantum-chemical modeling and physical-chemical analysis is given. Particles of dispersed magnesite act as crystallization centers, along the surface of which crystalline hydrates of calcium sulfate dihydrate are formed, and they also contribute to structuring of anhydrite matrix increasing the durability up to 100% at optimal additive content of 3%. Based on the results of IR-spectra, carbon nanotubes have much more influence on calcium sulfate dihydrate structure than caustic magnesite. The more compact and durable structure with the increased durability characteristics up to 150% in comparison with reference composition with optimal concentration of carbon nanotubes – 0,001% and magnesite – 3% is formed during joint use of additives.
YU.V. TOKAREV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.V. GOLOVIN1, Master of 2 course (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.F. BURYANOV2, Doctor of Sciences (Engineering)
HUIGANG XIAO3, Ph.D.
TAO DU3, Graduate Student 1st year

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 Harbin Institute of Technology, (92 Xidazhi Street, Nangang, Harbin, Heilongjiang, China, 150001)

1. Shakhmenko G., Juhnevica I., Korjakins A. Influence of sol-gel nanosilica on hardening processes and physically-mechanical properties of cement paste. Procedia Engineering. 2013. No. 57, pp. 1013–1021.
2. Starovoitova I.A., Khozin V.G., Korzhenko A.A., Khalikova R.A., Zykova E.S. Structure formation in organic-inorganic binders modified by concentrates of multiwall carbon nanotubes. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 12–20. (In Russian).
3. Siddique R., Mehta A. Effect of carbon nanotubes on properties of cement mortars. Construction and Building Materials. 2014. No. 50, pp. 116–129.
4. Setina J., Gabrene A., Juhnevica I. Effect of pozzolanic additives on structure and chemical durability of concrete. Procedia Engineering. 2013. No. 57, pp. 1005–1012.
5. Inozemtsev A.S., Korolev E.V. Structure formation and properties of constructional high-duty light concretes with the application of nanomodifier BisNanoActivus. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 33–37. (In Russian).
6. Trunilova D.S., Garkavi M.S., Shlenkina S.S. Features of anhydrite hardening in the presence of lime and asbestos. Vestnik of SUSU. 2010. No. 15, pp. 54–55. (In Russian).
7. Strokova V.V., Cherevatova A.V., Zhernovsky I.V., Voitovich E.V. Features of phase-formation in composite nanostructured gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 9–13. (In Russian).
8. Tokarev Yu.V., Yakovlev G.I., Buryanov A.F. Anhydrite compositions modified by ultradispersed additive based on MgO. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 17–24. (In Russian).
9. Izryadnova O.V., Yakovlev G.I., Polyanskikh I.S., Fischer H.-B., Senkov S.A. Change in the morphology of crystalline hydrates when introducing ultra- and nanodispersed structure modifiers into gypsum-cement-pozzolanic binders. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 25–28. (In Russian).
10. Ye Qing, Zhang Zenan, Kong Deyu, Chen Rongshen. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials. 2007. Vol. 21, pp. 539–545.
11. Sychev M.M. Neorganicheskie klei [Inorganic glues]. Leningrad: Chimiya. 1974. 160 p.
12. Chen S.J., Collins F.G., Macleod A.J.N., Pan Z., Duan W.H., Wang C.M. Carbon nanotube–cement composites: A retrospect. Civil&Structural Engineering. 2011. Vol. 4. No. 4, pp. 254–265.
13. Bobryshev A.N., Kozomazov V.N., Avdeev R.I., Solomatov V.I. Sinergetika dispersno-napolnennych kompositov [Synergetics of disperse-filled composites]. Moscow: TSKT. 1999. 252 p.

For citation: Tokarev Yu.V., Golovin D.V., Buryanov A.F., Xiao Huigang, Du Tao. On Influence Mechanism of Magnesite-Based Active Additives and Carbon Nanotubes on Structure and Properties of Anhydrite Binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 59-62. DOI: https://doi.org/10.31659/0585-430X-2015-722-2-59-62

Role of Silica Fume in Formation of Cement Matrix Structure and Efflorescence in Vibrocompressed Products

Number of journal: №2-2015
Autors:

Politaeva A.I.
Eliseeva N.I.
Yakovlev G.I.
Pervushin G.N.
Havránek Jirí
Mikhailova O.Yu.

DOI: https://doi.org/10.31659/0585-430X-2015-722-2-49-55
УДК: 692.232:6–022.532

 

AbstractAbout AuthorsReferences
This study investigates the causes and the mechanism of efflorescence on the surface of vibrocompressed products. It has been found that the main reason for the formation of efflorescence on the surface of vibrocompressed products is unbound calcium hydroxide in the composition of concrete. In order to reduce efflorescence dispersed silica fume is added to cement matrix in the amount of up to 8% from the weight of Portland cement. It is shown that silica fume densifies the structure of vibrocompressed products due to the binding of free calcium hydroxide with the formation of extra content of calcium hydrosilicates, thus, preventing efflorescence on the surface of molded products.
A.I. POLITAEVA1, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.I. ELISEEVA2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.N. PERVUSHIN1, Doctor Sciences (Engineering)
JIRÍ HAVRÁNEK2, CSc.
O.Yu. MIKHAILOVA1, Master

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 OOO «Komplekt» (20, 50 let Pionerii Street, Izhevsk, 426033, Russian Federation)
3 STACHEMA CZ s.r.o. (Hasicská 1, 280 02, Kolín-Zibohlavy, Czech Republic)

1. M. Peck, D. Bosold, Т. Richter. Ausbluhungen. Zement-Merkblatt Betontechnik. 2013. Vol. 27. (http://www.vdz-online.de/fileadmin/gruppen/vdz/3LiteraturRecherche/Zementmerkblaetter/B27.pdf date of access 26.08.2014).
2. Фрессель Ф. Ремонт влажных и поврежденных солями строительных сооружений. М.: Пэйнт-Медиа, 2006. 320 с.
2. Fressel' F. Remont vlazhnykh i povrezhdennykh solyami stroitel'nykh sooruzhenii [Repair wet and damaged salts of building structures]. Moscow: Peint-Media. 2006. 320 p.
3. Yakovlev G., Gailyus A. Salt corrosion of ceramic brick. Glass and Ceramics. 2005. Vol. 62 (9–10), pp. 321–323.
4. Инчик В.В. Солевая коррозия кирпичной кладки // Строительные материалы. 2001. № 8. С. 35–37.
4. Inchik V.V. Salt corrosion brickwork. Stroitel'nye Materialy [Construction Materials]. 2001. No. 8, pp. 35–37. (In Russian).
5. Bolte G., Dienemann W. Efflorescence on concrete products – causes and strateqies for avoidance. ZKG International. 2004. Vol. 57 (9), pp. 78–86.
6. Singh L.P., Bhattacharyya S.K., Shah S.P., Mishra G., Ahalawat S., Sharma U.. Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part I. Construction and Building Materials. 2015. Vol. 74, pp. 278–286.
7. Quercia G., Lazaro A., Geus J.W., Brouwers H.J.H. Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cement & Concrete Composites. 2013. Vol. 44, pp. 77–92.
8. Pengkun Hou, Jueshi Qian, Xin Cheng, Surendra P. Shah. Effects of the pozzolanic reactivity of nano SiO2 on cement-based materials. Cement & Concrete Composites. 2015. Vol. 55, pp. 250–258.
9. Hou P., Cheng X., Qian J., Zhang R., Cao W., Shah S.P. Characteristics of surface-treatment of nano-SiO2 on the transport properties of hardened cement pastes with different water-to-cement ratios. Cement & Concrete Composites. 2015. Vol. 55, pp. 26–337.
10. Singh L.P., Karade S.R., Bhattacharyya S.K., Yousuf M.M., Ahalawat S. Beneficial role of nanosilica in cement based materials. Construction and Building Materials. Vol. 47, pp. 1069–1077.
11. Grangeon S., Claret F., Lerouge C., Warmont F., Sato T., Anraku S., Numako C., Linard Y., Lanson B. On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite. Cement and Concrete Research. 2013. Vol. 52, pp. 31–37.
12. Merlin A. Etzold, Peter J. McDonald, Alexander F. Routh. Growth of sheets in 3D confinements – a model for the C–S–H meso structure. Cement and Concrete Research. 2014. Vol. 63, pp. 137–142.
13. Papatzani S., Paine K., Calabria-Holley J. A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Construction and Building Materials. 2015. Vol. 74, pp. 219–234.
14. Laukaitis А., Kerien.e J., Kligys M., Mikulskis D., Lek-unait.e L. Influence of Amorphous Nanodispersive SiO2 additive on structure formation and properties of autoclaved aerated concrete. Materials Science (Medziagotyra). 2010. Vol. 16 (3), pp. 257–263.
15. Яковлев Г.И., Первушин Г.Н., Керене Я., Мачулайтис Р., Пудов И.А., Полянских И.С., Сеньков С.А., Политаева А.И., Гордина А.Ф., Шайбадуллина А.В. Наноструктурирование композитов в строительном материаловедении: Монография /Под общей редакцией Г.И. Яковлева. Ижевск: ИжГТУ, 2014. 196 с.
15. Yakovlev G.I., Pervushin G.N., Kerene Ya., ets. Nanostrukturirovanie kompozitov v stroitel'nom materialovedenii: monografiya [Nanostructuring of composites in construction materials]. Izhevsk: Izhevsk State Technical University. 2014. 196 p.
16. Яковлев Г.И., Первушин Г.Н., Керене Я., Полянских И.С., Пудов И.А., Хазеев Д.Р., Сеньков С.А. Комплексная добавка на основе углеродных нанотрубок и микрокремнезема для модификации газосиликата автоклавного твердения // Строительные материалы. 2014. № 1–2. С. 3–7.
16. Yakovlev G.I., Pervushin G.N., Keriene Ja., Poliyanskich I.S., Pudov I.A., Chazeev D.R., Senkov S.A. Complex additive based on carbon nanotubes and silica fume for modifying autoclaved aerated gas silicate. Stroitel'nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 3–7. (In Russian).
17. Горшков В.С., Савельев В.Г., Абакумов А.В. Вяжущие, керамика и стеклокристаллические материалы: структура и свойства: Справочное пособие. М.: Стройиздат, 1994. 584 с.
17. Gorshkov V.S., Savel'ev V.G., Abakumov A.V. Vyazhushchie, keramika i steklokristallicheskie materialy: struktura i svoistva: spravochnoe posobie [Binders, ceramics and glassy-crystalline materials: structure and properties]. Moscow: Stroiizdat. 1994. 584 p.

For citation: Politaeva A.I., Eliseeva N.I., Yakovlev G.I., Pervushin G.N., Havránek Jirí, Mikhailova O.Yu. Role of Silica Fume in Formation of Cement Matrix Structure and Efflorescence in Vibrocompressed Products. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 49-55. DOI: https://doi.org/10.31659/0585-430X-2015-722-2-49-55

Modification of Сement Сoncrete by use of Сomplex Additives Based on the Polycarboxylate Ether, Carbon Nanotubes and Microsilica

Number of journal: №2-2015
Autors:

Karpova E.A.
Mohamed Ali Elsaed
Skripkiunas G.
Keriene Ja.
Kicaite A.
Yakovlev G.I.
Macijauskas M.
Pudov I.A.
Aliev E.V.
Sen’kov S.A.

DOI: https://doi.org/10.31659/0585-430X-2015-722-2-40-48
УДК: 691.535:539.2

 

AbstractAbout AuthorsReferences
The use of complex modifiers based on polycarboxylate plasticizers and carbon nanostructures is becoming increasingly popular in modern materials science. The influence of complex additives on the rheological characteristics of cement paste and as well on the physico-mechanical characteristics of heavy concrete is described in this paper. The presence of multi-walled carbon nanotubes in DC-5 additive contributes to better compaction of the concrete structures, but insufficient dispersing of nanotubes in the carboxylate medium and the heterogeneity of their distribution in the cement matrix reduce their effectiveness. Using the complex additive with DC-5 and MS-85 microsilica results in additional compaction of the cement matrix structure with calcium hydrosilicates, thus improving the mechanical properties of the modified concrete.
E.A. KARPOVA1, Master Student
ALI ELSAED MOHAMED1, Ph. D. Student
G. SKRIPKI–UNAS2, Professor
Ja. KERIENE2, Doctor of Sciences (Engineering)
A. KICAITE2, Assoc. Prof
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M. MACIJAUSKAS2, Ph. D. Student
I.A. PUDOV1, Candidate of Sciences (Engineering)
E.V. ALIEV1, Candidate of Sciences (Engineering)
S.A. SEN’KOV3, Candidate of Sciences (Engineering)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Gediminas Vilnius Technical University (11, Saul·etekio al., LT–10223, Vilnius, Lithuania)
3 Perm State National Research Polytechnic University (29, Komsomolskiy Avenue, Perm, 614990, Russian Federation)

список

For citation: Karpova E.A., Mohamed Ali Elsaed, Skripkiunas G., Keriene Ja., Kicaite A., Yakovlev G.I., Macijauskas M., Pudov I.A., Aliev E.V., Sen’kov S.A. Modification of Сement Сoncrete by use of Сomplex Additives Based on the Polycarboxylate Ether, Carbon Nanotubes and Microsilica. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 40-48. DOI: https://doi.org/10.31659/0585-430X-2015-722-2-40-48

Nanostructuring of Cement Stone at Disperse Reinforcing with Basalt Fiber

Number of journal: №2-2015
Autors:

Saraikina K.A.
Golubev V.A.
Yakovlev G.I.
Sen’kov S.A.
Politaeva A.I.

DOI: https://doi.org/10.31659/0585-430X-2015-722-2-34-38
УДК: 691.328.43:6–022.532

 

AbstractAbout AuthorsReferences
Cement concrete is the most widely distributed material in the present construction. But this composite is characterized by a series of negative parameters, low ultimate tensile strains are among them. To improve their performance and also to increase the resistance to abrasion, chilling, and impact actions it is possible to apply various techniques, disperse reinforcement of the cement matrix with basalt fiber is the most prospective method among them. To increase the resistance of basalt fiber to a strongly alkali environment a hypothesis about the reasonability to introduce the dispersion of modified carbon nanotubes (MCNT) into the mix has been put forward. Results of the microscopic analysis of the structure of cement-sand mortar in the course of joint introduction of basalt fibers and MCNT dispersion are presented; they show that, despite the lack of homogeneity of the MCNT dispersion, a dense new growth is crystallized, the adhesion of the cement stone with basalt fiber is improved, and shrinkage cracks are reduced in the zone of the contact of cement stone, basalt fiber, and nanotubes.
K.A. SARAIKINA1, Master of Engineering and Technology in Construction (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.A. GOLUBEV1, Candidate of Sciences (Engineering)
G.I. YAKOVLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.A. SEN’KOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.I. POLITAEVA2, Undergraduate

1 Perm State National Research Polytechnic University (29, Komsomolskiy Avenue, Perm, 614990, Russian Federation)
2 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Rabinovich F.N. Kompozity na osnove dispersno-armirovannykh betonov. Voprosy teorii i proektirovaniya, tekhnologiya, konstruktsii: monografiya [Composites based on fiber concrete. Theory and design, technology, construction: monograph]. Moscow: ASV. 2004. 560 p.
2. Alekseev L.L. Innovatsionnye tekhnologii i materialy v stroitel'noi industrii [Innovative technologies and materials in the construction industry]. Angarsk: AGTA. 2010. 104 p.
3. Kalugin I.G. Dispersed reinforcement of cellular concrete basalt fiber. Polzunovskii al'manakh. 2009. No. 3. Vol. 2, pp. 37–39. (In Ruassian).
4. Bin Wei, Hailin Cao, Shenhua Song Tensile behavior contrast of basalt and glass fibers after chemical treatment. Materials and Design. 2010. No. 31, pp. 4244–4250.
5. Gutnikov S.I. Effect of aluminum oxide on the basic properties of basalt glasses and fibers on their basis. Cand. Diss. (Engineering). Moscow. 2009. 127 p.
6. Batalin B.S., Saraykina K.A.The study of the interaction of cement stone with fiberglass. Steklo i keramika. 2014. No. 8, pp. 37–40. (In Russian).
7. Saraykina K.A., Semkova E.N., Golubev V.A. Alkali basalt fiber and how to improve. Vestnik PNIPU. Stroitel'stvo i arkhitektura. 2012. No. 1, pp. 185–192. (In Russian).
8. Knotko A.V., Meledin A.A., Garshev A.V., Putlyaev V.I. Modification of surface layer of basalt fibre for improvement of corrosion resistance in fibre-cement composites. Stroitel'nye Materialy [Construction Materials]. 2010. No. 9. pp. 89–93. (In Russian).
9. Knotko A.V., Meledin A.A., Garshev A.V., Putlyaev V.I. The process of ion exchange at the surface treatment of basaltic glass. Stroitel'nye Materialy [Construction Materials]. 2011. No. 9, pp. 75–77. (In Russian).
10. Fiziko-mekhanicheskie osnovy kompozitsii neorganicheskoe vyazhushchee – steklovolokno [Physical and mechanical basics of composition of inorganic binders–fiberglass]. Ed. Pashchenko A.A. Kiev: Vysshaya shkola. 1979. 224 p.
11. Saraykina K.A., Golubev V.A., Yakovlev G.I. Structuring of cement stone on the surface of the reinforcing fibers of basalt. Intellektual'nye sistemy v proizvodstve. 2014. No. 2 (24), pp. 203–207. (In Russian).
12. Yakovlev G.I., Pervushin G.N., Keren Ya., Machulaytis R., Pudov I.A., Polyanskikh I.S., Senkov S.A., Politaeva A.I., Gordin A.F., Shaybadullina A.V. Nanostrukturirovanie kompozitov v stroitel'nykh materialakh: monografiya [Nanostructuring of composites in construction materials: monography]. Ed. Yakovlev G.I. Izhevsk: IzhSTU. 2014. 196 p.

For citation: Saraikina K.A., Golubev V.A., Yakovlev G.I., Sen’kov S.A., Politaeva A.I. Nanostructuring of Cement Stone at Disperse Reinforcing with Basalt Fiber. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 34-38. DOI: https://doi.org/10.31659/0585-430X-2015-722-2-34-38

Common Concentration Pattern of Effects of Construction Materials Nanomodification

Number of journal: №2-2015
Autors:

Khozin V.G.
Abdrakhmanova L.А.
Nizamov R.К.

DOI: https://doi.org/10.31659/0585-430X-2015-722-2-25-33
УДК: 624:6-022.532

 

AbstractAbout AuthorsReferences
The article covers the results of experimental researches of nanomodification of different types of construction materials: polymer materials (PVC, epoxides), ceramics, Portland cement, bitumen-polymer binders with industrial nanoproduct concentrates and premixes, containing carbon nanotubes, metal-carbon composites, and silica sols. The definite («acute») extreme dependence of technological, performance and technical properties on the concentration of nanoadmixtures is established: the peak values of indices of materials are attained at 0,001–0,01 wt. %. The dependence has a general character.
V.G. KHOZIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
L.А. ABDRAKHMANOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
R.К. NIZAMOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, 420043, Kazan, Russian Federation)

1. Korolev E.V. Nanotechnology in material science. Analysis of achievements and current state. Ways of development. Stroitel’nye Materialy [Construction Materials]. 2014. No. 11, pp. 47–79. (In Russian).
2. Van Krevelen D.V. Svoistva i chimicheskoye sostoyaniye polimerov [Properties and chemical state of polymers]. Moscow: Chimiya. 1976. 416 p.
3. Askadskii А.А., Matveev Yu.N. Chimicheskoye stroeniye i phizicheskiye svoistva polymerov [Polymer structure and physical properties of polymers]. Moscow: Chimiya. 1983. 248 p.
4. Bazhenov Yu.M., Korolev E.V. Estimation of technical and economic efficiency of nanotechnologies in building materiology. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 66–67. (In Russian).
5. Gusev A.I. Nanomaterialy, nanostructury, nanotechnologuii [Nanomaterials, nanostructures, nanotechnologies]. Moscow: Phizmatlit. 2005. 416 p.
6. Khozin V.G. Usileniye epoksidnych polimerov [Strengthening of epoxy polymers]. Kazan: Dom Pechati. 2004. 446 p. (In Russian).
7. Komokhov P.G Sol-gel as a conception of the cement composite nanotechnology. Stroitel’nye Materialy [Construction Materials]. 2006. No. 9, pp. 14–15. (In Russian).
8. Yakovlev G.I., Pervushin G.N., Korzhenko A.A., Burianov A.F., Pudov I.A., Lushnikova A.A. Modification of cement concretes with multilayer carbon nanotubes. Stroitel’nye Materialy [Construction Materials]. 2011. No. 2, pp. 47–51. (In Russian).
9. Khozin V.G., Nizamov R.K. Polymer nanocomposites for construction purpose. Stroitel’nye Materialy [Construction Materials]. 2009. No. 8, pp. 32–35. (In Russian).
10. Mikhailov Yu.A. Polymer nanocomposite materials. Polymer materials. 2009. No. 7, pp. 10–13. (In Russian).
11. AshrapovA.Kh., Abdrakhmanova L.A. Nizamov R.K., Khozin V.G. Research of PVC compound with carbon nanotubes. Nanotechnologies in Construction: Scientific Internet Journal. 2011. No. 3, pp. 13–24. (http://www.nanobuild.ru).
12. Burnashev A.I., Asrapov A.Kh., Abdrakhmanova L.A., Nizamov R.K. Using of the nanomodified polyvinylchloride in wood-polymer composite’s receipt. Izvestiya KSUAE. 2013. No. 2 (24), pp. 226–232. (In Russian).
13. Khozin V.G., Starovoitova I.A., Maisuradze N.V., Zykova E.S., Khalikova R.A. Korzhenko, А.А., Trineeva V.V., Yakovlev. G.I. Nanomodification of polymer binders for constructional composites. Stroitel’nye Materialy [Construction Materials]. 2013. No. 2, pp. 4–10. (In Russian).
14. Bogdanov A.N., Abdrakhmanova L.A., Khozin V.G. Modification of clay mass by plasticizing admixtures. High technologies and innovations – XXI scientific conference: Proceedings of the anniversary international scientific and practical conference dedicated to the 60th anniversary of BSTU named after V.G. Shukhov. Belgorod. 2014. pp. 46–49. (In Russian).
15. Ayupov D.A., Murafa A.V., Khakimullin Yu.N., Makarov D.B., Kharitonov V.A. Bitumen-polymer bindings for building. Polymers in construction: scientific Internet-journal. 2014. No. 2, pp. 27–35. (http://polymer.kgasu.ru). (In Russian).

For citation: Khozin V.G., Abdrakhmanova L.А., Nizamov R.К. Common Concentration Pattern of Effects of Construction Materials Nanomodification. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 25-33.
DOI: https://doi.org/10.31659/0585-430X-2015-722-2-25-33

Research of Stability of Water Suspension of Graphene Oxide

Number of journal: №2-2015
Autors:

Fedorova G.D.
Alexandrov G.N.
Smagulova S.A.

DOI: https://doi.org/10.31659/0585-430X-2015-722-2-15-24
УДК: 691.545:539.2

 

AbstractAbout AuthorsReferences
One of new regulation techniques of concrete mixes and concretes behaviors management of structurization of cement concrete on a nanolevel. To open the nature of structure management of cement matrix on a nanolevel for the purpose of receiving composites of new generation, it is necessary to combine efforts of different professions experts. For this reason, considering that in «Graphene Nanotechnologies» laboratory of North-Eastern Federal University graphene oxide is received, in this work the task was to establish prospects of carrying out researches on modification of cement matrix by graphene oxide. Prospects of graphene oxide use as modifier of a cement matrix are shown in the article. Results of sizes measurement of graphene oxide nanosheets and also results of assessment of stability of water suspension of graphene oxide are given.
G.D. FEDOROVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.N. ALEXANDROV, Undergraduate
S.A. SMAGULOVA, Candidate of Sciences (Physics and Mathematics)

North-Eastern Federal University in Yakutsk (58, Belinskogo Street, Yakutsk, 677000, Russian Federation)

1. Pajakkala P. Outlook for construction and cement use until 2025 in the EU, the USA and Russia. ALITinform. 2014. No. 01 (33), pp. 6–11. (In English).
2. Kaprielov S.S., Sheinfel'd A.V., Kardumyan G.S. Novye modifitsirovannye betony [New modified concretes]. Moscow: «Paradiz». 2010. 238 p.
3. Каlashnikov V.I., Gulayeva Е.V. The effect of type and dosage of superplasticizer on rheotehnological properties cement slurries, concrete mixes and powder-activated concretes. Cement i ego primenenie. 2012. No. 3–4, pp. 66–68. (In Russian).
4. Nesvetaev G.V., Davidyuk А.N., Hetagurov B.А. Self-compacting concrete: some of the factors determining the fluidity of the mixture. Stroitel'nye Materialy [Construction Materials]. 2009. No. 3, pp. 54–57. (In Russian).
5. Bazhenov Y.М., Demyanova V.S., Каlashnikov V.I. Modifitsirovannye vysokokachestvennye betony [Modified high-quality concrete]. Moscow: ASV. 2006. 368 p.
6. Makar J.M., Margeson J.C., Luh J. Carbon nanotube/cement composites – early results and potential applications. 3rd International Conference on Construction Materials: Performance, Innovation and Structural Implications. Vancouver B.C. 2005. August 22–24, pp.  1–10.
7. Li G.Y., Wang P.M., Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon. 2005. Vol. 43, pp. 1239–1245.
8. Metaxa Z.S., Konsta-Gdoutos M.S., Shah S.P. Carbon nano reinforced concrete. ACI Special Publications Nanotechnology of Concrete: The Next Big Thing is Small SP. 2009. Vol. 267. No. 2, pp. 11–20.
9. Shah S.P., Konsta-Gdoutos M.S., Metaxa Z.S., Mondal P. Nanoscale modification of cementitious materials. Nanotechnology in Construction. 2009. No. 3, pp. 125–130.
10. Yakovlev G. I., Pervushin G. N., Korzhenko A., etc. Modification of cement concretes with multilayer carbon nanotubes. Stroitel'nye Materialy [Construction Materials]. 2011. No. 2, pp. 47–51. (In Russian).
11. Tolchkov Y.N., Mikhalev Z.A., Tkachev A.G., Popov A.I. Modification of construction materials by carbon nanotubes: actual directions of working out of industrial technologies. Nanotechnologii v stroitel’stve: scientific Internet magazine. 2012. No. 6, pp. 57–66. (www.nanobuild.ru)
12. Fedorova G.D., Savvina A.E., Yakovlev G.I. Estimation of the multifunctional modifier of PFM-NLK concrete as surfactantat carbon nanotubes dispersion. Stroitel'nye Materialy [Construction Materials]. 2013. No. 2, pp. 48–51. (In English).
13. Fedorova G.D., Mestnikov V.V., Matveeva O.I., Nikolaev E.P. Features of high-strength concrete creation for concreting of monlitthic constructions in the far north conditions. Procedia Engineering. 2013. No. 57, pp. 264–269.
14. Aleksandrov G.N., Fedorova G.D. Microscopic research of multiwalled carbon nanotubes dispersion. Stroitel'nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 25–32. (In English).
15. Fakhim Babak, Hassani Abolfazl, Rashidi Alimorad, Ghodousi Parviz. Preparation and mechanical properties of graphene oxide: cement nanocomposites. The Scientific World Journal. 2014. Article ID 276323 (http://dx.doi.org/10.1155/2014/276323)
16. Ahmadreza Sedaghat, Manoj K. Ram, A. Zayed, Rajeev Kamal, Natadia Shanahan. Investigation of Physical Properties of Graphene-Cement Composite for Structural Applications. Open Journal of Composite Materials. 2014. No. 4, pp. 12–21 (http://dx.doi.org/10.4236/ojcm.2014.41002)
17. Graphene oxide reinforced cement. (http://www.monash.edu.au/assets/pdf/industry/graphene-oxide.pdf)
18. Shenghua Lv, Yujuan Ma, Chaochao Qiu, Ting Sun, Jingjing Liu, Qingfang Zhou. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials. 2013. Vol. 49, pp. 121–127 (http://dx.doi.org/10.1016/j.conbuildmat.2013.08.022)
19. Dreyer D.R., Park S., Bielawski W., Ruoff R.S. The chemistry of graphene oxide. Chemical society reviews. 2010. Vol. 39, pp. 228–240.
20. Chun-Hua Lu, Huang-Hao Yang, Chun-Ling Zhu, Xi Chen, and Guo-Nan Chen. A graphene platform for sensing biomolecules. Angewandte Chemie. 2009. Vol 48, pp. 4785–4787. (http://www.physics.purdue.edu/quantum/files/CarbonNano/graphene-platform.pdf)

For citation: Fedorova G.D., Alexandrov G.N., Smagulova S.A. Research of Stability of Water Suspension of Graphene Oxide. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 15-24.
DOI: https://doi.org/10.31659/0585-430X-2015-722-2-15-24

Formation of Nanosystems During Slag-Alkaline Binder Hydration

Number of journal: №2-2015
Autors:

Khudovekova E.A.
Garkavi M.S.

DOI: https://doi.org/10.31659/0585-430X-2015-722-2-10-14
УДК: 691.544:539.2

 

AbstractAbout AuthorsReferences
The process of nanosystem forming during interaction alkali activator ions with particles of ground-granulated blast furnance slag have been discussed. The effect of positive and negative hydration of ions on the properties and structure of water solution has been analyzed. Taking into account structural changes of mixing liquid, optimal concentration of activators were selected. It was shown that activators having as a part of ions with negative hydration promote to increase as curing rate and 28-age strength of stone. The strength of samples prepared from GGBFS and KOH solution is 27% higher, then strength of sample on a base of NaOH solution (under normal curing conditions).
E.A. KHUDOVEKOVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.S. GARKAVI2, Doctor of Sciences (Engineering), Deputy Chief Engineer for Science and Innovation

1 Magnitogorsk State Technical University named after G.I. Nosov (38, Lenin Avenue, Magnitogorsk, 455000, Russian Federation)
2 ZAO «Ural-Omega» (structure 7, 89, Lenina Avenu, Magnitogorsk, 455037, Chelyabinskaya Oblast, Russian Federation)

1. Shi C., Krivenko P.V., Roy D.M. Alkaliactivated cements and concretes. London and New York: Taylor & Francis Publisher. 2006. 376 p.
2. Zhang Z., Provis J., Reid A., Wang H. Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials. 2014. Vol. 56, pp. 113–127.
3. Zhernovski I.V., Osadchaya M.S., Cherevatova A.V., Strokova V.V. Nanostructured aluminosilicate binder based on granite. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 38–41. (In Russian).
4. Shkolnik Y.A. Structure and hydration activity sulfide containing slag. Doc. Diss. (Engineering). Moscow. 1999. 276 p. (In Russian).
5. Panfilov M.I. Pererabotka shlakov I bezothodnaya tekhnologiya v metallurgii [Recycling waste and non-waste technology in metallurgy]. Moscow: Metallurgy. 1987. 238 p.
6. Vernigorova V.N., Sadenko D.S., Ulyanov V.V. About the mechanism of alkali activated slag cement. Regional’naya arkhitektura i stroitel’stvo. 2010. No. 2, pp. 4–8. (In Russian).
7. Sychev M.M. Neorganicheslie klei [Inorganic adhesives]. Leningrad: Chemistry. 1986. 152 p.
8. Krivenko P.V. The mechanism and kinetics of structure formation in low-basic alkaline cementitious systems. Cement. 1993. No. 4–5, pp. 27–31. (In Russian).
9. Yuan B. Investigation on the activating effect of Na2CO3 and NaOH on slag. Non-Traditional Cement & Concrete V Proceedings of the International Symposium. Brno. 2014. Vol. 1, pp. 301–305.
10. Artamonova A.V., Voronin K.M. Slag-alkaline binders based on blast furnace slag centrifugal impact grinding. Cement i ego primenenie. 2011. No. 4, pp. 108–113. (In Russian).
11. Buchachenko A.L. Nanochemistry – a direct path to the high technology of the new century. Uspekhi khimii. 2003. Vol. 75. No. 5, pp. 419–437. (In Russian).
12. Mishchenko K.P., Ravdel A. Kratkii spravochnic fiziko-khimicheskih velichin [Quick Reference of physico-chemical variables]. Leningrad: Khimiya. 1974. 200 p.
13. Zolotov Y., Dorokhova B.N., Fadeev V.I. Osnovi analiticheskoi khimii [Fundamentals of Analytical Chemistry]. Moscow: Vysshaya shkola.1996. 383 p.
14. Mishchenko K.P., Poltoratsky G.M. Termodinamika i stroenie vodnih i nevodnih rastvorov electrolitov [Thermodynamics and structure of water and non-aqueous electrolyte solutions]. Leningrad: Chemistry. 1976. 328 p.
15. Benz D.P. Additives compounds of lithium, potassium and sodium. Cement i ego primenenie. 2011. No. 4, pp. 82–88. (In Russian).

For citation: Khudovekova E.A., Garkavi M.S. Formation of Nanosystems During Slag-Alkaline Binder Hydration. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 10-14. DOI: https://doi.org/10.31659/0585-430X-2015-722-2-10-14

Activity Evaluation of Nanostructured Binders with Using Thermodynamic Method

Number of journal: №2-2015
Autors:

Strokova V.V.
Ayzenshtadt A.M.
Sivalneva M.N.
Kobzev V.A.
Nelubova V.V.

DOI: https://doi.org/10.31659/0585-430X-2015-722-2-3-9
УДК: 620.3

 

AbstractAbout AuthorsReferences
This paper analyzes the process of obtaining nanostructured binder (NB) on the basis of materials of different genetic types. An increase in dispersion of binders aside from their composition during the process of mechanical activation of the solid phase and the formation of fraction in nanosized range was shown. Effectiveness of the thermodynamic method for estimating the energy state of the materials developed by scientists NArFU to predict the formation of active connections and, as a consequence, the binding properties of the studied materials were confirmed. It was shown that the kinetics of the activity in case of silicate NB has a wavelike nature, alternating extremes of system activity in general. Herein minimum of activity coincides with the reloading of solid phase when grinding, however it is noted that the system is ready for transformation. In the case of the aluminosilicate binder an increase in activity occurs continuously and reaches its maximum during grinding for 10–11 hours.
V.V. STROKOVA1, Doctor of Science (Engineering)
A.M. AYZENSHTADT2, Doctor of Science (Chemistry)
M.N. SIVAL’NEVA1, Engineer
V.A. KOBZEV1, Engineer
V.V. NELUBOVA1, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukov Street, Belgorod, 308012, Russian Federation)
2 Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)

1. Miroshnikov E.V., Strokova V.V., Cherevatova A.V., Pavlenko N.V. A nanostructured perlite binder and foam concrete on its base. Stroitel’nye Materialy [Construction Materials]. 2010. No. 9, pp. 105–106. (In Russian).
2. Cherevatova A.V., Pavlenko N.V. Foam-concrete on the basis of nanostructured binder. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shukhova. 2009. No. 3, pp. 115–119. (In Russian).
3. Pavlenko N.V., Kapusta M.N., Miroshnikov E.V. Features of reinforcement of non-autoclave curing cellular concretes based on nanostructured binder. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shukhova. 2013. No. 1, pp. 33–36. (In Russian).
4. Zhernovskii I.V., Osadchaya M.S., Cherevatova A.V., Strokova V.V. Aluminum-silicate nano-structured binder on the basis of granite raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2. pp. 38–41. (In Russian).
5. Tutygin A.S., Aizenshtadt A.M., Lesovik V.S., Frolova M.A. Design of compositions of building composites with due regard for thermodynamic compatibility of fine grained systems of rocks. Stroitel’nye Materialy [Construction Materials]. 2013. No. 3, pp. 74–76. (In Russian).
6. Voitovich E.V., Aizenshtadt A.M. Designing of composite gypsum binder compositions using nanostructured silica component (thermodynamic aspect). Promyshlennoe i grazhdanskoe stroitel’stvo. No. 5. 2014, pp. 16–20. (In Russian).

For citation: Strokova V.V., Ayzenshtadt A.M., Sivalneva M.N., Kobzev V.A., Nelubova V.V. Activity Evaluation of Nanostructured Binders with Using Thermodynamic Method. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 3-9. DOI: https://doi.org/10.31659/0585-430X-2015-722-2-3-9

The Use of a Modified Liquid Glass Binder in Production of Building Materials

Number of journal: №1-2015
Autors:

Lotov V.A.
Khabibulin Sh.A.

DOI: https://doi.org/10.31659/0585-430X-2015-721-1-72-75
УДК: 666.96:691.33

 

AbstractAbout AuthorsReferences
A liquid glass binder possessing the ability to harden volumetrically, high water resistance, and good adhesion to various surfaces has been developed. Portland cement is used as an additive-hardener. Ethyl silicate, which play the role of a peptizer-retarder of setting, is included in the composition of the binder. The binder after hardening and drying represents sub-microcrystalline calcium and natrium-calcium hydrosilicates evenly distributed in the volume of the water-insoluble siliceous xerogel. Optimal component composition of the binder: liquid glass – 83 %wt, Portland cement – 8.5 %wt, ethyl silicate – 8.5 %wt. On the basis of the developed binder, composite materials with different fillers have been obtained. The compressive strength of samples on the basis of crushed sand is 67 MPa.
V.A. LOTOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)|
Sh.A. KНABIBULIN, Master of Engineering and Technology

National Research Tomsk Polytechnic University (30, Lenin Avenue, Tomsk, 634050, Russian Federation)

1. Vasilik G.Yu. The cement industry of Russia in 2013. Tsement. 2013. No 6, pp. 20–33. (In Russian).
2. Borsuk P.A, Lyass A.M. Zhidkie samotverdeyushchie smesi [Liquid self-hardening mixes]. M.: Mashinostroenie.1979. 255 p.
3. Sychev M.M. Neorganicheskie klei [Inorganic glues]. Leningrad: Khimiya. 1986. 152 p.
4. Samoylenko V. V, Firsov V. V. Structure formation of porous heat insulating material from liquid-glass composition of cold hardening. Glass and Ceramics. 2011. No. 8, pp. 14–16.
5. Lotov V.A., Kutugin V.A. Formation of a porous structure of foam silicates based on liquid-glass compositions. Glass and Ceramics. 2008. №1-2, pp. 6–10.
6. Usova N.T., Lotov V.A., Lukashevich O.D. Warproof autoclaveless silicate building materials on the basis of sand, soluble glass compositions and mud of water purifications. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2013. No. 2, pp. 276–284. (In Russian).
7. Korneev V.I., Danilov V.V. Zhidkoe i rastvorimoe steklo [Liquid and soluble glass]. Saint-Petersburg: Stroiizdat. 1996. 216 p.
8. Patent RF 2132817. Sposob polucheniya zhidkogo stekla gidrotermal’nym metodom [Way of receiving liquid glass hydrothermal method]. Lotov V.A., Vereshchagin V.I., Kosintsev V.I., Pasechnikov Yu.V. Declared 17.02.1998. Published 10.07.1999. Bulletin No. 19. (In Russian).
9. Domokeev A.G. Stroitel’nye materialy [Construction materials]. Moscow: Vysshaya shkola. 1989. 495 p.
10. Gorshkov V.S., Timashev V.V., Savel’ev V.G. Metody fiziko-khimicheskogo analiza vyazhushchikh veshchestv [Methods of the physical and chemical analysis of knitting substances]. M.: Vysshaya shkola. 1981. 335 p.
11. Semchenko G.D. Zol’-gel’ protsess v keramicheskoi tekhnologii [Zol-gel process in ceramic technology]. Khar’kov. 1997. 144 p.
12. Mel’nikova L.V. Tekhnologiya kompozitsionnykh materialov iz drevesiny [Technology of the wood composite materials]. Moscow: Publisher Moscow State Institute of Forest. 2004. 234 p.
13. Mikhailenko N.Yu., Klimenko N.N. Optimization of technological parameters of synthesis high-silicic zhidkostekolnykh of composites of construction appointment. Glass and Ceramics. 2013. No. 5, pp. 11–17.

For citation: Lotov V.A., Khabibulin Sh.A. The Use of a Modified Liquid Glass Binder in Production of Building Materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 1, pp. 72-75. DOI: https://doi.org/10.31659/0585-430X-2015-721-1-72-75

Adhesion Properties of a Gypsum Binder in the Presence of Potassium-Silicate Cement

Number of journal: №1-2015
Autors:

Senkov S.A.
Semeynykh N.S.
Yakovlev G.I.
Polyanskih I.S.

DOI: https://doi.org/10.31659/0585-430X-2015-721-1-69-71
УДК: 691.553.2

 

AbstractAbout AuthorsReferences
A possibility of improving adhesion properties of gypsum binder systems when potassium-silicate cement is used in combination with organic substances-modifiers is considered. The influence of each selected component on basic properties of gypsum finishing mixes is defined. The addition of potassium-silicate cement increases the alkalinity of gypsum solution medium, intensifies processes of solution and colloiding of calcium sulfate hemihydrates, accelerates the setting time of the mass and reduces its water-retaining capacity. Gypsum binder with the addition of potassium-silicate cement has high adhesion strength to the ceramic base. Powder organic substances (modifiers) which make it possible to regulate processes of setting and hardening of gypsum solutions with the addition of potassium-silicate cement have been selected. High adhesion strength of mortars with an organic-mineral modifier to the ceramic base ensures the significant economy of the gypsum binder in the composition of finishing mixes.
S.A. SENKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.S. SEMEYNYKH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.I. YAKOVLEV2, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.S. POLYANSKIH2, Candidate of Sciences (Engineering)

1 Perm State National Research Polytechnic University (29, Komsomolskiy Avenue, Perm, 614990, Russian Federation)
2 Izhevsk State Technical University named after M.T. Kalashnikov (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Bazhenov Yu.M., Korovyakov V.F., Denisov G.A. Tekhnologiya sukhikh stroitel’nykh smesei [Technology of dry construction mixes]. Moscow: ASV. 2003. 96 p.
2. Ferronskaya A.V. Korovyakov V.F., Baranov I.M. ets. Gips v maloetazhnom stroitel’stve. [Gypsum is a low-rise building]. Moscow: ASV. 2008. 240 p.
3. Semeinyh N.S., Sazhina O.V. Composite gypsum binder for dry construction mixtures. Construction, architecture. Theory and practice: Theses of reports of graduate students, young scientists and students at scientific and practical conference of construction faculty. Perm: PGTU. 2008, pp. 36–43. (In Russian).
4. Golubev V.A., Semeinyh N.S., Senkov S.A., Cheremnyh I.N. The curing process and structure of potassium-silicate cement. Construction, architecture. Theory and practice: Theses of reports of graduate students, young scientists and students at scientific and practical conference of construction faculty. Perm: PGTU. 2007, pp. 24–25. (In Russian).
5. Bezborodov V.A., Belan V. I., Meshkov P. I., etc. Sukhie smesi v sovremennom stroitel’stve. [Dry mixes in modern construction]. Edited by Belan V.I. Novosibirsk. NGAU. 1998. 94 p.

For citation: Senkov S.A., Semeynykh N.S., Yakovlev G.I., Polyanskih I.S. Adhesion Properties of a Gypsum Binder in the Presence of Potassium-Silicate Cement. Stroitel’nye Materialy [Construction Materials]. 2015. No. 1, pp. 69-71. DOI: https://doi.org/10.31659/0585-430X-2015-721-1-69-71

Mixing Liquid for a Magnesia Binder

Number of journal: №1-2015
Autors:

Mitina N.A.
Lotov V.A.
Sukhushina A.V.

DOI: https://doi.org/10.31659/0585-430X-2015-721-1-64-68
УДК: 666.962

 

AbstractAbout AuthorsReferences
Results of obtaining magnesium bicarbonate Mg(HCO3)2 by the method of carbonization of suspensions from different magnesia powder under the carbon dioxide pressure are presented. It is established that optimal conditions for obtaining the water solution of magnesium bicarbonate with high concentration are CO2 pressure of 9 atm and an initial suspension on the basis of caustic brucite. The use of the water solution of magnesium bicarbonate as mixing liquid for magnesia cements makes it possible to obtain the hydraulic magnesia binder of high water resistance capable to solidify both on air and in the water.
N.A. MITINA, Candidate of Sciences (Engineering)
V.A. LOTOV, Doctor of Sciences (Engineering)
A.V. SUKhUShINA, MA Student

National Research Tomsk Polytechnic University (30, Lenin Avenue, Tomsk, 634050, Russian Federation)

1. Volzhenskii A.V., Burov Yu.S., Kolokol'nikov V.S. Mineral'nye vyazhushchie veshchestva: (tekhnologiya i svoistva) [Mineral binders: (technology and properties)]. M.: Stroiizdat. 1979. 480 p.
2. Orlov A.A., Chernykh T.N., Kramar L.Ya. Magnesium oxychloride boards: problems of production, use and prospects of development. Stroitel'nye Materialy [Construction Materials]. 2014. No 3, pp. 48–52. (In Russian).
3. Shand Mark A. Chemistry and technology of magnesia. Hardcover. 2006. 266 p.
4. Zimich V.V., Kramar L.Ya., Trofimov B.Ya. Effect of different types on a mixing magnesia stone hygroscopicity. Vestnik YuUrGU. Series «Stroitel'stvo i arkhitektura». 2008. Vol. 6. No 12. pp. 13–15. (In Russian).
5. Svit T.F. Thermogravimetric study of the products of hydration and hardening of magnesium sulfate binders Polzunovskii vestnik. 2010. No 3, pp. 100–103. (In Russian).
6. Zimich V.V., Kramar L.Ya., Trofimov B.Ya. Fall in hygroscopicity and rise of water resistance of chlormagnezic stone by injection of trivalent iron. Stroitel'nye Materialy [Construction Materials]. 2009. No 5, pp. 58–61. (In Russian).
7. Zimich V.V., Kramar L.Ya., Chernykh T.N., Pudovikov V.N., Perminov A.V. Features of influence of additives iron hydroxide sol on structure and properties of magnesia stone. Vestnik YuUrGU. Series «Stroitel'stvo i arkhitektura». 2011. Vol. 13. No 35, pp. 25–32. (In Russian).
8. Vereshchagin V.I., Smirenskaya V.N., Érdman S.V. Water-resistant blended oxychlorаte cements. Glass and Ceramics. 1997. Vol. 54. No. 11–12, pp. 368–372.
9. Zyryanova V.N., Lytkina E.V., Berdov G.I. Improvement of the mechanical strength and water resistance of magnesia binders with the introduction of mineral fillers. Izvestiya vysshikh uchebnykh zavedenii. Stroitel'stvo. 2010. No 3, pp. 21–26 (In Russian).
10. Cole W.F., Demediuk T. X-Ray, thermal, and dehydration studies on magnesium oxychlorides. Australian Journal of Chemistry. 1955. Vol. 8(2), pp. 234–251.
11. Patent RF 2404144 Magnezial'noe vyazhushchee [Magnesia binder] Lotov V.A, Lotova L.G. Declared 31.07.2009. Published 20.11.2010. Bulletin No. 32. (In Russian).
12. Lotov V.A., Mitina N.A. Preparation of water-resistant magnesia astringent Tekhnika i tekhnologiya silikatov. 2010. Vol. 17. No 3, pp. 19–22. (In Russian).
13. Fedorenko V.I. Physico-chemical properties of water as a basis for engineering calculations of membrane water treatment systems. Membrany. Series. Kriticheskie tekhnologii. 2002. No 16, pp. 28–38 (In Russian).
14. Nekrasov B.V. Osnovy obshchei khimii [Fundamentals of general chemistry] Moscow: Khimiya. 1973. 122 p.
15. Certificate of authorship SSSR 406802. Sposob polucheniya rastvora bikarbonata magniya [Method of preparing a solution of magnesium bicarbonate]. Telitchenko V.A. Published 23.07.1989. Bulletin No. 27. (In Russian).
16. Patent US 2005/0255174 A1 Process and apparatus for use in preparing an aqueous magnesium bicarbonate solution. Shelley Ar., Shelley D., Beckett R.J. Pub. Date Nov. 17, 2005.
17. Patent RF 2374176 Sposob polucheniya ul'tradispersnykh poroshkov karbonatov [A method for producing ultrafine powders carbonates]. Smirnov A.P., Lotov V.A., Arkhipov V.A., Prokhorov A.N., Reznikov I.V. Declared 04.04.2006. Published 27.11.2009. Bulletin No. 33. (In Russian).
18. Mitina N.A., Lotov V.A., Kutugin V.A. Preparation and use of a solution of magnesium carbonate. Khimicheskaya tekhnologiya. 2014. No 8. pp. 460–465. (In Russian).
19. Kratkii spravochnik po khimii [Quick reference guide for chemistry]. Kiev: Naukova dumka. 1974. P. 156–159.
20. Vaivad A.Ya. Magnezial'nye vyazhushchie veshchestva [Magnesia binders]. Riga: «ZINATNE». 1971. 331 p.
21. Zuev V.V., Potselueva L.N., Goncharov Yu.D. Kristalloenergetika kak osnova otsenki svoistv tverdotel'nykh materialov [Crystal energy as a basis of valuation of properties of solid materials]. Saint-Petersburg. 2006. 139 p.

For citation: Mitina N.A., Lotov V.A., Sukhushina A.V. Mixing Liquid for a Magnesia Binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 1, pp. 64-68. DOI: https://doi.org/10.31659/0585-430X-2015-721-1-64-68

Optimization of Methods for Determining Mineralogical Composition of Converter Slags

Number of journal: №1-2015
Autors:

Goncharova M.A.
Kopeykin A.V.
Krohotin V.V.

DOI: https://doi.org/10.31659/0585-430X-2015-721-1-60-63
УДК: 691.175.2

 

AbstractAbout AuthorsReferences
Results of the optimization of determination of converter slag mineralogical compositions are presented. Petrographic studies of slags and their X-ray structural analysis have been conducted and presented. Special attention is paid to the method of atomic-force microscopy, which shows that minerals composing the material possess inherent unique characteristics of the surface texture. In case of further studies the experience obtained will be able to significantly alleviate the problem of determining the belite in the structure of other kinds of metallurgic slags. Information about morphological features of compositions of various minerals helps to use this method as an independent one for determining the mineralogical composition of materials under investigation.
M.A. GONCHAROVA Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.V. KOPEYKIN, Candidate of Sciences (Engineering)
V.V. KROHOTIN, Engineer

Lipetsk State Technical University (30, Moskovskaya Street, 398600, Lipetsk, Russian Federation)

1. Goncharova M.A. Sistemy tverdenija i stroitel’nye kompozity na osnove konverternyh shlakov [System hardening and building composites based on converter slag]. Voronezh: VGASU, 2012. 136 p. (In Russian).
2. Goncharovа M.A., Chernyshev E.M. Formation systems hardening of composites based on man-made materials. Stroitel’nye Materialy [Construction Materials]. 2013. No. 5, pp. 60–64. (In Russian).
3. Kudeyarova N.P., Gostisheva M.A. Hydration activity of steel slag minerals in autoclave conditions. Stroitel’nye Materialy [Construction Materials]. 2009. No. 8, pp. 34–35. (In Russian).
4. Bondarenko G.V., Gryzlov V.S., Kaptyushina A.G. Procedure for the preparation of multicomponent mineral binder based on man-made industrial chemicals. Stroitel’nye Materialy [Construction Materials]. 2012. No. 3, pp. 26–29. (In Russian).
5. Bondarenko G.V., Kaptyushina A.G. Use of waste in construction materials. Stroitel’nye Materialy [Construction Materials]. 2008. No. 2, pp. 38–40. (In Russian).
6. Kalachev VV, Gunners OY, Gubanov LN Technogenic waste industry – resource base for mineral slag composite binders. Proceedings of the V International scientific and technical conference. Volgograd. 2009. Part 1, pp. 114–120. (In Russian).
7. Artamonova A.V. Binders based electric steelmaking slag. Stroitel’nye Materialy [Construction Materials]. 2011. No. 5, pp. 11–13. (In Russian).
8. Hazeev D.R., Gordina A.F., Maeva I.S., Yakovlev G.I., Buryanova A.F. The influence of technogenic particulate waste on the structure and properties of composites based on calcium sulfate. Stroitel’nye Materialy [Construction Materials]. 2011. No. 6, pp. 6–7. (In Russian).

For citation: Goncharova M.A., Kopeykin A.V., Krohotin V.V. Optimization of Methods for Determining Mineralogical Composition of Converter Slags. Stroitel’nye Materialy [Construction Materials]. 2015. No. 1, pp. 60-63. DOI: https://doi.org/10.31659/0585-430X-2015-721-1-60-63

https://www.traditionrolex.com/10