Log in

The Effect of Additives Regulating the Setting Time on the Resistance of Chloromagnesial Composites to Cracking During Prolonged Water Saturation

Number of journal: 1-2-2024
Autors:

Averina G.F.,
Koshelev V.A.,
Kramar L.Ya.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-110-114
УДК: 666.962

 

AbstractAbout AuthorsReferences
The resistance of chloromagnesial composites to prolonged water saturation is determined by the softening coefficient and the tendency to cracking. Technological methods for preventing the cracking of a magnesia binder stone in contact with water have a number of disadvantages, in particular, related to their difficult reproducibility in production conditions. This study is devoted to the search for additives that make it possible to regulate the processes of structure formation of chloro-magnesial composites in order to form predominantly stable phases evenly distributed in volume during prolonged saturation with water. In the course of the work, standard methods were used to study the properties of dough and astringent stone, as well as microcalorimetry. As a result, it was found that the addition of sodium tripolyphosphate significantly slows down the setting time of the chloromagnesial composition, but eliminates the tendency of the artificial stone obtained from it to crack during prolonged water saturation.
G.F. AVERINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. KOSHELEV, Graduate student (vasilikosh@ gmail.com),
L.Ya. KRAMAR, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

South Ural State University (National Research University) (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)

1. Vinnichenko V.I., Ryazanov A.N. Resource- and energy-saving binders from dolomite waste. Energy- and resource-saving environmentally friendly chemical-technological processes for environmental protection. Belgorod. November 24–25, 2015, pp. 22–32. (In Russian).
2. Nosov A.V. High-strength dolomite binder. Vestnik of the South Ural State University. Series: Construction and architecture. 2013. Vol. 13. No. 1, pp. 30–37. (In Rissian).
3. Uryasheva N.N., Kovaleva O.I., Kovalev N.V. Research of the magnesia cement stability to the impact of corrosive biological environments. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 451. No. 1. 012035. DOI 10.1088/1757-899X/451/1/012035
4. Lauermannová A.M., Lojka M., Jankovský O., Faltysová I., Pavlíková M., Pivák A., Záleská M., Pavlík Z. High-performance magnesium oxychloride composites with silica sand and diatomite. Journal of Materials Research and Technology. 2021. Vol. 11, pp. 957–969. https://doi.org/10.1016/j.jmrt.2021.01.028
5. Khalil A., Wang X., Celik K. 3D printable magnesium oxide concrete: towards sustainable modern architecture. Additive Manufacturing. 2020. Vol. 33. 101145. https://doi.org/10.1016/j.addma.2020.101145
6. Nosov A.V., Chernykh T.N., Kramar L.Ya. Additives-intensifiers for dolomite firing. Science SUSU. Sections of technical sciences: materials of the 66th scientific conference. Chelyabinsk. 2014, pp. 998–1002. (In Russian).
7. Khuziakhmetov R.Kh. Technology of magnesium binders from dolomite powder and assessment of the quality of firing products. Vestnik of the Kazan Technological University. 2013. Vol. 16. No. 7, pp. 101–107. (In Russian).
8. Kramar L.Ya., Chernyh T.N., Trofimov B.Ya. Peculiarities of hardening of magnesium binder. Cement i ego primenenie. 2006. No. 5, pp. 58–61. (In Russian).
9. Kramar L.Ya., Nuzhdin S.V., Trofimov B.Ya. Compositions based on magnesium binder, not prone to cracking during operation. Vestnik of the South Ural State University. Series: Construction and architecture. 2007. No. 14 (86), pp. 15–17. (In Russian).
10. Elenova A.A., Krivoborodov Yu.R. Influence of hydrodynamically activated crystalline hydrate additive on hydration and hardening of cement stone. Uspekhi v khimii i khimicheskoi tekhnologii. 2016. Vol. 30. No. 7 (176), pp. 36–38. (In Russian).
11. Krivoborodov Yu.R., Boiko A.A. Influence of mineral additives on the hydration of aluminous cement. Tekhnika i tekhnologiya silikatov. 2011. Vol. 18. No. 4, pp. 12–15. (In Russian).
12. Guvalov A.A., Kabus’ A.V., Usherov-Marshak A.V. Influence of organomineral additives on early hydration of cement. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 94–95. (In Russian).
13. Ba H., Guan H. Influence of MgO/MgCl2 molar ratio on phase stability of magnesium oxychloride cement. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2009. Vol. 24. No. 3, pp. 476–481. https://doi.org/10.1007/s11595-009-3476-3
14. Murashkevich A.N. Khimicheskaya tekhnologiya materialov i izdeliy elektronnoy tekhniki [Chemical technology of materials and electronic products]. Minsk: BGTU. 2013. 297.
15. Averina G.F., Koshelev V.A., Kramar L.Y. Combined roasting of raw materials modified by additives-intensifiers in form of low humidity sludge. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 687. Iss. 2. 022038. DOI: 10.1088/1757-899X/687/2/022038
16. Averina G.F., Katasonova A.V., Zimich V.V., Chernykh T.N. Increasing the water resistance of magnesium stone for hardening backfill mixtures from technogenic dolomites. Vestnik of the South Ural State University. Series: Construction and architecture. 2016. Vol. 16. No. 2, pp. 28–32. (In Russian).

For citation: Averina G.F., Koshelev V.A., Kramar L.Ya. The effect of additives regulating the setting time on the resistance of chloromagnesial composites to cracking during prolonged water saturation. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 110–114. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-110-114

Analysis of Properties of Polymer Composites with Various Types of Fillers

Number of journal: 1-2-2024
Autors:

Erofeev V.T.,
Afonin V.V.,
Zotkina M.M.,
Stenechkina K.S,
Tyuryakhina T.P.,
Lazarev A.V.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-100-109
УДК: 678.83

 

AbstractAbout AuthorsReferences
The processes of structure formation of composite building materials (KSM) on different polymer binders are presented. It is shown that one of the most significant components of KSM are fillers, which help to improve their structural and operational characteristics. This work is devoted to the analysis of the results of an experimental study of the properties of epoxy composites with fillers having various elastic-plastic and strength properties. The research was carried out in three stages: at the first stage, studies were conducted aimed at assessing the influence of the nature of the filler on the curing processes of KSM; at the second, the influence of the type of filler and its quantitative content on the strength of composites was established, at the third, compositions were optimized using fillers with different indicators of grain composition and elastic-plastic properties. Powders of glass, dolomite, thermolite, and diatomite were considered as fillers at the first and second stages of the research, and powders of glass, ceramics, and chalk were considered at the second stage. The research at the third stage was carried out using mathematical methods of experiment planning with the construction of a planning matrix for a complete factor experiment and the determination of the values of the response functions relative to the encoded factors. The physico-mechanical properties, degree of curing, and chemical resistance of filled epoxy CCM have been established. On the basis of artificial neural networks, the maximum properties of the studied composites with fillers were determined. An assessment of structural properties based on rank correlation is also proposed. The results of the research can be used to predict the properties of KSM, as well as to clarify the extreme parameters of the properties. The dependences of changes in the properties of polymer composites on the surface characteristics, the dispersion of fillers and the degree of filling were established; preferred fillers for epoxy composites were determined; fillers were determined to assess the effect of elastic surface properties of composites, allowing to improve the strength and deformability of polymer composites; regression models were obtained based on a complete factorial experiment; an assessment of the «structural stability» of the studied composites using Pearson, Kendall, Spearman rank correlation; On the basis of artificial neural networks, the extreme properties of the studied composites with fillers were determined, neural networks.
V.T. YEROFEYEV1,3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
V.V. AFONIN2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
M.M. ZOTKINA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
K.S. STENECHKIN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
T.P. TYURYAKHINA3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. LAZAREV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 National Research Mordovia State University (430000, Saransk, Bolshevistskaya Street, 68/1)
3 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Карпенко Н.И., Карпенко С.Н., Ярмаковский В.Н., Ерофеев В.Т. О современных методах обеспечения долговечности железобетонных конструкций. ACADEMIA. Архитектура и строительство. 2015. № 1. С. 93–102.
1. Karpenko N.I., Karpenko S.N., Yarmakovsky V.N., Erofeev V.T. On modern methods of ensuring the durability of reinforced concrete structures. ACADEMIA. Arhitektura i stroitel’stvo. 2015. No. 1, pp. 93–102. (In Russian).
2. Бобрышев А.Н., Ерофеев В.Т., Козомазов В.Н. Полимерные композиционные материалы: Учеб. пособие. М.: АСВ, 2013. 480 с.
2. Bobryshev A.N., Erofeev V.T., Kozomazov V.N. Polimernye kompozicionnye materialy [Polymer composite materials: textbook]. Moscow: ASV, 2013. 480 p.
3. Соколова Ю.А. Эпоксидные полимербетоны, модифицированные нефтяными битумами, каменноугольной и карбамидной смолами и аминопроизводными соединениями / Под ред. Ю.А. Соколовой, В.Т. Ерофеева. М.: Палеотип, 2008. 244 с.
3. Sokolova Yu.A. Epoksidnyye polimerbetony, modifitsirovannyye neftyanymi bitumami, kamennougol’noy i karbamidnoy smolami i aminoproizvodnymi soyedineniyami / pod. red. Yu.A. Sokolovoi, V.T. Yerofeyeva [Epoxy polymer concretes modified with petroleum bitumen, coal and urea resins and amino derivatives / under. ed. by V.T. Erofeev]. Moscow: Paleotype, 2008. 244 p.
4. Erofeev V., Tyuryakhin A., Tyuryakhina T. Flat space of values of volume module of grain composite with spherical fill-lem. International Journal of Civial Engineering and Technology (IJCIET). 2019. Vol. 10 (8), pp. 333–342.
5. Ma P.C., Mo S.Y., Tang B.Z., Kim J.K. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. 2010. Carbon. Vol. 48. Iss. 6, pp. 1824–1834. DOI: 10.1016/j.carbon.2010.01.028
6. Rahmat M., Hubert P. Carbon nanotube-polymer interactions in nanocomposites: A review. Composites Science and Technology. 2011. Vol. 72. Iss. 1,pp. 72–84. DOI: 10.1016/j.compscitech.2011.10.002
7. Kathi J., Rhee K.Y., Lee J.H. Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Composites. Part A. Applied Science and Manufacturing. 2009. Vol. 40. Iss. 6, pp. 800–809. DOI: 10.1016/j.compositesa.2009.04.001
8. Rafiee M., Rafiee J., Srivastava I. Fracture and fatigue in graphene nanocomposites. Nano. Micro. Small. 2010. Vol. 6. Iss. 2, pp. 179–183. https://doi.org/10.1002/smll.200901480
9. Sun L., Gibson R.F., Gordaninejad F., Suhr J. Energy absorption capability of nanocomposites: a review. Composites Science and Technology. 2009. Vol. 69. Iss. 14, pp. 2392–2409. DOI: 10.1016/j.compscitech.2009.06.020
10. Tang L.Ch., Zhang H., Han J. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Composites Science and Technology. 2011. Vol. 72, pp. 7–13. DOI: 10.1016/j.compscitech.2011.07.016
11 Ni Y., Chen L., Teng K., Shi J. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Applied Materials & Interfaces. 2015. Vol. 7. Iss. 21,pp. 11583–11591. DOI: 10.1021/acsami.5b02552
12. Rahman R., Haque A. Molecular modeling of crosslinkedgraphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties. Engineering. Composites Part B: Engineering. 2013. Vol. 54, pp. 353–364. DOI: 10.1016/J.COMPOSITESB.2013.05.034
13. Qiao R., Brinson L.C. Simulation of interphase percolation and gradients in polymer nanocomposites. Composites Science and Technology. Composites Science and Technology. 2009. Vol. 69. Iss. 3–4, pp. 491–499. DOI: 10.1016/j.compscitech. 2008.11.022
14. Ayatollahi M.R., Shadlou S., Shokrieh M., Chitsazzadeh M. Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polymer Testing. 2011. Vol. 30. Iss. 5, pp. 548–556. DOI: 10.1016/j.polymertesting.2011.04.008
15. Hamming L., Qiao R., Messersmith P., Brinson L.C. Effects of dispersion and interfacial modification on the macroscale properties of TiO2 polymer-matrix nanocomposites. Composites Science and Technology. 2009. Vol. 69, Iss. 11–12, pp. 1880–1886. DOI: 10.1016/j.compscitech.2009.04.005
16. Yang S., Yu S., Woomin K., Do-Suck H.,Maenghyo C. Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer. 2012. Vol. 53. Iss. 2, pp. 623–6332012. DOI: 10.1016/j.polymer.2011.11.052
17. Ерофеев В.Т., Афонин В.В., Ельчищева Т.Ф., Зоткина М.М., Ерофеева И.В. Использование отсканированных изображений для оценки солеобразования на поверхности цементных композитов. Вестник МГСУ. 2020. Вып. 15.№ 11. С. 1523–1533. DOI: 10.22227/1997-0935.2020.11.1523-1533
17. Erofeev V.T., Afonin V.V., El’chishheva T.F., Zotkina M.M., Erofeeva I.V. Using scanned images to assess salt formation on the surface of cementitious composites. Vestnik MSUCE. 2020. Vol. 15. No. 11, pp. 1523–1533. (In Russian). DOI: 10.22227/1997-0935.2020.11.1523-1533
18. Erofeev T., Likomaskina M., Afonin V., Likomaskin A., Tolmacheva V., Kotlyarskaya I. Microbiological resistance of sand-bitumen concrete. AlfaBuild. 2022. Vol. 25. Iss. 5. 2503. doi: 10.57728/ALF.25.3
19. Максимова И.Н., Ерофеева И.В., Афонин В.В., Емельянов Д.В. Оценка качества цементных композитов, подвергнутых воздействию температурно-агрессивной среды, с использованием интерполяции и корреляции // Вестник МГСУ. 2021. Вып. 16. № 11. С. 1473–1482. DOI: 10.22227/1997-0935.2021.11.1473-1482
19. Maksimova I.N., Erofeeva I.V., Afonin V.V., Emelyanov D.V. Assessing the quality of cement composites exposed to a temperature-aggressive environment using interpolation and correlation. Vestnik MSUCE. 2021. Vol. 16. Iss. 11, pp. 1473–1482. (In Russian). DOI: 10.22227/1997-0935.2021.11.1473-1482
20. Erofeeva I.V, Afonin V.V., Fedortsov V.A., Emelyanov D.V. Research of behavior of cement composites in conditions of high humidity and variable positive temperatures. IOP Conference Series Materials Science and Engineering. 2020. Vol. 972 (1). 012052. DOI:10.1088/1757-899X/972/1/012052
21. Тарасюк И.А., Кравчук А.С. Сужение «Вилки» Фойгта–Рейсса в теории упругих структурно-неоднородных в среднем изотропных композиционных тел без применения вариационных принципов. APRIORI. Сер.: Естественные и технические науки. 2014. № 3. С. 8.
21 Tarasyuk I.A., Kravchuk A.S. Narrowing of the Voigt-Reuss «Fork» in the theory of elastic, structurally inhomogeneous, on average, isotropic composite bodies without the use of variational principles. APRIORI. Series: Natural and technical sciences. 2014. No. 3, p. 8. (In Russian).
22. Гуменюк А.Н., Полянских И.С., Петрунин С.М., Шевченко Ф.Е., Первушин Г.Н. Многофункцио-нальный слоистый композиционный материал, используемый в строительстве. Вестник МГСУ. 2021. Вып. 16. № 6. С. 688–697. DOI: 10.22227/1997-0935.2021.6.688-697
22. Gumenyuk A.N., Polyanskikh I.S., Petrunin S.M., Shevchenko F.E., Pervushin G.N. Multifunctional layered composite material used in construction. Vestnik MSUCE. 2021. Vol. 16. No. 6, pp. 688–697. (In Russian). DOI: 10.22227/1997-0935.2021.6.688-697
23. Сафаров А.Р., Дорожинский В.Б., Андреев В.И. Реализация численной модели бетона CSCM для отечественных классов бетона. Вестник МГСУ. 2023. Вып. 18. № 4. С. 545–555. DOI: 10.22227/1997-0935.2023.4.545-555
23. Safarov A.R., Dorozhinsky V.B., Andreev V.I. Implementation of a numerical model of concrete CSCM for domestic classes of concrete. Vestnik MSUCE. 2023. Vol. 18. No. 4, pp. 545–555. (In Russian). DOI: 10.22227/1997-0935.2023.4.545-555
24. Urkhanova L.A., Buyantuev S.L., Urkhanova A.A., Lkhasaranov S.A., Ardashova G.R., Fediuk R.S. et al. Mechanical and electrical properties of concrete modified by carbon nanoparticles. Magazine of Civil Engineering. 2019. Vol. 8. No. 92, pp. 163–172. DOI: 10.18720/MCE.92.14
25 Yakovlev G., Vít Č., Polyanskikh I., Gordina A., Pudov I., Gumenyuk A., Smirnova O. The effect of complex modification on the impedance of cement matrices. Materials. 2021. Vol. 14. Iss. 3. 557.DOI: 10.3390/ma14030557
26. Лам Н.Д.Т., Самченко С.В., Лам Т.В., Швецова В.А. Оптимизация пропорций композиционного вяжущего, содержащего многокомпонентные добавки. Вестник МГСУ. 2023. Вып. 18. № 3. С. 427–437. DOI: 10.22227/1997-0935.2023.3.427-437
26. Lam N.D.T., Samchenko S.V., Lam T.V., Shvetsova V.A. Optimization of the proportions of a composite binder containing multicomponent additives. Vestnik MSUCE. 2023. Iss. 18. No. 3, pp. 427–437. (In Russian). DOI: 10.22227/1997-0935.2023.3.427-437
27. Omidi M., Milani A.S., Seethaler R., Arasteh R. Prediction of the mechanical characteristics of mul-
ti-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon. 2010. Vol. 48. Iss. 11, pp. 3218–3228. DOI: 10.1016/j.carbon.2010.05.007
28. Лазарев А.В., Казначеев С.В., Ерофеев В.Т., Бредихин В.В., Худяков В.А. Оптимизация составов наполненных эпоксидных композитов по прочностным показателям. Известия Юго-Западного государственного университета. Сер.: Техника и технологии. 2012. № 2–3. С. 235–239.
28. Lazarev A.V., Kaznacheev S.V., Erofeev V.T., Bredikhin V.V., Khudyakov V.A. Optimization of compositions of filled epoxy composites in terms of strength indicators. Izvestiya of the Southwestern State University. Series: Equipment and technology. 2012. No. 2–3, pp. 235–239. (In Russian).
29. Ерофеев В.Т., Волгина Е.В., Казначеев С.В., Кретова В.М. Исследование прочности винил-эфирных композитов. Известия Юго-Западного государственного университета. Сер.: Техника и технологии. 2013. № 4. С. 81–88.
29. Erofeev V.T., Volgina E.V., Kaznacheev S.V., Kretova V.M. Research on the strength of vinylester composites. Izvestiya of the Southwestern State University. Series: Equipment and technology. 2013. No. 4, pp. 81–88. (In Russian).
30. Бобрышев А.Н., Ерофеев В.Т., Козомазов В.Н. Физика и синергетика дисперсно-неупорядоченных конденсированных композитных систем. СПб.: Наука, 2012. 473 с.
30. Bobryshev A.N., Erofeev V.T., Kozomazov V.N. Fizika i sinergetika dispersno-neuporyadochennykh kondensirovannykh kompozitnykh sistem [Physics and synergetics of dispersed disordered condensed composite systems]. St. Petersburg: Nauka. 2012. 473 p.
31. Gibbons J.D. Nonparametric Statistical Inference. New York. Basel: CRC Press. 2010. 652 p.
32. Kim I., Balakrishnan S., Wasserman L. Robust multivariate nonparametric tests via projection averaging. Annals of Statistics. 2020. Vol. 48. Iss. 6, pp. 3417–3441. https://doi.org/10.48550/arXiv.1803.00715
33. Pan W., Tian Y., Wang X., Zhang H. Ball divergence: nonparametric two sample test. Annals of Statistics. 2018. Vol. 46. Iss. 3, pp. 1109–1137. DOI: 10.1214/17-AOS1579
34. Kotlyar M., Fuhrman S., Ableson A., Somogyi R. Spearman correlation identifies statistically significant gene expression clusters in spinal cord development and injury. Neurochemical Research. 2004, pp. 1133–1140. DOI: 10.1023/a:1020969208033
35. Кобзарь А.И. Прикладная математическая статистика. Для инженеров и научных работников. М.: Физматлит, 2006. 816 с.
35. Kobzar A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov [Applied mathematical statistics. For engineers and scientists]. Moscow: Fizmatlit. 2006. 816 p.

For citation: Erofeev V.T., Afonin V.V., Zotkina M.M., Stenechkina K.S, Tyuryakhina T.P., Lazarev A.V. Analysis of properties of polymer composites with various types of fillers. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 100–109. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-100-109

XVI International Congress on Cement Chemistry – “Further Decarbonization and Circular Production and the Use of Cement and Concrete”

Number of journal: 1-2-2024
Autors:

Rakhimova N.R.,
Rakhimov R.Z.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-95-99
УДК: 666.9

 

AbstractAbout AuthorsReferences
One of the authors is a participant in the XVI International Congress on Cement Chemistry (ICCC 2023), which was held in Bangkok (Thailand) on September 18–22, 2023 under the motto “Further decarbonization and recycling production and application of cement and concrete.” Statistical data, thematic areas of the congress are presented and some reports are presented, the content of which may be of most interest to Russian specialists.
N.R. RAKHIMOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.Z. RAKHIMOV, Doctor of Sciences (Engineering)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)

1. IEA, CSI, WBCSD, Technology Roadmap – Low-Carbon Transition in the Cement Industry, Paris 2018 (2018). https://www.iea.org/reports/technology-roadmaplow-carbon-transition-in-the-cement-industry.
2. CEMBUREAU, Cementing the European Green Deal. Reaching climate neutrality along the cement and concrete value chain by 2050, 2020. https://cembureau. eu/media/kuxd32gi/cembureau-2050-roadmap_final-version_web.pdf.
3. Concrete Future, The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete, GCCA, London, 2022. https://gccassociation.org/concretefuture/wp-content/uploads/2022/10/GCCA-Concrete-Future-Roadmap-Document-AW-2022.pdf.
4. HeidelbergCement – Sustainability Report 2021, Heidelberg Materials, 2022. https://www.heidelbergmaterials.com/sites/default/files/2022-06/220529-HC-NB-2021-EN.pdf accessed March 7, 2023).
5. LafargeHolcim – Integrated Annual Report 2019, Holcim, 2020. https://www.holcim.com/sites/holcim/files/2022-04/02272020-finance-lafageholcim_fy_2019_report-en_421281078.pdf (accessed March 7, 2023).
6. LafargeHolcim – Integrated Annual Report 2020, Holcim, 2021. https://www.holcim.com/sites/holcim/files/2022-04/26022021-finance-lafageholcim_fy_2020_report-full-en.pdf (accessed March 7, 2023).
7. Рахимов Р.З. Экология, металлургия, минеральные вяжущие вещества и промышленность строительных материалов // Строительные материалы. 2022. № 9. С. 26–31. DOI: https://doi.org/10.31659/0585-430X-2022-806-9-26-31
7. Rakhimov R.Z. Ecology, metallurgy, mineral binders and building materials industry. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-26-31
8. Schneider M., Hoenig V., Ruppert J., Rickert J. The cement plant of tomorrow. Cement and Concrete Research. 2023, Vol. 173, 107290. https://doi.org/10.1016/j.cemconres.2023.107290
9. Tong R., Sui T., Feng L., Lin L. The digitization work of cement plant in China. Cement and Concrete Research. 2023, Vol. 173, 107266. https://doi.org/10.1016/j.cemconres.2023.107266
10. Scrivener K.L., Matschei T., Georget F., Juilland P., Mohamed A.K. Advances in hydration and thermodynamics of cementitious systems. Cement and Concrete Research. 2023. Vol. 174, 107332. https://doi.org/10.1016/j.cemconres.2023.107332
11. Mohamed A.K., Bouibes A., Bauchy M., Casar Z. Molecular modelling of cementitious materials: current progress and benefits. RILEM Technical Letters. 2022. Vol. 7, pp. 209–219. https://doi.org/10.21809/rilemtechlett.2022.175
12. Qoku E., Xu K., Li J.,. Monteiro P.J.M, Kurtis K.E. Advances in imaging, scattering, spectroscopy, and machine learning-aided approaches for multiscale characterization of cementitious systems. Cement and Concrete Research. 2023.Vol. 174. 107335. https://doi.org/10.1016/j.cemconres.2023.107335
13. Ben Haha M., Termkhajornkit P., Ouzia A., Uppalapati S., Huet B. Low clinker systems – Towards a rational use of SCMs for optimal performance. Cement and Concrete Research. 2023. Vol. 174. 107335. https://doi.org/10.1016/j.cemconres.2023.107312
14. Мухаметрахимов Р.Х., Лукманова Л.В. Влияние портландцементов с различным минералогическим составом на основные свойства композитов, сформованных методом послойного экструдирования (3D-печати) // Известия КГАСУ. 2021. № 2 (56). С. 37–50. DOI: 10.52409/20731523_2021_2_37
14. Mukhametrakhimov R.Kh., Lukmanova L.V. Influence of Portland cements with different mineralogical composition on basic properties of 3D-printed composites. Izvestiya of the KSUACE. 2021. No. 2 (56), pp. 37–50. DOI: 10.52409/20731523_2021_2_37
15. Skibsted J., Snellings, Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research. 2019. Vol. 124. 105799.
16. Sharma M., Bishnoi S., Martirena F., Scrivener K. Limestone calcined clay cement and concrete: a state-of-the-art review. Cement and Concrete Research. 2021. Vol. 149. 106564. https://doi.org/10.1016/j.cemconres.2021.106564
17. Zunino F., Dhandapani Y., Ben Haha M., Skibsted J., Joseph S., Krishnan S., Parashar A., Juenger M.C.G., Hanein T., Bernal S.A., Scrivener K.L., Avet F. Hydration and mixture design of calcined clay blended cements: review by the RILEM TC 282-CCL. Materials and Structures. 2022. Vol. 55. 234. https://doi.org/10.1617/s11527-022-02060-1
18. Snellings R., Suraneni P., Skibsted J. Future and emerging supplementary cementitious materials. Cement and Concrete Research. 2023. Vol. 171. 107199. https://doi.org/10.1016/j.cemconres.2023.107199
19. Müller C. How standards support sustainability of cement and concrete in Europe. Cement and Concre-te Research. 2023. Vol. 173. 107288. https://doi.org/10.1016/j.cemconres.2023.107288
20. Смирнов Д.С., Мавлиев Л.Ф., Хузиахметова К.Р., Мотыйгуллин И.Р. Влияние минеральной добавки на основе молотого доменного шлака на свойства бетонов и бетонных смесей // Известия КГАСУ. 2022. № 4 (62). С. 61–69. DOI: 10.52409/20731523_2022_4_61, EDN: KQDLZR
20. Smirnov D.S., Mavliev L.F., Khuziakhmetova K.R., Motygullin I.R. Effect of mineral additive based on ground blast furnace slag on the properties of concrete and concrete mixtures. Izvestiya of the KSUACE. 2022. No. 4 (62), pp. 61–69. (In Russian). DOI: 10.52409/20731523_2022_4_61, EDN: KQDLZR
21. Хренов Г.М. Моделирование пластических свойств бетонной смеси // Известия КГАСУ. 2021. № 1 (55). С. 49–57. DOI: 10.52409/20731523_2021_1_49
21. Khrenov G.M. Modeling of concrete mixture plastic properties. Izvestiya of the KSUACE. 2021. No. 1 (55), pp. 49–57. (In Russian). DOI: 10.52409/20731523_2021_1_49
22. Flatt R.J., Roussel N., Bessaies-Bey H., Caneda-Martínez L., Palacios M., Zunino F. From physics to chemistry of fresh blended cements. Cement and Concrete Research. 2023. Vol. 172. 107243. https://doi.org/10.1016/j.cemconres.2023.107243
23. Zajac M., Maruyama I., Iizuka A., Skibsted J. Enforced carbonation of cementitious materials. Cement and Concrete Research. 2023. Vol. 174. 07285. https://doi.org/10.1016/j.cemconres.2023.107285
24. Sun Poon C., Shen P., Jiang Y., Ma Z., Xuan D. Total recycling of concrete waste using accelerated carbonation: A review. Cement and Concrete Research. 2023. Vol. 173. 107284. https://doi.org/10.1016/j.cemconres.2023.107284
25. Liu Z., Lv C., Wang F., Hu S. Recent advances in carbonatable binders. Cement and Concrete Research. 2023. Vol. 173. 107286. https://doi.org/10.1016/j.cemconres.2023.107286
26. Rakhimova N.R., Morozov V.P., Eskin A.A., Galiullin B.M. One-part alkali-activated materials derived from natural and designed blends of clay and calcium carbonate sources. Journal of Materials in Civil Engineering. 2024. Vol. 36 (2). 04023588. https://doi.org/10.1061/JMCEE7.MTENG-1650
27. Angst U.M. Steel corrosion in concrete – Achilles’ heel for sustainable concrete? Cement and Concrete Research. 2023. Vol. 172. 107239. https://doi.org/10.1016/j.cemconres.2023.107239
28. De Weerdt K., Wilson W., Machner A., Georget F. Chloride profiles – What do they tell us and how should they be used? Cement and Concrete Research. 2023. Vol. 173. 107287. DOI: 10.1016/j.cemconres.2023.107287

For citation: Rakhimova N.R., Rakhimov R.Z. XVI International Congress on Cement Chemistry – “Further Decarbonization and Circular Production and the Use of Cement and Concrete”. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 95–99. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-95-99

On the Issue of Ensuring the Durability of Products and Structures Made of High-Strength Concrete to Explosive Destruction

Number of journal: 1-2-2024
Autors:

Akhtyamov R.Ya.,
Ahmed'yanov R.M.,
Gamaliy E.A.,
Averina G.F.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-90-94
УДК: 666.974

 

AbstractAbout AuthorsReferences
Fire safety procedures are an integral part of the design process of civil and industrial construction facilities. When carrying out design calculations, up-to-date reference data on the resistance of known types of building materials to the effects of open fire and elevated temperatures are used. However, modification of the compositions and properties of such materials may cause changes in their behavior in fire conditions. Thus, new types of high-strength concretes based on Portland cement in practice have shown a tendency to explosive destruction, which significantly affects the reliability of the simulation results of their resistance to prolonged and short-term exposure to elevated temperatures. The presented work provides an overview and assessment of the current state of the issue of ensuring fire safety of structures made of high-strength concrete, additional measures are proposed to improve the existing algorithms for determining their fire resistance.
R.Ya. AKHTYAMOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.M. AHMED’YANOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. GAMALIY, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.F. AVERINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

“Ural Research Institute of Building Materials” LLC (5, bldg 5, Stalevarov Street, Chelyabinsk, 454047, Russian Federation)

1. Neville A., Aitcin P.C. High performance concrete - An overview // Materials and structures. 1998. Vol. 31, pp. 111–117.
2. Баженов Ю.М., Демьянова В.С., Калашников В.И. Модифицированные высококачественные бетоны. М.: АСВ. 2006. 368 с.
2. Bazhenov Yu.M., Demyanova V.S., Kalashnikov V.I. Modifitsirovannyye vysokokachestvennyye betony [Modified high-quality concrete]. Moscow: ASV. 2006. 368 p.
3. Пушенко А.С., Азаров В.Н. Оценка влияния высоких температур пожара на свойства высокопрочного бетона // Вестник Волгоградского государственного архитектурно-строительного университета. Сер.: Строительство и архитектура. 2007. № 7. С. 143–147.
3. Pushenko A.S., Azarov V.N. Assessment of the effect of high fire temperatures on the properties of high-strength concrete. Vestnik of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and architecture. 2007. No. 7, pp. 143–147. (In Russian).
4. Пушенко А.С. К вопросу о прочности высокопрочного бетона и железобетонных колонн при воздействии пожара // Известия Казанского государственного архитектурно-строительного университета. 2008. № 1 (9). С. 116–121.
4. Pushenko A.S. On the issue of the strength of high-strength concrete and reinforced concrete columns under the influence of fire. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2008. No. 1 (9), pp. 116–121. (In Russian).
5. Пухаренко Ю.В., Кострикин М.П. Стойкость фибробетона к высокотемпературному воздействию // Строительство и реконструкция. 2020. № 2. С. 96–106.
5. Pukharenko Yu.V., Kostrikin M.P. Resistance of fibrobetone to high temperature effects. Stroitel’stvo i rekonstruktsiya. 2020. №. 2. pp. 96–106. (In Russian).
6. Hedayati M., Sofi M., Mendis P., Ngo T. A comprehensive review of spalling and fire performance of concrete members. Electronic journal of structural engineering. 2015. Vol. 15, pp. 8–34. DOI: 10.56748/ejse.15199
7. Jansson R. Fire spalling of concrete: theoretical and experimental studies: Dis. … PhD. Royal Institute of Technology. 2013. 154 p.
8. Кузнецова И.С., Рябченкова В.Г., Корнюшина М.П., Саврасов И.П., Востров М.С. Полипропиленовая фибра – эффективный способ борьбы со взрывообразным разрушением бетона при пожаре // Строительные материалы. 2018. № 11. С. 15–20. DOI: https://doi.org/10.31659/0585-430X-2018-765-11-15-20
8. Kuznetsova I.S., Ryabchenkova V.G., Kornyushina M.P., Savrasov I.P., Vostrov M.S. Polypropylene fiber is an effective way to struggle with the explosion-like destruction of concrete in case of fire. Stroitel’nye Materialy [Construction Materials]. 2018. No. 11, pp. 15–20. DOI: https://doi.org/10.31659/0585-430X-2018-765-11-15-20 (In Russian).
9. Bazant Z. Analysis of pore pressure, thermal stress and fracture in rapidly heated concrete, international workshop on fire performance of high-strength concrete. Proceedings. Appendix B: Workshop Papers. 1997. B10, Gaithersburg, MD, (online), https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=916655 (Accessed January 30, 2024)
10. Bazant Z.P., Kaplan M.F. Concrete at high temperatures: material properties and mathematical models. Longman Group Limited.1996. 410 p.
11. Bažant Z.P., Thonguthai W. Pore pressure in heated concrete walls: theoretical prediction. Magazine of Concrete Research. 1979. Vol. 31. Iss. 107, pp. 67–76. https://doi.org/10.1680/macr.1979.31.107.67
12. Klingsch E.W. Explosive spalling of concrete in fire. Report. ETHZurich. 2014. https://doi.org/10.3929/ethz-a-010243000
13. Новиков Н.С. Огнестойкость конструкций из фибробетона для автодорожных тоннелей и метрополитена: Дис. … канд. техн. наук. М., 2019. 167 с.
13. Novikov N.S. Fire resistance of fiber-reinforced concrete structures for road tunnels and subways. Dis... Candidate of Sciences (Engineering). Moscow. 2019. 167 p. (In Russian).
14. Bei S., Zhixiang L. Investigation on spalling resistance of ultra-high-strength concrete under rapid heating and rapid cooling. Case Studies in Construction Materials. 2016. Vol. 4, pp. 146–153. https://doi.org/10.1016/j.cscm.2016.04.001
15. Figueiredo F.P. Effects of recycled steel and polymer fibres on explosive fire spalling of concrete. Fire Technology. 2019. Vol. 55, pp. 1495–1516. https://doi.org/10.1007/s10694-019-00817-9
16. Tapeh A., Al-Bashiti M., Ghasemi A., Hostetter H., Craig D., Naser M.Z. A nomogram for predicting fire-induced spalling. Conference: The 12th International Conference on Structures in Fire (SiF 2022). Hong Kong. 2022.
17. Кузнецова И.С., Рябченкова В.Г. Противопожарные нормы – основа пожарной безопасности зданий и сооружений // Промышленное и гражданское строительство. 2017. № 1. С. 35–39.
17. Kuznetsova I.S., Ryabchenkova V.G. Fire safety standards are the basis for fire safety of buildings and structures. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 1, pp. 35–39. (In Russian).
18. Ахтямов Р.Я., Ахмедьянов Р.М., Гамалий Е.А., Аверина Г.Ф. Актуальные проблемы развития нормативной базы производства и эксплуатации жаростойких бетонов // Строительные мате-риалы. 2023. № 7. С. 4–11. DOI: https://doi.org/10.31659/0585-430X-2023-815-7-4-11
18. Akhtyamov R.Ya., Ahmed’yanov R.M., Gamaliy E.A., Averina G.F. Current problems of development of the regulatory framework for the production and operation of refractory concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-4-11

For citation: Akhtyamov R.Ya., Ahmed'yanov R.M., Gamaliy E.A., Averina G.F. On the issue of ensuring the durability of products and structures made of high-strength concrete to explosive destruction. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 90–94. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-90-94

Modified Gypsum-Cement-Pozzolan Concrete for 3DCP

Number of journal: 1-2-2024
Autors:

Mukhametrakhimov R.Kh.,
Rakhimov R.Z.,
Galautdinov A.R.,
Ziganshina L.V.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-79-89
УДК: 666.972.1

 

AbstractAbout AuthorsReferences
3D concrete printing (3DCP) is an innovative and promising method for constructing buildings and structures. Compositions of fine-grained concrete based on Portland cement are widely used as raw material mixtures in this technology. An alternative to the use of cement binder is the use of gypsum-cement-pozzolan binder, which can significantly reduce the cost of the finished product and, accordingly, increase its competitiveness. The raw material mixtures based on gypsum-cement-pozzolan binder presented on the construction market do not fully meet the requirements of 3DCP. Achieving optimal performance of gypsum-cement-pozzolan mixtures in 3DCP is possible by regulating the content of fine aggregate in the composition of fine-grained concrete, as well as the use of multicomponent modifying additives. The purpose of this work is to develop modified gypsum-cement-pozzolan concretes for 3DCP based on optimization of aggregate content and multifunctional additive, providing optimal rheotechnological properties of raw mixtures and technological characteristics of finished products. The formation of samples during experimental studies was carried out using the layer-by-layer extrusion method on a workshop construction 3D printer “AMT S-6044”. Modified gypsum-cement-pozzolan concretes have been developed for 3DCP with increased ultimate shear stress of the mixture (87.6 Pa), dimensional stability (23 cm), average composite density (1920 g/m3), flexural strength (8.4 MPa) and compression (30.6 MPa) and water resistance (0.85). The possibility of targeted regulation of the structure and properties of gypsum-cement-pozzolan mixtures and concrete due to the synergistic effect of the components of the developed multifunctional complex additive, including an aqueous solution of a polycarboxylate ether, a copolymer based on carboxylic acid esters, and a homogeneous mixture of oligoethoxysiloxanes, has been proven. The results obtained are consistent with the results of the differential thermal analysis of modified gypsum-cement-pozzolanic stone.
R.Kh. MUKHAMETRAKHIMOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.Z. RAKHIMOV, Doctor of Sciences (Engeneering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.R. GALAUTDINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.V. ZIGANSHINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)

1. Адамцевич А.О., Пустовгар А.П. Аддитивное строительное производство: исследование эффекта анизотропии прочностных характеристик бетона // Строительные материалы. 2022. № 9. С. 18–24. DOI: 10.31659/0585-430X-2022-806-9-18-24
1. Adamtsevich A.O., Pustovgar A.P. Additive manufacturing in construction: the research of the anisotropy concrete strength effect. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
2. Адамцевич А.О., Пустовгар А.П., Адамцевич Л.А. Аддитивное строительное производство: особенности применения технологии // Промышленное и гражданское строительство. 2023. № 7. C. 70–78. DOI: 10.33622/0869-7019.2023.07.70-78
2. Adamtsevich A.O., Pustovgar A.P., Adamtsevich L.A. Additive construction production: features of the technology application. Promyshlennoe i grazhdanskoe stroitel’stvo. 2023. No. 7, pp. 70–78. (In Russian). DOI: 10.33622/0869-7019.2023.07.70-78
3. Акулова И.И., Славчева Г.С., Макарова Т.В. Технико-экономическая оценка эффективности применения 3D-печати в жилищном строительстве // Жилищное строительство. 2019. № 12. С. 52–56. DOI: https://doi.org/10.31659/0044-4472-2019-12-52-56
3. Akulova I.I., Slavcheva G.S., Makarova T.V. Technical and economic estimate of efficiency of using 3D printing in housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 12, pp. 52–56. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-12-52-56
4. Пустовгар А.П., Адамцевич Л.А., Адамцевич А.О. Международный опыт исследований в области аддитивного строительного производства // Жилищное строительство. 2023. № 11. С. 4–10. DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
4. Pustovgar A.P., Adamtsevich L.A., Adamtsevich A.O. International research experience in the field of additive construction manufacturing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
5. Мальцева Е.В., Дмитриев А.В. Концепция развития аддитивных технологий в индивидуальном жилом строительстве // Жилищное строительство. 2023. № 11. С. 12–17. DOI: https://doi.org/10.31659/0044-4472-2023-11-12-17
5. Maltseva E.V., Dmitriev A.V. The concept of development of additive technologies in individual housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 12–17. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-12-17
6. Rehman A.U., Birru B.M., Kim J.-H. Set-on-demand 3D Concrete Printing (3DCP) construction and potential outcome of shotcrete accelerators on its hardened properties. Case Studies in Construction Materials. 2023. Vol. 18, pp. e01955. DOI: 10.1016/j.cscm.2023.e01955
7. Li S., Nguyen-Xuan H., Tran P. Digital design and parametric study of 3D concrete printing on non-planar surfaces. Automation in Construction. 2023. Vol. 145, pp. 104624. DOI: 10.1016/J.AUTCON.2022.104624
8. Славчева Г.С., Бритвина Е.А., Шведова М.А., Юров П.Ю. Влияние дозировки и гранулометрии наполнителей на показатели экструдируемости смесей для 3D-печати // Строительные материалы. 2022. № 1–2. С. 21–29. DOI: 10.31659/0585-430X-2022-799-1-2-21-29
8. Slavcheva G.S., Britvina E.A., Shvedova M.A., Yurov P.Y. Effect of filler and aggregates dosage and particle size range on the 3d-printable mixture extrudability. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 21–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-21-29
9. Славчева Г.С., Артамонова О.В. Реологическое поведение дисперсных систем для строительной 3D-печати: проблема управления на основе возможностей арсенала «Нано» // Нанотехнологии в строительстве: научный интернет-журнал. 2018. Т. 10. № 3. С. 107–122. DOI: 10.15828/2075-8545-2018-10-3-107-122
9. Slavcheva G.S., Artamonova O.V. The rheological behavior of disperse systems for 3d printing in construction: the problem of control and possibility of «nano» tools application. Nanotekhnologii v stroitel’stve: scientific online journal. 2018. Vol. 10. No. 3, pp. 107–122. (In Russian). DOI: 10.15828/2075-8545-2018-10-3-107-122
10. Мухаметрахимов Р.Х., Зиганшина Л.В. Влияние портландцементов с различным минералогическим составом на основные свойства композитов, сформованных методом послойного экструдирования (3D-печати) // Известия Казанского государственного архитектурно-строительного университета. 2021. № 2 (56). С. 37–49. DOI: 10.52409/20731523_2021_2_37
10. Mukhametrakhimov R.Kh., Ziganshina L.V. Influence of Portland cements with different mineralogical composition on basic properties of 3D-printed composites. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2021. No. 2 (56), pp. 37–49. (In Russian). DOI: 10.52409/20731523_2021_2_37
11. Bozzano F., Esposito C., Mazzanti P., Innocca F., Romeo S. Urban engineered slope collapsed in Rome on February 14th, 2018: Results from remote sensing monitoring. Journal of Geosciences. 2020. Vol. 10. No. 9. DOI: 10.3390/geosciences10090331
12. Патент РФ 2794037. Способ 3D-печати бетоном с длительным технологическим перерывом / Мухаметрахимов Р.Х., Зиганшина Л.В. Заявл. 01.11.2022. Опубл. 11.04.2023.
12. Patent RF 2794037. Sposob 3D-pechati betonom s dlitel’nym tekhnologicheskim pereryvom [A method for 3D printing concrete with a long technological break]. Mukhametrakhimov R.Kh., Ziganshina L.V. Declared 01.11.2022. Published 11.04.2023. (In Russian)
13. Kuznetsov D.V., Klyuev S.V., Ryazanov A.N., Sinitsin D.A., Pudovkin A.N., Kobeleva E.V., Nedoseko I.V. Dry mixes on gypsum and mixed bases in the construction of low-rise residential buildings using 3D printing technology. Construction Materials and Products. 2023. Vol. 6. No. 6. DOI: 10.58224/2618-7183-2023-6-6-5
14. Рязанов А.Н., Шигапов Р.И., Синицин Д.А., Кинзябулатова Д.Ф., Недосеко И.В. Использование гипсовых композиций в технологиях строительной 3D-печати малоэтажных жилых зданий. Проблемы и перспективы // Строительные материалы. 2021. № 8. С. 39–44. DOI: 10.31659/0585-430X-2021-794-8-39-44
14. Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). DOI: 10.31659/0585-430X-2021-794-8-39-44
15. Xue W., Twenda C., Shahria Alam M., Xu L., Wan Z. Experimental study on seepage characteristics and stress sensitivity of desulfurization gypsum based concrete under triaxial stress. Journal of Materials Research and Technology. 2023. Vol. 24, pp. 6425–6437. DOI: 10.1016/J.JMRT.2023.04.241
16. Fu J., Haeri H., Sarfarazi V., Asgari K., Marji M. F. The shear behaviors of concrete-gypsum specimens containing double edge cracks under four-point loading conditions. Theoretical and Applied Fracture Mechanics. 2022. Vol. 119, pp. 103361. DOI: 10.1016/j.tafmec.2022.103361
17. Рахимов Р.З., Рахимова Н.Р. История композиционных минеральных вяжущих веществ. СПб.: Лань, 2023. 268 с.
17. Rakhimov R.Z., Rakhimova N.R. Istoriya kompozitsionnykh mineral’nykh vyazhushchikh veshchestv [History of composite mineral binders]. Saint-Peterburg: Lan’. 2023. 268 p.
18. Рахимов Р.З., Халиуллин М.И. Состояние и тенденции развития промышленности гипсовых строительных материалов // Строительные материалы. 2010. № 12. С. 44–46.
18. Rakhimov R.Z., Khaliullin M.I. State and development trends of the gypsum building materials industry. Stroitel’nye Materialy [Construction Materials]. 2010. No. 12, pp. 44–46. (In Russian).
19. Рахимов Р.З., Рахимова Н.Р. История науки и техники. 3-е изд., перераб. и доп. СПб.: Лань, 2022. 528 с.
19. Rakhimov R.Z., Rakhimova N.R. Istoriya nauki i tekhniki. 3-e izdanie, pererabotannoe i dopolnennoe. [History of science and technology. 3rd edition, revised and expanded]. Saint-Peterburg: Lan’. 2022. 528 p.
20. Chernysheva N., Shatalova S., Lesovik V., Kozlov P. Deformation characteristics of dense and foamed mortars based on cement and gypsum-to-cement binders for 3D printing. Construction and Building Materials. 2023. Vol. 409. 133986. https://doi.org/10.1016/j.conbuildmat.2023.133986
21. Huang J., Duan B., Cai P., Manuka M., Hu H., Hong Z., Cao R., Jian S., Ma B. On-demand setting of extrusion-based 3D printing gypsum using a heat-induced accelerator. Construction and Building Materials. 2021. Vol. 304. 124624. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124624
22. Chen Y., Li Z., Figueiredo S. C., Çopuroğlu O., Veer F., Schlangen E. Limestone and calcined clay-based sustainable cementitious materials for 3d concrete printing: a fundamental study of extrudability and early-age strength development. Applied Sciences. 2019. Vol. 9. No. 9, pp. 1809. DOI: 10.3390/app9091809
23. Weng Y., Li M., Zhang D., Tan M. J., Qian S. Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. Cement and Concrete Research. 2021. Vol. 143. 106386. https://doi.org/10.1016/j.cemconres.2021.106386
24. Baduge S.K., Navaratnam S., Abu-Zidan Y., McCormack T., Nguyen K., Mendis P., Zhang G., Aye L. Improving performance of additive manufactured (3D printed) concrete: a review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures. 2021. Vol. 29, pp. 1597–1609. DOI: 10.3390/app9091809
25. Breseghello L., Naboni R. Toolpath-based design for 3D concrete printing of carbon-efficient architectural structures. Additive Manufacturing. 2022. Vol. 56, pp. 102872. DOI: 10.1016/j.addma.2022.102872
26. Лесовик В.С., Елистраткин М.Ю., Глаголев Е.С., Шаталова С.В., Стариков М.С. Формирование свойств композиций для строительной печати // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2017. № 10. С. 6–14. DOI: 10.12737/article_59cd0c57ede8c1.83340178
26. Lesovik V.S., Elistratkin M.Yu., Glagolev E.S., Shatalova S.V., Starikov M.S. Formation of properties of compositions for construction printing. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 10, pp. 6–14. (In Russian). DOI: 10.12737/article_59cd0c57ede8c1.83340178
27. Шорстова Е.С., Клюев С.В., Клюев А.В. Фибробетон для 3D-печати // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2019. № 3. С. 22–27. DOI: 10.34031/article_5ca1f6300a4956.62644399
27. Shorstova E.S., Klyuev S.V., Klyuev A.V. Fiber-reinforced concrete for 3D printing. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2019. No. 3, pp. 22–27. (In Russian). DOI: 10.34031/article_5ca1f6300a4956.62644399
28. Potapova E., Guseva T., Shchelchkov K., Fischer H.-B.Mortar for 3D printing based on gypsum binders. Materials Science Forum. 2021. Vol. 1037, pp. 26–31. DOI: 10.4028/www.scientific.net/MSF.1037.26
29. Шаталова С.В., Чернышева Н.В., Лесовик В.С., Елистраткин М.Ю., Шеремет А.А. Разработ-ка комплексного решения для 3D-печати стеновых конструкций // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2022. № 10. С. 8–19. DOI: 10.34031/2071-7318-2022-7-10-8-19
29. Shatalova S.V., Chernysheva N.V., Lesovik V.S., Elistratkin M.Yu., Sheremet A.A. Development of a comprehensive solution for 3D printing of wall structures. Vestnik of the Belgorod State Technological University named after. V.G. Shukhov. 2022. No. 10, pp. 8–19. (In Russian). DOI: 10.34031/2071-7318-2022-7-10-8-19
30. Dvorkin L.I. The influence of polyfunctional modifier additives on properties of cement-ash fine-grained concrete. Magazine of Civil Engineering. 2020. Vol. 93. No. 1, pp. 121–133. DOI: 10.18720/MCE.93.10
31. Демьяненко О.В., Куликова А.А., Копаница Н.О. Оценка влияния комплексной полифункциональной добавки на эксплуатационные характеристики цементного камня и бетона // Вестник Томского государственного архитектурно-строительного университета. 2020. Т. 22. № 5. С. 139–152. DOI: 10.31675/1607-1859-2020-22-5-139-152
31. Demyanenko O.V., Kulikova A.A., Kopanitsa N.O. Assessment of the influence of a complex multifunctional additive on the performance characteristics of cement stone and concrete. Vestnik of Tomsk State University of Architecture and Civil Engineering. 2020. Vol. 22. No. 5, pp. 139–152. (In Russian). DOI: 10.31675/1607-1859-2020-22-5-139-152
32. Вдовин Е.А., Буланов П.Е., Строганов В.Ф. Повышение характеристик дорожных цементогрунтов кремнийорганическими соединениями // Известия Казанского государственного архитектурно-строительного университета. 2023. Т. 66. № 4. С. 301–309. DOI: 10.52409/20731523_2023_4_301
32. Vdovin E.A., Bulanov P.E., Stroganov V.F. Improving the characteristics of road soil-cement with organosilicon compounds. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2023. Vol. 66. No. 4, pp. 301–309. (In Russian). DOI: 10.52409/20731523_2023_4_301
33. Батова М.Д., Жукова Н.С., Гордина А.Ф., Яковлев Г.И., Шайбадуллина А.В., Эльрефаи  А.Э.М.М., Орбан З. Гипсовые материалы, модифицированные комплексной добавкой на основе наносилики // Строительные материалы. 2022. № 4. С. 64–71. DOI: 10.31659/0585-430X-2022-801-4-64-71
33. Batova М.D., Zhukova N.S., Gordina А.F., Yakovlev G.I., Shaibadullina A.V., Elrefai А.E.М.М., Orban Z. Gypsum materials modified with complex additive based on nanosilica. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 64–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-64-71
34. Новиченкова Т.Б., Петропавловская В.Б., Белов Д.В. Повышение водостойкости гипсовых материалов за счет применения комплексной добавки извести и метакаолина. Саморазвивающаяся среда технического вуза: научные исследования и экспериментальные разработки. Материалы IV Всероссийской научно-практической конференции. Тверь, 20 февраля 2020. С. 113–121.
34. Novichenkova T.B., Petropavlovskaya V.B., Belov D.V. Increasing the water resistance of gypsum materials through the use of a complex additive of lime and metakaolin. Self-developing environment of a technical university: scientific research and experimental development. Materials of the IV All-Russian Scientific and Practical Conference. Tver. 20 February 2020, pp. 113–121. (In Russian).
35. Шведова М.А., Артамонова О.В. Особенности формирования цементных композиционных материалов при микро- и наномодифицировании
многокомпонентными добавками // Химия, физика и механика материалов. 2021. № 4 (31). С. 4–29.
35. Shvedova M.A., Artamonova O.V. Features of the formation of cement composite materials during micro- and nanomodification with multicomponent additives. Khimiya, fizika i mekhanika materialov. 2021. No. 4 (31), pp. 4–29. (In Russian).
36. Зиганшина Л.В. Мелкозернистые бетоны в технологии аддитивного производства (3D-печати): Дис. ... канд. техн. наук. Казань, 2022. 282 с.
36. Ziganshina L.V. Fine-grained concrete in additive manufacturing technology (3DCP). Cand. Diss. (Engineering). Kazan. 2022. 282 p. (In Russian)
37. Изотов В.С., Мухаметрахимов Р.Х., Галаутдинов А.Р. Комплексная добавка для повышения эффективности гипсоцементнопуццоланового вяжущего // Строительные материалы. 2016. № 8. С. 70–73.
37. Izotov V.S., Mukhametrakhimov R.Kh., Galautdinov A.R. Complex additive to increase the efficiency of gypsum-cement-pozzolanic binder Stroitel’nye Materialy [Construction Materials]. 2016. No. 8, pp. 70–73. (In Russian).
38. Галаутдинов А.Р., Мухаметрахимов Р.Х. Повышение водостойкости гипсоцементно-пуццоланового вяжущего на основе низкомарочного гипса // Известия Казанского государственного архитектурно-строительного университета. 2016. № 4 (38). С. 333–343.
38. Galautdinov A.R., Mukhametrakhimov R.Kh. Increasing the water resistance of gypsum-cement-pozzolanic binder based on low-quality gypsum. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2016. No. 4 (38), pp. 333–343. (In Russian).
39. Патент РФ 2552274. Способ приготовления гипсоцементно-пуццолановой композиции / Изотов В.С., Мухаметрахимов Р.Х., Галаутдинов А.Р. Заявл. 14.04.2014. Опубл. 10.06.2015.
39. Patent RF 2552274. Sposob prigotovleniya gipsotsementno-putstsolanovoi kompozitsii [Method for preparing gypsum cement-pozzolanic composition]. Izotov  V.S., Mukhametrakhimov R.Kh., Galautdi-nov  A.R. Declared 14.04.2014. Published 10.06.2015. (In Russian).
40. Мухаметрахимов Р.Х., Галаутдинов А.Р. Полифункциональный химический модификатор гипсоцементных композиций // Строительство уникальных зданий и сооружений. 2018. № 11 (74). С. 17–25. DOI: 10.18720/CUBS.74.2
40. Mukhametrakhimov R.Kh., Galautdinov A.R. Multi-functional chemical modifier for gypsum cement compositions. Stroitel’stvo unikal’nykh zdanii i sooruzhenii. 2018. No. 11 (74), pp. 17–25. (In Russian). DOI: 10.18720/CUBS.74.2

For citation: Mukhametrakhimov R.Kh., Rakhimov R.Z., Galautdinov A.R., Ziganshina L.V. Modified gypsum-cement-pozzolan concrete for 3DCP. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 79–89. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-79-89

Mechanics of Durability of Structural Concrete: a New Approach to the Phenomenon of Degradation. Part 1. Shrinkage

Number of journal: 1-2-2024
Autors:

Leonovich S.N.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-74-78
УДК: 691.32

 

AbstractAbout AuthorsReferences
Concrete is a material widely used in construction works and buildings that support people’s lives. The operability of concrete structures can be maintained for a long time if such structures are properly designed and built. The article proposes a new approach to the mechanics of durability to establish a systematic prediction and assessment of the be- havior of reinforced concrete structures depending on time. The chemical and mechanical wear of cement materials over time due to chemical reactions, environmental effects and external loads is described by physico-chemical models of reaction, transfer, destruction and their compounds. In addition, the operability of concrete structures over time is discussed. The outlines of several representative research projects on the mechanics of durability are presented.
S.N. LEONOVICH1,2, Doctor of Sciences (Engineering), Professor, Foreign Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belarusian National Technical University (65 Nezavisimosti Prospect, Minsk, 22OO13, Republic of Belarus)
2 Qingdao University of Technology (266033, China, 11 Fushun Rd, Qingdao)

1. Москвин В.М., Иванов Ф.М., Алексеев С.И., Гузеев Е.А. Коррозия бетона и железобетона, методы их защиты. М.: Стройиздат, 1980. 536 с.
1. Moskvin V.M., Ivanov F.M., Alekseev S.I., Guzeev E.A. Korroziya betona i zhelezobetona, metody ikh zashchity [Corrosion of concrete and reinforced concrete, methods of their protection]. Moscow: Stroyizdat, 1980. 536 p.
2. Алексеев С.Н., Иванов Ф.М., Модры С., Шиссль П. Долговечность железобетона в агрессивных средах. М.: Стройиздат, 1990. 320 с.
2. Alekseev S.N., Ivanov F.M., Modry S., Schissl P. Dolgovechnost’ zhelezobetona v agressivnykh sredakh [Durability of reinforced concrete in aggressive environments]. Moscow: Stroyizdat, 1990. 320 p.
3. Choate P., Walter S. America in ruins: Beyond the public works pork barrel. Council of State Planning Agencies, 1981. 97 p.
4. Шалый Е.Е., Леонович С.Н., Ким Л.В. Деградация железобетонных конструкций морских сооружений от совместного воздействия карбонизациии хлоридной агрессии // Строительные материалы. 2019. № 5. С. 67–72. DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
4. Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine worksfrom the combined impact of carbonation andchloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72.(In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
5. Морозов Н.М., Морозова Н.Н. Исследование долговечности модифицированных бетонов для монолитного строительства // Известия Казанского государственного архитектурно-строительного университета. 2012. № 4 (22). С. 312–318.
5. Morozov N.M., Morozova N.N. Study of the durability of modified concrete for monolithic construction. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2012. No. 4 (22). pp. 312–318. (In Russian).
6. Гришина А.Н., Королев Е.В., Михеев А.В., Гладких В.А. Влажностные деформации бетона, подверженного щелочной коррозии. Экспериментальные результаты // Вестник гражданских инженеров. 2020. № 6 (83). С. 140–148.
6. Grishina A.N., Korolev E.V., Mikheev A.V., Gladkikh V.A. Humidity deformations of concrete subject to alkali corrosion. experimental results. Vestnik grazhdanskikh inzhenerov. 2020. No. 6 (83).pp. 140–148. (In Russian).
7. Ulm F.J., Bazant Z.P., Wittmann F.H. Creep, shrinkage and durability mechanics of concrete and other quasi-brittle mateluals. Proceedings of the Sixth International Conference This email address is being protected from spambots. You need JavaScript enabled to view it.–22 August 2001, Cambridge (MA), USA. 809 p.
8. Powers T.K. Mechanisms of shrinkage and reversible creep in hardening cement paste. The Structure of concrete and its behaviour under load: Proceedings of an international conference. London. 1965, pp. 319–344.
9. Kondo R., Ueda S. Kinetics and mechanism of cement hydration. Proceedings of the Fifth International Symposium on the Chemistry of Cement. Admixtures and special cements. Tokyo. 1968, pp. 203–248.
10. Tomosawa F. Cement hydration model, proceedings of the cement technology annual meeting. Cement Association of Japan. 1974. Vol. 28, pp. 53–57.
11. Maruyama I., Matsushita T., Noguchi T. Numerical simulation of Portland cement hydration based on particle kinetic model and multicomponent concept. 2008.
12. Bjφntegaard Ø., Sellevold, E.J. Interaction between thermal expansion and autogenous deformation in high performance concretes. Materials and structures. 2001. Vol. 34. Iss. 5, pp. 266–272. DOI: 10.1007/BF02482205
13. Benz D., Kenard D.A., Barogel-Buni V., Garboci E.D., Jennings H.M. Simulation of shrinkage drying of cement paste and mortar: Part 1. Structural models from nanometers to millimeters. Materials and structure.1995. Vol. 28, pp. 450–458. DOI:10.1007/BF02473164
14. Koenders E.A.B., van Breugel K. Numerical simulation of autogenous shrinkage of cement paste. Cement and Concrete Research. 1997. Vol. 27. Iss. 10, pp. 1489–1499. https://doi.org/10.1016/S0008-8846(97)00170-1
15. Asamoto S., Ishida T., Maekawa K. Time-dependent constitutive model of concrete hardening based on the thermodynamic state of moisture in fine pores. Journal of Advanced Concrete Technology. 2006. Vol. 4(2), pp. 301–323. DOI:10.3151/jact.4.301
16. Srisoros W., Nakamura H., Kunieda M., Ishikawa Y. Analysis of crack propagation due to thermal stress in concrete considering solidified constitutive model. Journal of Advanced Concrete Technology. 2007. Vol. 5. No. 1, pp. 99–112.

For citation: Leonovich S.N. Mechanics of durability of structural concrete: a new approach to the phenomenon of degradation. Part 1. Shrinkage. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 74–78. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-74-78

Nodes of Experimental Installations for Testing Concrete for Creep

Number of journal: No.1-2-2024
Autors:

Arleninov P.D.,
Krylov S.B.,
Konin D.V.,
Neschadimov V.A.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-67-73
УДК: 620.1.058.5:624-2/-9

 

AbstractAbout AuthorsReferences
Installations of the mid-twentieth century for testing concrete for creep, as a rule, have significant wear and are not intended for testing new concrete. To carry out testing of modern high-strength concrete, their modernization and retrofitting is required. Due to the lack of standard technical solutions, design and survey work is required in preparation for testing. The purpose of the presented study was to study the nodes and elements of spring installations for determining the creep of concrete and to establish the possibility of their use under increased loads, to modernize installations for the possibility of testing samples of various lengths without complete disassembly, to ensure safety during such tests. To determine the strength and stiffness parameters of the springs, it was necessary to conduct two-stage tests with the development of special equipment. Also, according to the results of the evaluation of the hinge assemblies for axial load transfer to the sample, their replacement with a change in design solutions was required. According to the results of experimental studies, individual springs and thrust hinge elements were fragilely destroyed, in connection with which a hinge assembly of a new design was developed, changes have been made to the design of the installation to ensure the physical protection of maintenance personnel, a modular system of steel spacers with protection against horizontal movement has been developed, which makes it possible to test samples of different lengths on existing installations without changing the configuration of the installations themselves. An important result of the work is the proposed system of double experimental control, when first a random test of individual elements is carried out to assess the possible level of loads on the equipment, then a continuous control of the already assembled test installations is carried out for large loads relative to the planned experiment. Only in this case it is possible to simultaneously ensure high reliability of the results obtained during testing, reliability and durability of the equipment. Moreover, it is impossible to carry out such work only numerically without testing, as practice has shown.
P.D. ARLENINOV1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.B. KRYLOV1, Doctor of Sciences (Engineering);
D.V. KONIN3, Candidate of Sciences (Engineering);
V.A. NESCHADIMOV2, Candidate of Sciences (Engineering)

1 Research Institute of Concrete and Reinforced Concrete named after A.A. Gvozdev (NIIZHB), JSC “Research Center of Construction” (6, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
3 Central Research Institute of Building Structures named after. V.A. Kucherenko (TSNIISK), JSC “Research Center of Construction” (6, bldg. 5, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. Gaidzhurov P.P., Iskhakova E.R., Savelyeva N.A. The influence of concrete creep on the deflection of a prestressed bridge beam. Zhelezobetonnyye konstruktsii. 2023. No. 3 (3), pp. 3–10. (In Russian).
2. Tamrazyan A.G. On the stability of eccentrically compressed reinforced concrete elements with small eccentricity taking into account the rheological properties of concrete. Zhelezobetonnyye konstruktsii. 2023. No. 2 (2), pp. 48–57.
3. Plevkov V.S., Tamrazyan A.G., Kudyakov K.L. Prochnost’ i treshchinostoykost’ izgibayemykh fibrobetonnykh elementov s prednapryazhennoy steklokompozitnoy armaturoy pri staticheskom i kratkovremennom dinamicheskom nagruzhenii [Strength and crack resistance of flexible fiber-reinforced concrete elements with prestressed glass-composite reinforcement under static and short-term dynamic loading]. Tomsk: Tomsk State University of Architecture and Civil Engineering, 2021. 204 p.
4. Arleninov P.D., Krylov S.B., Kalmakova P.S., Donov A.V. Eksperimental’nyye issledovaniya protsessa relaksatsii betona v raznykh rezhimakh [Experimental studies of the relaxation process of concrete in different modes]. Vestnik NIC Stroitel’stvo. 2023. No. 1 (36), pp. 86–98. (In Russian).
5. Vedyakov I.I., Konin D.V., Egorova A.A. Features of the use of steel forgings in supporting structures. Stroitel’naya mekhanika i raschet sooruzheniy. 2022. No. 2 (301), pp. 60–70. (In Russian).
6. Konin D.V. Experimental studies of models of column joints with imperfections between milled ends. Stroitel’stvo i rekonstruktsiya. 2010. No. 1 (27), pp. 29–35. (In Russian).
7. Travush V.I., Konin D.V. Numerical and experimental studies of models of column joints with imperfections between milled ends. International Journal for Computational Civil and Structural Engineering. 2010. Vol. 6. No. 1–2, pp. 209–211. (In Russian).
8. Patent No. RU 2370565 C2. Steel for helical springs with a rod diameter of 27–33 mm and a spring made from it: No. 2007132482/02. Andreev A.P., Andreev A.A., Bochkarev V.N., Chizhov V.A., Fedin V.M., Borts A.I., Ushakov B.K., Reshetnikov S.A., Mulyukin I.S., Matskevich V.V. Application 08/29/2007. Publ. 10/20/2009.
9. Sorokin V.G. Stali i splavy. Marochnik [Steels and alloys. Vintage]. Moscow: Intermet inzhiniring. 2001, pp. 294–295.
10. Vlasenko A.K. Calculation of a compression spring for a laboratory test bench. International scientific and technical conference of young scientists of BSTU named after. V.G. Shukhov, dedicated to the 160th anniversary of the birth of V.G. Shukhov. 2013. No. 1, pp. 1064–1069. (In Russian).
11. Borisov M.R., Zemlyanushnov N.A., Zemlyanushnova N.Yu., Porokhnya A.A. To improve the safety of machines and mechanisms by strengthening springs. Current problems of ensuring security in the technosphere and protecting the population and territories in emergency situations: a collection of scientific papers based on the materials of the All-Russian scientific and practical conference dedicated to the 15th anniversary of the founding of the department “Protection in Emergency Situations”. Stavropol, May 18–19, 2016, pp. 198–201. (In Russian).
12. Zemlyanushnova N.Yu., Tebenko Yu.M. Classification and testing of springs. Vestnik mashinostroyeniya. 2002. No. 5, pp. 8–13. (In Russian).
13. Copyright certificate No. 1154348 A1 USSR, IPC C21D 9/02. Installation for restoring the elasticity of springs: No. 3604995. Yavorsky A.A., Kobylyansky V.E., Kharlap M.M.; Applicant Design, Engineering and Technology Institute “Moldselkhoztekhproekt”: Application. 06/10/1983: Publ. 05/07/1985.
14. Badikov R.N., Buketkin B.V., Sorokin F.D. The influence of coil contact on the elastic characteristics of an embedded cylindrical spring subject to edge convergence beyond the limits of stability. Izvestiya of higher educational institutions. Mechanical engineering. 2007. No. 9, pp. 3–5. (In Russian).
15. Shavrin O.I., Skvortsov A.I., Domnin A.K. Finite element analysis of the performance of elastic elements with a nanosubstructure and prediction of durability under cyclic loading conditions. Modern trends in technical sciences: materials of the III International Scientific Conference. Kazan. October 2014, pp. 58–62. URL: https://moluch.ru/conf/tech/archive/123/6202/ (In Russian).

For citation: Arleninov P.D., Krylov S.B., Konin D.V., Neschadimov V.A. Nodes of experimental installations for testing concrete for creep. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 67–73. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-67-73

Granite Crushing Screenings as a Component Factor in the Concrete Structure Formation. Part II: Experimental Studies of Structure-forming Potential

Number of journal: 1-2-2024
Autors:

Makeev A.I.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-59-66
УДК: 691.32

 

AbstractAbout AuthorsReferences
The paper considers the results of experimental studies of the individual and joint influence of macro-, meso- and micro-nanofractions of granite crushing screenings on the processes of structure formation and properties of cement concrete. It has been established that in the processes of formation of the structure of fine-grained concrete and the potential for resistance to its destruction, all fractions of stone crushing screenings perform their specific functions as a component factor. Macro-sized (crushed stone) grains of screening of the 5–10 mm fraction form a macro-scale frame of the addition system, which perceives force load with the accumulation of loading energy and braking of main cracks. Sand mesoparticles of fraction 0.16–5 mm fill the intergranular space of the system for adding macroparticles with dissipation of external loading energy in the matrix material. The microfraction of granite crushing screenings (the fraction is <0.16 mm), along with the effect of replacing the volume of cement stone, exhibits physical and chemical activity in the phase formation of hydrate compounds. It is shown that in the initial screening of granite crushing, the structure-forming role of its particles is not manifested effectively enough, the main reason for which is the “excess” of sand fractions, which push apart the grains of macrofractions and increase the water demand of the concrete mixture. Traditional methods of enriching screenings do not solve this problem. The principle of conditioning screenings by saturating them with macro- and micro-sized fractions is discussed. Based on this principle, a technology for mechanical processing of screenings has been developed to produce a “line” of products for targeted use in the building materials and products industry. The introduction of such technology will significantly increase the efficiency of construction and technological recycling of stone crushing screenings through maximum use of the structure-forming potential of their polydisperse composition.
A.I. MAKEEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State Technical University (84, 20-letiya Oktyabrya Street, Voronezh, 394006, Russian Federation)

1. Макеев А.И., Чернышов Е.М. Отсевы дробления гранита как компонентный фактор формирования структуры бетона. Ч. I. Постановка проблемы. Идентификация отсевов // Строительные материалы. 2018. № 4. С. 56–60. DOI: https://doi.org/10.31659/0585-430X-2018-758-4-56-60
1. Makeev A.I., Chernyshov E.M. Granite crushing screenings as a component factor of concrete structure formation. Part 1. Problem definition. Identification of screenings as a component factor of structure formation. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 56–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-758-4-56-60
2. Пухаренко Ю.В., Панарин С.Н., Веселова С.И. и др. Наномодифицированный бетон на основе отходов камнедробления // Вестник гражданских инженеров. 2011. № 3. С. 72–76.
2. Pukharenko Yu.V., Panarin S.N., Veselova S.I. et. al. Nanomodified concrete based on stone crushing waste. Vestnik grazhdanskikh inzhenerov. 2011. No. 3, pp. 72–76. (In Russian).
3. Макеев А.И. Научно-техническое обоснование технологии глубокой переработки отсевов дробления гранитного щебня // Научный журнал строительства и архитектуры. 2011. № 3. С. 56–67.
3. Makeev A.I. Scientific and technical justification for the technology of deep processing of crushed granite stone screenings. Nauchnyy zhurnal stroitelstva i arkhitektury. 2011. No. 3, pp. 56–67. (In Russian).
4. Морозов Н.М., Авксентьев В.И., Боровских И.В., Хозин В.Г. Применение отсевов дробления щебня в самоуплотняющихся бетонах // Инженерно-строительный журнал. 2013. № 7. С. 26–31.
4. Morozov N.M., Avksentyev V.I., Borovskikh I.V., Khozin V.G. Application of crushed stone screenings in self-compacting concrete. Magazine of Civil Engineering. 2013. No. 7, pp. 26–31. (In Russian).
5. Демьянова В.С., Чумакова О.А. Комплексное использование материалов и отходов добычи камнедробления нерудных полезных ископаемых в мелкозернистых бетонах нового поколения // Региональная архитектура и строительство. 2014. № 4. С. 57–60.
5. Demyanova V.S., Chumakova O.A. Integrated use of materials and waste from the extraction of stone crushing of non-metallic minerals in fine-grained concrete of a new generation. Regionalnaya arkhitektura i stroitelstvo. 2014. No. 4, pp. 57–60. (In Russian).
6. Бурба Д.В., Сафончик Д.И. К вопросу о применении гранитных отходов камнеобработки РУПП «Гранит» при создании эффективных строительных материалов. Архитектура, строительство, транспорт: Материалы Международной научно-практической конференции (к 85-летию ФГБОУ ВПО «СибАДИ»). Омск, 2015. С. 467–471.
6. Burba D.V., Safonchik D.I. On the issue of using granite stone processing waste from RUIE «Granit» in the production of effective building materials. Architecture, construction, transport: materials of the International Scientific and Practical Conference. Omsk. 2015, pp. 467–471 (In Russian).
7. Mármol I., Ballester P., Cerro S., Monrós G., Morales J., Sánchez L. Use of granite sludge wastes for the production of coloured cement-based mortars. Cement and Concrete Composites. 2010. Vol. 32. No. 8, pp. 617–622. DOI: 10.1016/j.cemconcomp.2010.06.003
8. Singh S., Nande N., Bansal P., Nagar R. Experimental investigation of sustainable concrete made with granite industry by-product. Journal of Materials in Civil Engineering. 2017. Vol. 29. No. 6, рр. 04017017. DOI: 10.1061/(ASCE)MT.1943-5533.0001862
9. Medina G., Sáez Del Bosque I. F., Frías M. [et al.] Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations. Journal of Cleaner Production. 2017. Vol. 148, pp. 467–476. DOI: 10.1016/j.jclepro.2017.02.048
10. Rezende Leite F., Lúcia Pereira Antunes M., Cipriano Rangel E. et al. An ecodesign method application at the experimental stage of construction materials development: A case study in the production of mortar made with ornamental rock wastes. Construction and Building Materials. 2021. Vol. 293, рр. 123505. DOI: 10.1016/j.conbuildmat.2021.123505
11. Nayak S.K., Satapathy A., Mantry S. Use of waste marble and granite dust in structural applications: A review. Journal of Building Engineering. 2022. Vol. 46, рр. 103742. DOI: 10.1016/j.jobe.2021.103742
12. Rashwan M.A., Mashaly A.O., Al Basiony T.M., Khalil M.M. Self-compacting concrete between workability performance and engineering properties using natural stone wastes. Construction and Building Materials. 2022. Vol. 319, рр. 126132. DOI: 10.1016/j.conbuildmat.2021.126132
13. Ahmadi S.F., Reisi M., Amiri M.C. Reusing granite waste in eco-friendly foamed concrete as aggregate. Journal of Building Engineering. 2022. Vol. 46, рр. 103566. DOI: 10.1016/j.jobe.2021.103566.
14. Аликин А.В. О возможности массовой утилизации отсевов гранитного щебня // Записки Горного института. 2013. Т. 202. С. 143–146.
14. Alikin A.V. On the possibility of mass recycling of granite rubble screenings. Zapiski Gornogo instituta. 2013. Vol. 202, pp. 143–146. (In Russian).
15. Капустин Ф.Л., Перепелицын В.А., Пономарев В.Б., Лошкарев А.Б. Повышение эффективности использования отсевов дробления скальных горных пород // Физико-технические проблемы разработки полезных ископаемых. 2017. № 3. С. 103–107.
15. Kapustin F.L., Perepelitsyn V.A., Ponomarev V.B., Loshkarev A.B. Increasing the efficiency of using rock crushing screenings. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017. No. 3, pp. 103–107. (In Russian).
16. Макеев А.И., Чернышов Е.М. Пылевидная фракция отсевов дробления гранита как носитель микронаночастиц, участвующих в структурообразовании цементных бетонов // Нанотехнологии в строительстве. 2018. Т. 10. № 4. С. 20–38. DOI: dx.doi.org/10.15828/2075-8545-2018-10-4-20-38.
16. Makeev A.I., Chernyshov E.M. Dust fraction of granite crushing screenings as a carrier of micronanoparticles participating in the structure formation of cement concrete. Nanotekhnologii v stroitelstve: scientific online journal. 2018. Vol. 10. No. 4, pp. 20–38. (In Russian). DOI: dx.doi.org/10.15828/2075-8545-2018-10-4-20-38
17. Макеев А.И. Методологические основания теории конструирования и синтеза оптимальных структур конгломератных строительных композитов // Научный вестник Воронежского государственного архитектурно-строительного университета. Сер.: Физико-химические проблемы и высокие технологии строительного материаловедения. 2015. № 1. С. 29–37.
17. Makeev A.I. Methodological foundations of the theory of design and synthesis of optimal structures of conglomerate building composites. Nauchnyy vestnik of the Voronezh State University of Architecture and Civil Engineering. Series: Physico-chemical problems and high technologies of building materials science. 2015. No. 1, pp. 29–37. (In Russian).
18. Балабанов М.С., Чикноворьян А.Г. Исследование обогащения песка для строительных работ отсевами дробления горных пород // Градостроительство и архитектура. 2023. Т. 13. № 3. С. 50–58. DOI: 10.17673/Vestnik.2023.03.07.
18. Balabanov M.S., Chiknovoryan A.G. Study of the enrichment of sand for construction work with rock crushing screenings. Gradostroitelstvo i arkhitektura. 2023. Vol. 13. No. 3, pp. 50–58. (In Russian). DOI: 10.17673/Vestnik.2023.03.07
19. Mashaly A.O., Shalaby B.N., Rashwan M.A. Performance of mortar and concrete incorporating granite sludge as cement replacement. Construction and Building Materials. 2018. No. 169, pp. 800–818. https://doi.org/10.1016/j.conbuildmat.2018.03.046
20. Lozano-Lunar A., Jiménez J.R., Dubchenko I. et al. Performance of self-compacting mortars with granite sludge as aggregate. Construction and Building Materials. 2020. Vol. 251. 118998. DOI: 10.1016/j.conbuildmat.2020.118998
21. Jain A., Chaudhary S., Gupta R. Mechanical and microstructural characterization of fly ash blended self-compacting concrete containing granite waste. Construction and Building Materials. 2022. Vol. 314. 125480. DOI: 10.1016/j.conbuildmat.2021.125480
22. Chen J.J., Ng P.L., Kwan A.K.H. Optimum fines content in manufactured sand for best overall performance of superplasticized concrete. Journal of Materials in Civil Engineering. 2023. Vol. 36. Iss. 1. https://doi.org/10.1061/JMCEE7.MTENG-16195
23. Song T.H., Lee S.H., Kim B. Recycling of crushed stone powder as a partial replacement for silica powder in extruded cement panels. Construction and Building Materials. 2014. Vol. 52, рр. 105–115. DOI: 10.1016/j.conbuildmat.2013.10.060
24. Medina G., Sáez del Bosque I.F., Frías M., Sánchez de Rojas M.I., Medina C. Mineralogical study of granite waste in a pozzolan/Ca(OH)2 system: influence of the activation process. Applied Clay Science. 2017. Vol. 135, рр. 362–371. https://doi.org/10.1016/j.clay.2016.10.018
25. Prokopski G., Marchuk V., Huts A. The effect of using granite dust as a component of concrete mixture. Case Studies in Construction Materials. 2020. Vol. 13. e00349. DOI: 10.1016/j.cscm.2020.e00349
26. Капустин Ф.Л., Пономарев В.Б. Получение обогащенного песка из отсевов дробления горных пород на пневматическом классификаторе // Обогащение руд. 2016. № 4. С. 56–60. DOI: 10.17580/or.2016.04.09
26. Kapustin F.L., Ponomarev V.B. Obtaining enriched sand from rock crushing screenings using a pneumatic classifier. Obogashcheniye rud. 2016. No. 4, pp. 56–60. (In Russian). DOI: 10.17580/or.2016.04.09

For citation: Makeev A.I. Granite crushing screenings as a component factor in the concrete structure formation. Part II: Experimental studies of structure-forming potential. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 59–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-59-66

Features of Hardening of Aluminosilicophosphate Binder in Cellular Concrete

Number of journal: 1-2-2024
Autors:

Abyzov V.A.,
Posadnova N.E.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-53-58
УДК: 666.973.6

 

AbstractAbout AuthorsReferences
Cellular phosphate concretes are used as an insulating material for some high-temperature aggregates due to their high temperature resistance, fire resistance and residual strength at the level of values after drying. The use of industrial waste in phosphate cellular concrete technology made it possible to improve some properties without reducing the application temperature. The paper shows that dispersed aluminosilicate waste from refractory production has sufficient activity (porization ability) to obtain a phosphate binder. The features of the hardening of an aluminosilicophosphate binder cured with dispersed metallic aluminum have been studied; the change in the phase composition of the cured binder after firing at different temperatures has been studied by differential thermal and X-ray phase analysis. It has been established that the developed aluminosilicophosphate binder makes it possible to obtain fireclay cellular concrete with an application temperature of up to 1400оC. A comparison of the changes in the phase composition for the developed aluminosilicophosphate composition and a pure aluminophosphate binder is performed. A shift in the temperature of the processes is noted in an upward direction for the aluminosilicophosphate binder, which is explained by the fact that silicon ions do not form independent phosphate compounds, but are embedded in the crystal lattice of aluminophosphates, changing their properties and shifting the intervals of phase transitions.
V.A. ABYZOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.E. POSADNOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

South Ural State University (National Research University) (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)

1. Salmanov G.D., Gulyaeva V.F., Aleksandrova G.N. Some studies of highly refractory concrete using an aluminophosphate binder. Zharostoikie betony. 1964, pp. 72–103. (In Russian).
2. Patent USSR 416327. Syr’evaya smes’ dlya izgotovleniya zharostoikogo gazobetona [Raw mixture for the production of heat-resistant cellular concrete] / Nekrasov K.D., Sheikin A.E., Tarasova A.P., Krivitskii M.Ya., Fedorov A.E., Blyusin A.A., Karpova A.L., Avdeeva T.P. 1974. Bulletin № 7. (In Russian).
3. Nekrasov K.D. Lightweight heat-resistant concrete in construction. Lightweight heat-resistant concrete and fire resistance of reinforced concrete structures: Abstracts of the reports of the coordination meeting-seminar. Penza. 1988, pp. 3–6. (In Russian).
4. Abyzov V.A. Heat-resistant phosphate cellular concrete, adhesives and binders based on dispersed high-alumina industrial waste. Science of SUSU: materials of the 66th scientific conference. 2014, pp. 854–861. (In Russian).
5. Latypova L.I. Heat-resistant phosphate materials based on high-alumina waste. Vestnik of the South Ural State University. Series Construction and architecture. 2012. No. 15, pp. 69–71. (In Russian).
6. Abyzov A.N., Kir’yanova L.A. Lightweight cellular and porous heat-resistant concrete with phosphate binder. Beton i zhelezobeton. 1981. No. 12, pp. 15–16. (In Russian).
7. Kiryanova L.A., Abyzov A.N. Cellular heat-resistant concrete with aluminophosphate binder and fireclay. Heat-resistant concrete, materials and structures: Collection of scientific papers. Chelyabinsk: UralNIIstromproekt. 1981, pp. 63–70. (In Russian).
8. Kiryanova L.A. Corundum cellular and porous heat-resistant concrete with phosphate binder. Materials and structures for prefabricated construction of thermal units: Collection of scientific papers. Chelyabinsk: UralNIIstromproekt. 1982, pp. 112–119. (In Russian).
9. Mel’nikov A.M., Tul’skii G.V. Heat-resistant phosphate concrete with light refractory filler, state of production and prospects for their development. Research of fire-resistant and heat-insulating phosphate materials (technology and properties): Collection of scientific papers. Moscow: TsNIISK im. Kucherenko. 1987, pp. 27–35. (In Russian).
10. Wang Q., Chen J., Gui B., Zhai T., Yang D. Fabrication and properties of thermal insulating material using hollow glass microspheres bonded by aluminum–chrome–phosphate and tetraethyl orthosilicate. Ceramics International. 2016. Vol. 42. Iss. 4, pp. 4886–4892. DOI: https://doi.org/10.1016/j.ceramint.2015.12.003
11. Abyzov A.N., Ivanov A.G., Kir’yanova L.A., Sergeev S.I., Pak Ch.G. Experience in the use of phosphate heat-resistant concrete based on industrial waste. Construction materials and products using local resources and by-products: Collection of scientific papers. Chelyabinsk: UralNIIstromproekt. 1983, pp. 82–87. (In Russian).
12. Kingery D. Phosphate bonding in refractories. S.B. Massachusetts Institute of Technology. 1948. 94 p. https://core.ac.uk/download/pdf/10129471.pdf
13. Zamyatin S.R., Mamykin P.S. Complex studies of clay-phosphate binder. Zhurnal prikladnoi khimii. 1972. Vol. XLV. No. 5, pp. 956–960. (In Russian).
14. Abyzov V.A., Ryakhovskii E.N. Development and experience in the use of refractory adhesives based on phosphate binders. Ogneupory i tekhnicheskaya keramika. 2007. No. 11, pp. 28–31. (In Russian).
15. Patent RF 2257359. Glinistofosfatnyi material [Clay phosphate material]. Svatovskaya L.B., Yakimova N.I., Makarova E.I., Latutova M.N., Dziraeva E.A., Kryukova E.V. 2005. Bulletin № 5. (In Russian).
16. Bednárek J., Ptáček P., Švec J., Šoukal F., Pařízek L. Inhibition of hydrogen evolution in aluminium-phosphate refractory binders. Procedia Engineering. 2016. Vol. 151, pp. 87–93. DOI: https://doi.org/10.1016/j.proeng.2016.07.384
17. Khabbouchi M., Hosni K., Mezni M., Srasra E. Simplified synthesis of silicophosphate materials using an activated metakaolin as a natural source of active silica. Applied Clay Science. 2018. No. 158, pp. 169–176. DOI: https://doi.org/10.1016/j.clay.2018.03.027
18. Abyzov V.A. Lightweight refractory concrete based on aluminum-magnesium-phosphate binder. Procedia Engineering. 2016. Vol. 150, pp. 1440–1445 DOI: https://doi.org/10.1016/j.proeng.2016.07.077
19. Boigelot R., Graz Y., Bourgel C., Defoort F., Poirier J. The SiO2–P2O5 binary system: new data concerning the temperature of liquidus and the volatilization of phosphorus. Ceramics International. 2015. Vol. 41. Iss. 2. Part A, pp. 2353–2360. DOI: https://doi.org/10.1016/j.ceramint.2014.10.046
20. Rahman M., Hudon P., Coupled A. Experimental study and thermodynamic modeling of the SiO2–P2O5 system. Metallurgical and Materials Transactions B. 2013. Vol. 44, pp. 837–852. DOI: 10.1007/s11663-013-9847 3
21. Bobrov B.S., Zhigun I.G., Kiseleva L.V., et al. Phase-composition of binder based on aluminophosphate cementing agent and changes in it on heating. Journal of applied chemistry of the USSR. 1986. Vol. 59. No. 12, pp. 2653–2657. (In Russian).

For citation: Abyzov V.A., Posadnova N.E. Features of hardening of aluminosilicophosphate binder in cellular concrete. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 53–58. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-53-58

Features of the Behavior of Highly Frost-Resistant Modified Concretes

Number of journal: 1-2-2024
Autors:

Shuldyakov K.V.,
Butakova M.D.,
Mordovtseva M.V.,
Zimakov K.I.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-49-52
УДК: 666.972.53

 

АннотацияОб авторахСписок литературы
One of the main criteria of construction is reliability and durability. Therefore, for the implementation of modern construction projects, especially in harsh operating conditions, cement composites with increased resistance to aggressive external cyclic influences are necessary. For the climatic conditions of the Russian Federation, special attention should be paid to ensuring the frost resistance of concrete. Thus, in accordance with GOST 31384–2017 “Protection of concrete and reinforced concrete structures from corrosion. General technical requirements”, for the lowest temperature and under the condition of alternating freezing and thawing of concrete in a saturated state, the frost resistance mark must be at least F2450. In addition, high mechanical characteristics of the materials used, including the modulus of elasticity, are required, for example, in the construction of infrastructure facilities in the Arctic zone of Russia. To ensure these characteristics, effective modifying additives must be introduced into the concrete mix. However, there is evidence in the literature that water-reducing additives of various genesis, with similar values of water reduction, have different effects on the structure of the formed cement stone. Therefore, in order to ensure high durability of concrete, this article will consider the relationship between the emerging structure of cement stone in concrete and its resistance parameters.
K.V. SHULDYAKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.D. BUTAKOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.V. MORDOVTSEVA, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.I. ZIMAKOV, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

South Ural State University (National Research University) (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)

1. Falikman V.R., Stepanova V.F., Chekhniy G.V. Advanced Concrete and Technologies for Construction of Buildings and Facilities in the Arctic Zone. Promyshlennoe i grazhdanskoe stroitel’stvo. 2021. No. 2, pp. 17–23. (In Russian). DOI: 10.33622/0869-7019.2021.02.17-23
2. Shmitko E.I., Bel’kova N.A., Makushina Yu.V. To the issues of interrelation of the structure of additives-plasticizers with the value of moisture shrinkage of cement systems. Izvestiya of higher educational institutions. Construction. 2021. No. 11 (755), pp. 134–144. DOI: 10.32683/0536-1052-2021-755-11-134-1443
3. Wenjie Ge, Wen Liu, Ashraf Ashour, Zhiwen Zhang,Wei Li, Hongbo Jiang, Chuanzhi Sun, Linfeng Qiu, Shan Yao, Weigang Lu, Yan Liu Sustainable ultra-high performance concrete with incorporating mineral admixtures: Workability,mechanical property and durability under freeze-thaw cycles. Case Studies in Construction Materials. 2023. No. 19. DOI: https://doi.org/10.1016/j.cscm.2023.e02345
4. Sharafutdinov K.B., Saraykina K.A., Kashevarova G.G., Sanyagina Ya.A., Erofeev V.T., Vatin N.I. Strength and durability of concretes with a super absorbent polymer additive. International Journal for Computational Civil and Structural Engineering. 2023. Vol. 19. No. 2, pp. 120–135.
5. Lukutsova N.P., Matveeva E.G., Fokin D.E. Study of fine-grained concrete modified with a nanostructured additive. Vestnik of the Belgorod State Technological University named after. V.G. Shukhov. 2010. No. 4, pp. 6–11. (In Russian).
6. Tarakanov O.V., Akchurin T.K., Belyakova E.A., Dushko O.V. Prospects for the use of complex organomineral additives in new generation concretes. Vestnik of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and architecture. 2023. No. 2 (91). pp. 88–98. (In Russian).
7. Aleksandrova O.V., Nguyen Duc Vinh Quang, Bulgakov B.I. The effect of mineral additives on the corrosion resistance of steel reinforcement in reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 69–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-69-75
8. Vasilik P.G., Burianov A.F., Samchenko S.V. Comparison of adsorption behavior of plasticizers of different types. Tekhnika i tekhnologiya silikatov. 2022. No. 3, pp. 261–273. (In Russian).
9. Jinpeng Dai, Qicai Wang, Bo Zhang Frost resistance and life prediction of equal strength concrete under negative temperature curing. Construction and Building Materials. 2023. Vol. 396. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132278
10. Shuldyakov K., Trofimov B., Kramar L. Stable microstructure of hardened cement paste – A guarantee of the durability of concrete. Case Studies in Construction Materials. 2020. Vol. 12. e00351. https://doi.org/10.1016/j.cscm.2020.e00351
11. Kramar L.Ya., Mordovtseva M.V., Pogorelov S.N., Ivanov I.M. The Structure of cement stone with complex additives and its effect on the deformation properties of frame concrete. Vestnik of the South Ural State University. Construction Engineering and Architecture. 2022. Vol. 22. No. 3, pp. 35–45. (In Russian). DOI: 10.14529/build220304

Для цитирования: Shuldyakov K.V., Butakova M.D., Mordovtseva M.V., Zimakov K.I. Features of the behavior of highly frost-resistant modified concretes. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 49–52. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-49-52

Application of Blast Furnace Granulated Slag for Self-Healing Bio-Concretes

Number of journal: 1-2-2024
Autors:

Chernykh T.N.,
Gorbachevskikh K.A.,
Komel'kova M.V.,
Platkovskiy P.O.,
Kriushin M.V.,
Orlov A.A.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-42-48
УДК: 666.974

 

AbstractAbout AuthorsReferences
The properties of fine-grained concrete containing 20–80% granulated blast furnace slag and bacteria species Bacillus Subtilis have been studied. An assessment was made of changes in strength, self-healing of cracks using optical and electron microscopy and measuring the speed of ultrasound propagation perpendicular to the crack plane; composition and characteristics of the healing agent in cracks using X-ray analysis methods. Self-healing of cracks in concrete without bacteria occurred due to calcite deposition as a result of carbonation of portlandite during 50–65 cycles of humidification-drying, and in the presence of Bacillus Subtilis bacteria due to calcite deposition during their vital activity in 10–15 cycles. It is shown that the addition of granulated blast furnace slag slows down the crystallization of calcite, which forms a healing substance in the crack. It is assumed that the combined use of granulated blast furnace slag in dosages of 40–80% and Bacillus Subtilis bacteria in concrete structures operating under conditions of variable humidification can ensure the process of self-healing cracks and maintaining the strength of concrete in the long term due to simultaneous processes of strengthening the structure due to prolonged hydration of slag minerals and calcite deposition in cracks due to the vital activity of Bacillus Subtilis bacteria.
T.N. CHERNYKH, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.A. GORBACHEVSKIKH, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.V. KOMEL'KOVA, Doctor of Sciences (Biology) (This email address is being protected from spambots. You need JavaScript enabled to view it.), P.O. PLATKOVSKIY, Research Assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.), M.V. KRIUSHIN, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.), A.A. ORLOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)South Ural State University (National Research University) (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)
1. Карпов М.В., Жиздюк А.А., Наумова О.В. Обоснование использования биобетонов для строительства гидротехнических сооружений // Вестник евразийской науки. 2022. Т. 14. № 5. Ст. 10.
1. Karpov M.V., Zhizdyuk A.A., Naumova O.V. Justification of the use of bio concrete for the construction of hydraulic structures. Vestnik evraziyskoynauki. 2022. Vol. 14. No. 5. Article 10. (In Russian).
2. Ильина Л.В., Тацки Л.Н., Дьякова К.С. Самовосстанавливающийся бетон. Обзор зарубежных публикаций // Вестник ВСГУТУ. 2023. № 2 (89). С. 72–79. DOI: 10.53980/24131997_2023_2_72
2. Il’ina L.V., Tacki L.N., D’yakova K.S. Self-healing concrete. review of foreign publications. Vestnik ESSUTM. 2023. No. 2 (89), pp. 72–79. (In Russian). DOI: 10.53980/24131997_2023_2_72
3. Jonkers H.M. Bacteria-based self-healing concrete. Heron. 2011. Vol. 56. No. 1/2.
4. Бирюков В.С., Смирнов А.С., Тамбовцев А.М., Чередниченко Т.Ф. Тенденции современного строительства: самовосстанавливающийся бетон // Инженерный вестник Дона. 2022. № 2 (86). С. 1–8.
4. Biryukov V.S., Smirnov A.S., Tambovcev A.M., Cherednichenko T.F. Trends in modern construction: self-healing concrete. Inzhenernyy vestnik Dona. 2022. No. 2 (86), pp. 1–8. (In Russian).
5. Liu Y., Zhuge Y., Fan W., Duan W., Wang L. Recycling industrial wastes into self-healing concrete: A review. Environmental Research. 2022. Vol. 214. Part 4. 113975. DOI: 10.1016/j.envres.2022.113975
6. González Á., Parraguez A., Corvalán L., Correa N., Castro J., Stuckrath C., González M. Evaluation of Portland and Pozzolanic cement on the self-healing of mortars with calcium lactate and bacteria. Construction and Building Materials. 2020. Vol. 257. 119558. DOI: 10.1016/j.conbuildmat.2020.119558
7. Khushnood R.A., Qureshi Z.A., Shaheen N., Ali S. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Science of The Total Environment. 2020. Vol. 703. 135007. https://doi.org/10.1016/j.scitotenv.2019
8. Nodehi M., Ozbakkaloglu T., Gholampour A. A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical, and durability properties. Journal of Building Engineering. 2022. Vol. 49. 104038. https://doi.org/10.1016/j.jobe.2022.104038
9. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В., Духанина У.Н., Балицкий Д.А. Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития // Строительные материалы. 2019. № 9. С. 83–103. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
9. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V., Dukhanina U.N., Balitsky D.A. Application of microbial carbonate biomineralization in biotechnologies of building materials creation and restoration: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
10. Баженов Ю.М., Ерофеев В.Т., Салман А.Д.С.Д., Смирнов В.Ф., Фомичев В.Т. Технология самовосстановления железобетонных конструкций с помощью микроорганизмов // Русский инженер. 2018. № 4 (61). С. 46–48.
10. Bazhenov Yu.M., Erofeev V.T., Salman A.D.S.D., Smirnov V.F., Fomichev V.T. Tekhnologiya samovosstanovleniya zhelezobetonnyh konstrukcij s pomoshch’yu mikroorganizmov. Russkiy inzhener. 2018. No. 4 (61), pp. 46–48. (In Russian).
11. De Belie N., Gruyaert E., Al-Tabbaa A., Antonaci P., Baera C., Bajare D., Jonkers H.M. A Review of self-healing concrete for damage management of structures. Advanced Materials Interfaces. 2018. Vol. 5. Iss. 17 1800074. DOI: 10.1002/admi.201800074
12. De Rooij M., Van Tittelboom K., De Belie N., Schlangen E. Self-healing phenomena in cement-based materials: State-of-the-art report of RILEM technical committee 221-SHC: Self-healing phenomena in cement-based materials Springer. Dordrecht, Netherlands. 2013. 266 p.
13. Van Tittelboom K., De Belie N. Self-healing in cementitious materials – A review. Materials. 2013. Vol. 6 (6), pp. 2182–2217. DOI: 10.3390/ma6062182
14. Zhang L.V., Suleiman A.R., Allaf M.M., Marani A., Tuyan M., Nehdi M.L. Crack self-healing in alkali-activated slag composites incorporating immobilized bacteria. Construction and Building Materials. 2022. Vol. 326. Article 126842. DOI: 10.1016/j.conbuildmat.2022.126842
15. Siddique R., Singh K., Singh M., Corinaldesi V., Rajor A. Properties of bacterial rice husk ash concrete. Construction and Building Materials. 2016. Vol. 121, pp. 112–119. https://doi.org/10.1016/j.conbuildmat.2016.05.146
16. Aquilano D., Benages R., Bruno M., Rubbo M., Massaro F.R. Positive {hk.l} and negative {hk.} forms of calcite (CaCO3) crystal. New open questions from the evaluation of their surface energies. CrystEngComm. 2013. Vol. 15 (22), pp. 4465–4472. DOI: 10.1039/C3CE40203G

For citation: Chernykh T.N., Gorbachevskikh K.A., Komel'kova M.V., Platkovskiy P.O., Kriushin M.V., Orlov A.A. Application of blast furnace granulated slag for self-healing bio-concretes. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 42–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-42-48

Comparative Analysis of Asphalt Forming Processes Based on Finely Dispersed Expanded Clay Powders

Number of journal: 1-2-2024
Autors:

Kazaryan S.O.,
Borisenko Yu.G.,
Yagubov M.G.,
Shuhaib K.F.A.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-36-40
УДК: 691.16

 

AbstractAbout AuthorsReferences
The features of the structure formation of an asphalt binder modified with a highly dispersed expanded clay powder are investigated. The viscosity of the modified asphalt binder and the formation of an adsorption layer of bitumen on the surface of the particles of the mineral component at various degrees of filling in the temperature range of 100–180oC have been studied. The effect of the impact of expanded clay powder on the adsorption activity of bitumen, the adhesive strength of bitumen with a mineral filler and on the adhesion of an asphalt binder with a mineral filler is analyzed. It was revealed that the interaction of bitumen with highly dispersed expanded clay powder significantly increases the viscosity of the asphalt binder and increases the thickness of the bitumen film on the surface of mineral particles at all process temperatures compared with standard limestone mineral powder, which is determined by the processes of selective diffusion of low-molecular hydrocarbons into the particles of expanded clay powder occurring when combined with the binder. Modification of the asphalt binder with expanded clay powder significantly increases its adsorption activity and adhesion of bitumen to mineral aggregate and adhesive strength at the interface of the «filler–bitumen» phases. This is due not only to physical interaction, but also to the presence of an increased number of active surface adsorption centers of Lewis and Brensted on the surface of expanded clay particles, which indicates the formation of chemical bonds.
S.O. KAZARYAN, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.G. BORISENKO, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.G. YAGUBOV, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.F.A. SHUHAIB, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

North Caucasus Federal University (1, Pushkina Street, Stavropol, 355017, Russian Federation)

1. Коротаев А.П. Повышение качества асфальтобетона за счет использования пористого минерального порошка: Дис. … канд. техн. наук. Белгород, 2009. 169 с.
1. Korotaev A.P. Improving the quality of asphalt concrete by using porous mineral powder. Cand. Diss. (Engineering). Belgorod. 2009. 169 p. (In Russian).
2. Высоцкая М.А., Кузнецов Д.К., Барабаш Д.Е. Особенности структурообразования битумоминеральных композиций с применением пористого сырья // Строительные материалы. 2014. № 1–2. С. 68–71.
2. Vysotskaya M.A., Kuznetsov D.K., Barabash D.E. Peculiarities of structure formation of bitumen-mineral compositions with the use of porous raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 68–71. (In Russian).
3. Ядыкина В.В. Управление процессами формирования и качеством строительных композитов с учетом состояния поверхности дисперсного сырья. М.: АСВ, 2009. 374 с.
3. Yadykina V.V. Upravlenie protsessami formirovaniya i kachestvom stroitel’nykh kompozitov s uchetom sostoyaniya poverkhnosti dispersnogo syr’ya [Control of the processes of formation and quality of construction composites taking into account the state of the surface of dispersed raw materials]. Moscow: ASV. 2009. 374 p.
4. Босхолов К.А. Асфальтобетон с применением активированных кремнеземсодержащих минеральных порошков: Дис. … канд. техн. наук. Улан-Удэ, 2007. 114 с.
4. Boskholov K.A. Asphalt concrete using activated silica-containing mineral powders. Cand. Diss. (Engineering). Ulan-Ude. 2007. 114 p. (In Russian).
5. Fan Li, Xiang Zhao, Xiao Zhang. Utilizing original and activated coal gangue wastes as alternative mineral fillers in asphalt binder: Perspectives of rheological properties and asphalt-filler interaction ability. Construction and Building Materials. 2023. Vol. 365. 130069. DOI: https://doi.org/10.1016/j.conbuildmat.2022.130069.
6. Kürşat Yıldız, Mert Atakan. Improving microwave healing characteristic of asphalt concrete by using fly ash as a filler. Construction and Building Materials. 2020. Vol. 262. 120448/ DOI: https://doi.org/10.1016/j.conbuildmat.2020.120448.
7. Ning Liu, Liping Liu, Mingchen Li, Lijun Sun. Effects of zeolite on rheological properties of asphalt materials and asphalt-filler interaction ability. Construction and Building Materials. 2023. Vol. 382. 131300. https://doi.org/10.1016/j.conbuildmat.2023.131300
8. Clara E., Barra B.S., Teixeira L.H., Mikowski A., Hughes G.B., Nguyen M.-L. Influence of polymeric molecular chain structure on the rheological-mechanical behavior of asphalt binders and porous asphalt mixes. Construction and Building Materials. 2023. Vol. 369. 130575. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130575
9. Yinzhang He, Jiupeng Zhang, Bo Gao, Ling Wang, Yan Li, Fucheng Guo, Guojing Huang. Experimental investigation of the interface interaction between asphalt binder and mineral filler from the aspects of materials properties. Construction and Building Materials. 2023. Vol. 393. 132094. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132094
10. Казарян С.О. Стабилизирующие добавки для щебеночно-мастичных асфальтобетонов на основе высокодисперсных пористых минеральных материалов // Вестник Волгоградского государственного архитектурно-строительного университета. Сер.: Строительство и архитектура. 2020. Вып. 1 (78). С. 149–156.
10. Kazaryan S.O. Stabilizing additives for crushed stone-mastic asphalt concrete based on highly dispersed porous mineral materials. Vestnik of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and architecture. 2020. Iss. 1 (78), pp. 149–156. (In Russian).
11. Борисенко Ю.Г., Казарян С.О., Селимов М.А., Борисенко О.А. Физико-химические основы применения пористых минеральных порошков в битумоминеральных композициях // Дороги и мосты. 2016. Вып. № 35. С. 263–281.
11. Borisenko Yu.G., Kazaryan S.O., Selimov M.A., Borisenko O.A. Physicochemical bases for the use of porous mineral powders in bitumomineral compositions. Dorogi i mosty. 2016. Iss. 35, pp. 263–281. (In Russian).
12. Иноземцев С.С., Поздняков М.К., Королев Е.В. Исследование адсорбционно-сольватного слоя битума на поверхности минерального порошка // Вестник МГСУ. 2012. Вып. 11. С. 159–167.
12. Inozemtsev S.S., Pozdnyakov M.K., Korolev E.V. Investigation of the adsorption-solvate layer of bitumen on the surface of mineral powder. Vestnik MGSU. 2012. Iss. 11, pp. 159–167. (In Russian).
13. Патент РФ 2686340. Способ оценки сцепления битума с минеральным материалом. Ивкин А.С., Васильев В.В., Саламатова Е.В., Майданова Н.В., Кондрашева Н.К. Заявл. 06.08.2018. Опубл. 25.04.2019.
13. Patent RF 2686340. Sposob otsenki stsepleniya bituma s mineral’nym materialom [Method for evaluation of bitumen adhesion with mineral material]. Ivkin A.S., Vasil’ev V.V., Salamatova E.V., Maidanova N.V., Kondrasheva N.K. Declared 06.08.2018. Published 25.04.2019. (In Russian).
14. Борисенко Ю.Г., Казарян С.О. Особенности напряженно-деформированного состояния покрытий из щебеночно-мастичного асфальтобетона, модифицированных керамзитовым порошком // Научный журнал строительства и архитектуры. 2019. № 3 (55). С. 36–43. DOI: 10.25987/VSTU.2019.55.3.004
14. Borisenko Y.G., Kazaryan S.O. Features of the stress strain of ceramsite powder modified SMA pavements. Russian Journal of Building Construction and Architecture. 2019. Vol. 3 (55), pp. 36–43. (In Russian). DOI: 10.25987/VSTU.2019.55.3.004
15. Чураев Н.В. Химия процессов массопереноса в пористых телах. М.: Химия, 1990. 272 с.
15. Churaev N.V. Khimiya protsessov massoperenosa v poristykh telakh [Chemistry of mass transfer processes in porous bodies]. Moscow: Khimiya. 1990. 272 p.

For citation: Kazaryan S.O., Borisenko Yu.G., Yagubov M.G., Shuhaib K.F.A. Comparative analysis of asphalt forming processes based on finely dispersed expanded clay powders. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 36–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-36-40

https://www.traditionrolex.com/10