Log in

Development of a Composition of a Complex Swelling Additive for the Production of Expanded Clay

Number of journal: 12-2024
Autors:

Chumachenko N.G.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-73-77
УДК: 666.3

 

AbstractAbout AuthorsReferences
A standard assessment of clayey raw materials from the Neftegorsk field in the Samara region was carried out. It has been established that clay, in all respects except CaO content, meets the GOST requirements for raw materials for the production of expanded clay gravel. The group of clay raw materials is defined as slightly intumescent clay. The influence of firing temperature, content of organic and iron-containing additives on the degree of swelling was studied. A non-standard assessment of clay was carried out using a calculation method based on chemical composition. The types of necessary additives and their percentage content for targeted adjustment of the composition in order to obtain maximum swelling are theoretically justified. A complex additive composition has been developed to increase the swelling properties of clayey raw materials from the Neftegorsk field, including flask, pyrite cinders, alkaline aluminum etching sludge and solar oil.
N.G. CHUMACHENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Samara State Technical University (244, Molodogvardeyskaya Street, Samara, 443001, Russian Federation)

1. Gorin V.M. Expanded clay and expanded clay concrete in the country’s construction industry. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 15–18. (In Russian). EDN: VSEQBA. https://doi.org/10.31659/0585-430X-2022-802-5-15-18
2. Kabanova M.K., Tokareva S.A., Uvarov P.P. Main criteria are safety, ecological compatibility and durability of building materials. Stroitel’nye Materialy [Construction materials]. 2017. No. 1–2, pp. 90–93. (In Russian). EDN: XXIHVH. https://doi.org/10.31659/0585-430X-2017-745-1-2-90-93
3. Sammasov R.F., Panchenko Yu.F. LLC «Vinzili expanded clay gravel plant» (Tyumen region). Building materials made of expanded clay and expanded clay concrete for civil and industrial construction “from the foundation to the roof”. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 19–21. (In Russian). EDN: NYCGJU. https://doi.org/10.31659/0585-430X-2022-802-5-19-21
4. Chumachenko N.G., Gorin V.M., Tyurnikov V.V., Uporova M.G. Prospects of expanded clay gravel production in Samara Region. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 34–39. (In Russian). EDN: OGAQVV. https://doi.org/10.31659/0585-430X-2022-802-5-34-39
5. Kolesnikov E.A., Volchek L.L. The influence of chemical composition on the swelling of clays. Technical information VNIIESM. Series: Industry of ceramic wall materials and porous fillers. Moscow. 1971. Iss. 3, pp. 21–23. (In Russian).
6. Chumachenko N.G. The influence of the melt composition and undissolved residue on the properties of expanded clay gravel. Stroitel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 56–60. (In Russian). EDN: RDOITX
7. Chumachenko N.G. Capabilities of the software package for assessing mineral aluminosilicate raw materials. Bulletin of the Volga Territorial Branch of the Russian Academy of Architecture and Construction Sciences. Collection of scientific papers. NGASU. 2017. Iss. 20, pp. 207–212. (In Russian).
8. Sokolov L., Fomenko A. Use of waste in the production of expanded clay. Ecology and industry of Russia. 2015. No. 19 (9), pp. 30–34. (In Russian). EDN: UGKFUN. https://doi.org/10.18412/1816-0395-2015-9-30-34
9. Vasilenko T.A., Lamakina M.P. Physico-mechanical properties of expanded clay gravel obtained using electric furnace slag. Vestnik of BSTU named after V.G. Shukhov. 2016. No. 6, pp. 187–196. (In Russian). EDN: VWZDQR
10. Levitsky I.A., Pavlyukevich Yu.G., Bogdan E.O., Kichkaylo O.V. Production of ceramic gravel using galvanic wastewater sludge. Steklo i keramika. 2013. No. 7, pp. 23–27 (In Russian). EDN: RNIIAD
11. Lemeshev V.G., Petrov S.V., Lemeshev O.V. Utilization of technogenic wastes in the production of structural ceramics. Steklo i keramika. 2001. Vol. 74. No. 3, pp. 17–20. (In Russian). EDN: ZLOXDQ
12. Tokareva S.A., Kabanova M.K. Utilization of large-tonnage waste. Processing, neutralization and obtaining useful products. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 25–29. (In Russian). EDN: VBRHKP. https://doi.org/10.31659/0585-430X-2022-802-5-25-29
13. Gur’eva V.A., Doroshin A.V., Vdovin K.M., Andreeva Yu.E. Porous ceramics on the basis of low-melting clays and slurries. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 32–36. (In Russian). EDN: YNESCX https://doi.org/10.31659/0585-430X-2017-747-4-32-36
14. Kosarev A.S., Smoliy V.A., Yatsenko E.A., Irkha V.A. Resource saving in the production of artificial porous aggregate for lightweight concrete. Steklo i keramika. 2020. Vol. 93, No. 7, pp. 33–38. (In Russian). EDN: JXAHXE

For citation: Chumachenko N.G. Development of a composition of a complex swelling additive for the production of expanded clay. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 73–77. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-73-77

Modeling of Indicators of Competitive Materials for the Manufacture of Formwork in the Construction of Industrial Buildings

Number of journal: 12-2024
Autors:

Fedotov A.A.,
Vakhnina T.N.,
Susoeva I.V.,
Titunin A.A.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-68-72
УДК: 69.057.5

 

AbstractAbout AuthorsReferences
The article presents the results of an experimental substantiation of the production of plywood for construction purposes under conditions of low-temperature pressing and reduced binder consumption. Cost reduction while maintaining performance refers to the competitive advantages of the material. One of the ways to solve this problem is to significantly reduce the temperature of hot pressing plywood (below 100оC) and reduce resin consumption (less than 100 g/m2). The study implemented a second-order B-plan and developed regression models of the dependencies of the mechanical parameters of plywood on the pressing temperature, resin consumption and the proportion of additive modifiers – aluminum chloride and magnesium chloride. The decrease in the strength when splitting plywood on an unmodified phenol-formaldehyde binder is due to the low degree of polycondensation of the binder during low-temperature pressing. Rational values of the factors of the plywood production process were obtained by analyzing regression mathematical models of the dependence of plywood indicators on variable factors. For plywood based on a modified binder, the results were obtained – the strength of the samples when rolling over the adhesive layer after boiling was 0.808 MPa at the following modes: pressing temperature 95оC, resin consumption 93 g/m2 and modifier consumption 0.5% by weight of the resin for samples with the addition of magnesium chloride. The results obtained can be recommended for use in the production of plywood for formwork with the required mechanical properties.
A.A. FEDOTOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.N. VAKHNINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.V. SUSOEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. TITUNIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kostroma State University (17/11, Dzerzhinskiy Street, Kostroma, 156005, Russian Federation)

1. Valkonen M.J., Moya J.C., Lokki T. Preparation of fully bio-based sound absorbers from waste wood and pulp fibers by foam forming. BioResources. 2023. Vol. 18 (2), pp. 2657–2669. https://doi.org/10.15376/biores.18.2.2657-2669
2. Balasbaneh A.T., Sher W., Wan Ibrahim M.H. Life cycle assessment and economic analysis of Reusable formwork materials considering the circular economy. Ain Shams Engineering Journal. 2024. Vol. 15 (4). https://doi.org/10.1016/j.asej.2023.102585
3. Halverson M. Specifying the right plywood for concrete formwork. The construction specifier. 2017. https://www.constructionspecifier.com/specifying-right-plywood-concrete-formwork/ (Access date 15.08.2024).
4. Biadała T., Czarnecki R., Dukarska D. Water resistant plywood of increased elasticity produced from european wood species. Wood Research. 2020. Vol. 65 (1), pp. 111–124. https://doi.org/10.37763/wr.1336-4561/65.1.111124
5. Кноб А., Шейб В. Фенольные смолы и материалы на их основе / Пер. с англ. А.М. Василенко, Г.М. Восканянца. М.: Химия, 1983. 280 с.
5. Knob A., Sheib V. Fenol’nye smoly i materialy na ih osnove: per. s angl. A.M. Vasilenko, G.M. Voskanyanca [Phenolic resins and materials based on them: translated from English by A.M. Vasilenko, G.M. Voskanyants]. Moscow: Himiya. 1983. 280 p.
6. Иржак В.И., Межиковский С.М. Химическая физика отверждения олигомеров: Монография. 2-е изд., перераб. и доп. М.: Юрайт, 2022. 276 c.
6. Irzhak V.I., Mezhikovskij S.M. Himicheskaya fizika otverzhdeniya oligomerov: [Chemical physics of oligomer curing]. Moscow: Yurajt, 2022. 276 p.
7. Sedliačik J., Bekhta P., Potapova O. Technology of low-temperature production of plywood bonded with modified phenol-formaldehyde resin. Wood Research. 2010. Vol. 55 (4), pp. 123–130. https://www.researchgate.net/publication/267026018_Technology_of_low-temperature_production_of_plywood_bonded_with_modified_ phenol-formaldehyde_resin
8. Kawalerczyk J., Dziurka D., Mirski R., Siuda J., Sedliačik J. Microcellulose as a modifier for UF and PF resins allowing the reduction of adhesive application in plywood manufacturing. Acta Facultatis Xylologiae. 2021. Vol. 63 (2), pp. 31–38. https://doi.org/10.17423/afx.2021.63.2.03
9. Ortynska G., Bekhta P., Lyutyy P., Sedliačik J. Bonding of birch veneer with high moisture content using phenol-formaldehyde resin modified by soy protein. Acta Facultatis Xylologiae. 2018. Vol. 60 (1), pp. 85–91. https://doi.org/10.17423/afx.2018.60.1.09
10. Fitrianum F., Rahandi Lubis M.A., Hadi Y.S., Sari R.K., Maulana M.I., Kristak L., Iswanto A.H., Mardawati E., Reh R., Sedliačik J. Adhesion and cohesion strength of phenol-formaldehyde resin mixed with different types and levels of catalyst for wood composites. Journal of Composites Science. 2023. Vol. 7 (310). https://doi.org/10.3390/jcs7080310
11. Qin Z., Teng K. Mechanical model and changed chemical structure of phenol-formaldehyde adhesive on plywood with different hot press process. The Journal of Adhesion. 2021. Vol. 98 (15), pp. 2348–2365. https://doi.org/10.1080/00218464.2021.1970545
12. Fedotov A., Vahnina T., Susoeva I. Resistance to temperature and humidity changes of construction plywood and thermal-insulation boards. Magazine of Civil Engineering. 2021. Vol. 5 (105). Article No. 10506. https://doi.org/10.34910/MCE.105.6
13. Чубинский А.Н., Русаков Д.С., Соколова Е.Г., Варанкина Г.С., Федяев А.А. Инновационные методы исследований клеевых соединений // Известия Санкт-Петербургской лесотехнической академии. 2023. № 243. С. 253–268. EDN: IGKZUQ. https://doi.org/10.21266/2079-4304.2023.243.253-268
13. Chubinskij A.N., Rusakov D.S., Sokolova E.G., Varankina G.S., Fedyaev A.A. Innovative research methods for adhesive joints. Izvestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii. 2023. No. 243, pp. 253–268. (In Russian) .EDN: IGKZUQ. https://doi.org/10.21266/2079-4304.2023.243.253-268
14. Иванов А.М., Русаков Д.С., Bаранкина Г.С., Чубинский А.Н. Модификация алюмосиликатами феноло-формальдегидных смол для склеивания фанеры // Клеи, герметики, технологии. 2017. № 3. С. 13–17. EDN: YFSXEZ
14. Ivanov A.M., Rusakov D.S., Barankina G.S., Chubinskij A.N. Modification of phenol-formaldehyde resins with aluminosilicates for gluing plywood. Klei, germetiki, tekhnologii. 2017. No. 3, pp. 13–17. (In Russian). EDN: YFSXEZ
15. Аскадский А.А. Физико-химия полимерных материалов и методы их исследования. М.: АСВ, 2015. 408 c.
15. Askadskij A.A. Fiziko-himiya polimernyh materialov i metody ih issledovaniya [Physico-chemistry of polymer materials and methods of their research]. Moscow: АСВ. 2015. 408 p.
16. Новаков И.А., Радченко Ф.С., Паписов И.М. Исследование состава полимер-коллоидных комплексов полиакриламида и полигидроксохлорида алюминия // Высокомолекулярные соединения. Сер. Б. 2007. Т. 49. № 5. С. 912–915. EDN: IAQZZF.
16. Novakov I.A., Radchenko F.S., Papisov I.M. Investigation of the composition of polymer-colloidal complexes of polyacrylamide and aluminum polyhydroxochloride. Vysokomolekulyarnye soedineniya. Seriya B. 2007. Vol. 49. No. 5, pp. 912–915. (In Russian). EDN: IAQZZF
17. Федосов С.В., Лазарев А.А., Цветков Д.Е. Исследование глубины пропитки древесины пятипроцентным раствором бишофита при автоклавировании. Фундаментальные поисковые и прикладные исследования РААСН по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской Федерации в 2022–2023 гг. Сборник научных трудов РААСН: В 2 т. Т. 2. М., 2024. С. 483–489. EDN: WLEWPA
17. Fedosov S.V., Lazarev A.A., Cvetkov D.E. Investigation of the depth of impregnation of wood with a five percent solution of bischofite during autoclaving. Fundamental exploratory and applied research of RAACES on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2022–2023. Scientific works of RAACES. In 2 volumes. Vol. 2. Moscow. 2024, pp. 483–489. EDN: WLEWPA

For citation: Fedotov A.A., Vakhnina T.N., Susoeva I.V., Titunin A.A. Modeling of indicators of competitive materials for the manufacture of formwork in the construction of industrial buildings. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 68–72. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-68-72

Accounting for the Moisture State of Polymeric Materials when Developing Machine Learning Models

Number of journal: 12-2024
Autors:

Nizin D.R.,
Nizina T.A.,
Selyaev V.P.,
Spirin I.P.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-57-67
УДК: 691.175

 

AbstractAbout AuthorsReferences
The paper provides the results of studying the dependence of elastic-strength properties of unfilled epoxy polymers on moisture content by example of 18 different compounds. It includes the analysis of possible effects associated with changes in free moisture content in the polymer matrix structure, including a change in nature of behavior under load from brittle to viscous with a multiple increase in relative deformations at rupture, as well as quasi-embrittlement, manifested in the elimination or reduction of forced highly elastic deformations on the deformation curve. In addition to the shape corresponding to the one close to linear dependence of the change in tensile strength and modulus of elasticity on moisture content with a maximum around W~0%, the study revealed other forms of interrelation of parameters under consideration: with a local maximum of values in the “optimal moisture content” area differing from W~0%; with “plateau” sections around both extreme humidity conditions. The similarity of the effects occurring around moisture content of W~0% for epoxy polymer samples both in the control state and after prolonged climatic aging is shown. A hypothesis was formulated regarding the existence of a pattern common to epoxy polymers of change in the nature of the dependence of mechanical strength on moisture content during field climatic aging. Based on a joint analysis of the dependence curves of elastic-strength parameters on moisture content, the most representative epoxy polymer compounds for field studies were selected to compile training datasets for a machine learning model predicting changes in the elastic-strength properties of polymer materials exposed to environmental factors.
D.R. NIZIN1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.A. NIZINA1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.P. SELYAEV1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.P. SPIRIN1,2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 430005, Republic of Mordovia, Russian Federation)
2 Scientific-Research Institute of Building Physics of the Russian Academy architecture and construction sciences (21, Lokomotivniy Driveway, Moscow,127238, Russian Federation)

1. Startsev O.V., Yerofeyev V.T., Selyaev V.P. Klimaticheskie ispytaniya stroitel’nykh materialov [Climatic testing of construction materials]. Moscow: ASV. 2017. 558 p.
2. Nizina T.A., Selyaev V.P., Nizin D.R. Klimaticheskaya stoykost’ epoksidnykh polimerov v umerenno kontinental’nom klimate [Climatic resistance of epoxy polymers in a moderately continental climate]. Saransk: Publishing House of the Mordovian University, 2020. 188 p.
3. Kablov E.N., Startsev V.O., Laptev A.B. Starenie polimernykh kompozitsionnykh materialov [Aging of polymer composite materials]. Moscow: NITS “Kurchatovskiy institut” – VIAM. 2023. 536 p.
4. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of aerospace composite materials. I. Aging mechanisms. Deformatsiya i razrushenie materialov. 2010. No. 11, pp. 19–27. (In Russian). EDN: MWLDUB
5. Kablov E.N., Startsev V.O. Systematic analysis of climate impact on the mechanical properties of polymer composite materials based on domestic and foreign sources (review). Aviazionnye materialy i tekhnologii. 2018. No. 2, pp. 47–58. (In Russian). EDN: UOPPLH. https://doi.org/10.18577/2071-9140-2018-0-2-47-58
6. Nizina T.A., Selyaev V.P. The material base of a University as an innovative resource for the development of a National Research University. Durability of building materials, products, and structures: Materials of the All-Russian Scientific and Technical Conference. Saransk. 2014, pp. 115–121. (In Russian). EDN: TLXKDD
7. Lettieri M., Frigione M. Natural and artificial weathering effects on cold-cured epoxy resins. Journal of Applied Polymer Science. 2011. Vol. 119, Iss. 3, pp. 1635–1645. EDN: OCERWP. https://doi.org/10.1002/app.32835
8. Collins T.A. Moisture management and artificial ageing of fibre reinforced epoxy resins. Composite Structures 5. Elsevier applied science. 1989, pp. 213–239. https://doi.org/10.1007/978-94-009-1125-3_9
9. Startseva L.T., Panin S.V., Startsev O.V., Krotov A.S. Moisture diffusion in glass-fiberreinforced plastics after their climatic ageing. Doklady Physical Chemistry. 2014. Vol. 456. No. 1, pp. 77–81. https://doi.org/10.1134/S0012501614050054
10. Liao K., Tan Y.-M. Influence of moisture-induced stress on in situ fiber strength degradation of unidirectional polymer composite. Composites Part B: Engineering. 2001. Vol. 32. No. 4, pp. 365–370. EDN: ANGLSV. https://doi.org/10.1016/S1359-8368(01)00011-7
11. Startsev V.O., Plotnikov V.I., Antipov Yu.V. Reversible effects of moisture influence on the mechanical properties of polymer composite materials under climatic conditions. Trudy VIAM. 2018. No. 5, pp. 110–118. (In Russian). EDN: XOGMXJ. https://doi.org/10.18577/2307-6046-2018-0-5-110-118
12. Maxwell A.S., Broughton W.R., Dean G., Sims G.D. Review of accelerated ageing methods and lifetime prediction techniques for polymeric materials. NPL Report DEPC MPR 016. 2005.
13. Startsev V.O., Panin S.V., Startsev O.V. Sorption and diffusion of moisture in polymer composite materials with impact damage. Mekhanika kompozitnykh materialov. 2015. No. 6, pp. 1081–1094. (In Russian). EDN: VDTDJT.
14. Nizin D.R., Nizina T.A., Selyaev V.P., Klimentyeva D.A., Kanaeva N.S. Change in moisture content of epoxy polymer samples under natural climatic aging conditions. Climate-2021: Modern approaches to assessing the impact of external factors on materials and complex technical systems: Proceedings of the VI All-Russian Scientific and Technical Conference. Moscow. 2021, pp. 41–52. (In Russian). EDN: PWFFUZ.
15. Nizina T.A., Nizin D.R., Kanaeva N.S., Klimentyeva D.A., Porvatova A.A. The influence of moisture state on the kinetics of damage accumulation in the structure of epoxy polymer samples under tensile stress. Ekspert: teoriya i praktika. 2022. No. 1, pp. 37–45. (In Russian). EDN: YNWSZW. https://doi.org/10.51608/26867818_2022_1_37
16. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. III. Significant aging factors. Deformatsiya i razrushenie materialov. Moscow, 2011. No. 1, pp. 34–40. (In Russian). EDN: NTCCMB
17. Nizin D.R., Nizina T.A., Selyaev V.P., Spirin I.P. Modeling the influence of moisture content on the operational properties of epoxy polymers considering natural climatic aging. Polymer composite materials and new generation production technologies: VII All-Russian Scientific and Technical Conference. Moscow. 2023, pp. 171–194. (In Russian). EDN: KSAZMW
18. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of aviation composite materials. II. Relaxation of initial structural non-equilibrium and property gradient through thickness. Deformatsiya i razrushenie materialov. Moscow, 2010. No. 12, pp. 40–46. (In Russian). EDN: NCJYQZ
19. Nizin D.R., Nizina T.A., Selyaev V.P., Spirin I.P. Analysis of the influence of climatic factors on changes in the physical and mechanical characteristics of polymeric materials, taking into account their moisture content. Modern energy-saving thermal technologies (drying and thermal processes) MESTT-2023: Proceedings of the Eighth International Scientific and Practical Conference. Moscow. 2023, pp. 275–279. (In Russian). EDN: WNABWL

For citation: Nizin D.R., Nizina T.A., Selyaev V.P., Spirin I.P. Accounting for the Moisture State of Polymeric Materials when Developing Machine Learning Models. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 57–67. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-57-67

Structural-Sensitive Properties of Self-Healing Asphalt Concrete

Number of journal: 12-2024
Autors:

Inozemtcev S.S.,
Korolev E.V.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-49-56
УДК: 691.168

 

AbstractAbout AuthorsReferences
The statistical data analysis was performed for 10 different properties of asphalt concrete determined according to GOST 31015–2002 and the optimization of the set of quality indicators was performed. Three characteristics sufficient for assessing the quality of self-healing asphalt concrete were identified. The compressive strength limit at 0 and 20оC and the splitting strength limit at 0оC are the quality system indicators sensitive to the self-healing process. It was found that the self-healing index is inversely proportional to the relative deformations to which the asphalt concrete sample is subjected when determining the physical and mechanical properties. The use of AR polymer in capsules allows achieving a greater self-healing effect compared to capsules containing vegetable oil. The use of capsules with vegetable oil is advisable only when combating cracks formed as a result of thermal-oxidative aging of asphalt concrete bitumen.
S.S. INOZEMTCEV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOROLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

1. Углова Е.В., Ширяев Н.И. Повышение сроков службы дорожных покрытий из дренирующих асфальтобетонов // Научный журнал строительства и архитектуры. 2020. № 2 (58). С. 100–110. EDN: QERXBQ. https://doi.org/10.36622/VSTU.2020.58.2.008
1. Uglova E.V., Shiryaev N.I. Increasing the service life of road surfaces made of draining asphalt concrete. Nauchnyi zhurnal stroitel’stva i arkhitektury. 2020. No. 2 (58), pp. 100–110. (In Russian). EDN: QERXBQ. https://doi.org/10.36622/VSTU.2020.58.2.008
2. Михайлов А.А., Калгин Ю.И., Лобода А.В. Усталостная долговечность модифицированного холодного асфальтобетона при воздействии интенсивных транспортных нагрузок. Научный вестник Воронежского государственного архитектурно-строительного университета. Строитель-ство и архитектура. 2012. № 4 (28). С. 85–95. EDN: PIKUYH
2. Mikhailov A.A., Kalgin Yu.I., Loboda A.V. Fatigue life of modified cold asphalt concrete under the influence of intensive transport loads. NauchniyVastnik of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture. 2012. No. 4 (28), pp. 85–95. (In Russian). EDN: PIKUYH
3. Бахрах Г.С. Подход к определению срока службы асфальтобетонного покрытия // Дороги и мосты. 2014. № 2 (32). С. 250–263. EDN: TIBWFT
3. Bakhrakh G.S. Approach to determining the service life of asphalt concrete pavement. Dorogi i Mosty. 2014. No. 2 (32), pp. 250–263. (In Russian). EDN: TIBWFT
4. Ярмолинский В.А., Гончарук Д.Ю., Парфенов А.А. Применение комплексных полимерных добавок для повышения физико-механических характеристик полимерасфальтобетона // Вестник Московского автомобильно-дорожного государственного технического университета (МАДИ). 2023. № 4 (75). С. 20–27. EDN: FMDNFS
4. Yarmolinsky V.A., Goncharuk D.Yu., Parfenov A.A. Application of complex polymer additives to improve the physical and mechanical characteristics of polymer asphalt concrete. Vestnik of the Moscow Automobile and Road State Technical University (MADI). 2023. No. 4 (75), pp. 20–27. (In Russian). EDN: FMDNFS
5. Алшахван А., Калгин Ю.И. Улучшение структурно-механических свойств теплого асфальтобетона методом полимерно-дисперсного армирования // Научный журнал строительства и архитектуры. 2021. № 1 (61). С. 53–61. EDN: SRHMRR. https://doi.org/10.36622/VSTU.2021.61.1.005
5. Alshakhvan A., Kalgin Yu.I. Improving the structural and mechanical properties of warm asphalt concrete by polymer-dispersed reinforcement. Nauchnyi Zhurnal Stroitel’stva i Arkhitektury. 2021. No. 1 (61), pp. 53–61. (In Russian). EDN: SRHMRR. https://doi.org/10.36622/VSTU.2021.61.1.005
6. Миронов В.А., Голубев А.И., Тимофеев А.Г. Улучшение качества асфальтобетона регулированием свойств сырьевых материалов // Строительные материалы. 2007. № 5. С. 26–27. EDN: HZZIJF
6. Mironov V.A., Golubev A.I., Timofeev A.G. Improving the quality of asphalt concrete by regulating the properties of raw materials. Stroitel’nye Materialy [Construction Materials]. 2007. No. 5, pp. 26–27. (In Russian). EDN: HZZIJF
7. Inozemtcev S., Korolev E.V. Active polymeric reducing agent for self-healing asphalt concrete. IOP Conference Series: Materials Science and Engineering. 7. Ser. «VII International Scientific Conference «Integration, Partnership and Innovation in Construction Science and Education», IPICSE 2020». 2021. 012002. https://doi.org/10.1088/1757-899X/1030/1/012002
8. Xu S., Tabaković A., Liu X., Palin D., Schlangen E. Optimization of the calcium alginate capsules for self-healing asphalt. Applied Sciences. 2019. 9 (3). Vol. 468. https://doi.org/10.3390/app9030468
9. Wang Y., Su J., Liu L., Liu Z., Sun G. Waste cooking oil based capsules for sustainable self-healing asphalt pavement: Encapsulation, characterization and fatigue-healing performance. Construction and Building Materials. 2024. Vol. 425. 136036. https://doi.org/10.1016/j.conbuildmat.2024.136032
10. Wang H., Yuan M., Wu J., Wan P., Liu Q. Self-healing properties of asphalt concrete with calcium alginate capsules containing different healing agents. Materials (Basel). 2022. Vol. 15 (16). 5555. https://doi.org/10.3390/ma15165555
11. Zghoundi y., boutgoulla m., akkouri n., taha y., hakkou r., et al. Self-healing microencapsulation technology for asphalt pavements: a review. Nanoworld journal. 2023. Vol. 9(s2). S341–s349. https://doi.org/10.17756/nwj.2023-s2-058
12. Anupam B.R. A methodological review on self-healing asphalt pavements. Construction and Building Materials. 2022. Vol. 321, pp. 126395–126395. https://doi.org/10.1016/j.conbuildmat.2022.126395
13. Inozemtcev S., Korolev E. Indicators of the effectiveness of self-healing asphalt concrete. E3S Web of Conferences. 22nd International Scientific Conference on Construction the Formation of Living Environment, FORM 2019. 2019. 02007. https://doi.org/10.1051/e3sconf/20199702007
14. Иноземцев С.С., Королев Е.В., Ле Х.Т., До Ч. Т. Методы оценки самовосстановления асфальтобетона // Строительные материалы. 2024. № 10. С. 37–46. https://doi.org/10.31659/0585-430X-2024-829-10-37-46
14. Inozemtcev S.S., Korolev E.V., Le H.T., Do Ch. T.Methods for assessing the self-healing properties of asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2024. No. 10, pp. 37–46. (In Russian). https://doi.org/10.31659/0585-430X-2024-829-10-37-46
15. Sun Q., Wang X.-Y., Wang S., Shao R.-Y., Su J.-F.Investigation of asphalt self-healing capability using microvasculars containing rejuvenator: effects of microvascular content, self-healing time and temperature. Materials. 2023. 16. 4746. https://doi.org/10.3390/ma16134746
16. Zhang F., Sun Y., Kong L., Cannone Falchetto A., Yuan D., Wang W. Study on multiple effects of self-healing properties and thermal characteristics of asphalt pavement. Buildings. 2024. Vol. 14. 1313. https://doi.org/10.3390/buildings14051313
17. Nie F., Jian W., Lau D. Advanced self-healing asphalt reinforced by graphene structures: an atomistic insight. Journal of Visualized Experiments. 2022. 31 (183). https://doi.org/10.3791/63303
18. Bao S., Liu Q., Li H., Zhang L., Maria Barbieri D. Investigation of the release and self-healing properties of calcium alginate capsules in asphalt concrete under cyclic compression loading. Journal of Materials in Civil Engineering. 2021. Vol. 33 (1). 04020401. https://doi.org/10.1061/(asce)mt.1943-5533.0003517
19. Королев Е.В., Беленцов Ю.А. Применение теории информации в решении задач строительного материаловедения // Региональная архитектура и строительство. 2023. 3(56). С. 13–28. EDN: NDKOJM. https://doi.org/10.54734/20722958_2023_3_13
19. Korolev E.V., Belentsov Yu.A. Application of information theory in solving problems of construction materials science. Regional’naya arkhitektura i stroitel’stvo. (In Russian). 2023. No. 3 (56), pp. 13–28. EDN: NDKOJM.
https://doi.org/10.54734/20722958_2023_3_13
20. Лапшина Е.Г. Концепция архитектурного пространства городов: динамическая составляющая // Региональная архитектура и строительство. 2022. № 4 (53). С. 170–176. EDN: BEQLFW. https://doi.org/10.54734/20722958_2022_4_170
20. Lapshina E.G. Concept of the architectural space of cities: dynamic component. Regional’naya arkhitektura i stroitel’stvo. 2022. No. 4 (53), pp. 170–176. (In Russian). EDN: BEQLFW. https://doi.org/10.54734/20722958_2022_4_170
21. Inozemtcev S.S., Korolev E.V., Do T. Intrinsic self-healing potential of asphalt concrete. Magazine of Civil Engineering. 2023. No. 123 (7). 12308. EDN: BETBWN. https://doi.org/10.34910/MCE.123.8

For citation: Inozemtcev S.S., Korolev E.V. Structural-sensitive properties of self-healing asphalt concrete. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 49–56. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-49-56

High-Performance Concrete for Industrial Construction and Mechanical Engineering

Number of journal: 12-2024
Autors:

Lavrov I.Yu.,
Beregovoy V.A.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-42-48
УДК: 666.972.1

 

AbstractAbout AuthorsReferences
The multicomponent composition of the raw material mixture and the heterogeneity of the structure of highly functional concretes at various scale levels make it possible to effectively control the formation of indicators of its damping properties due to prescription and technological factors. Experimental compositions included Portland cement, quartz sand, granite screening, silica, metacaolin, quartz flour, microcalcite, shrinkage compensators, hyperplasticizer and reinforcing microfiber. The hydrodynamic properties were investigated by methods of free and forced oscillations.Experimental compositions included Portland cement, quartz sand, granite screening, silica, metacaolin, quartz flour, microcalcite, shrinkage compensators, hyperplasticizer and reinforcing microfiber. The hydrodynamic properties were investigated by methods of free and forced oscillations.Experimental compositions included Portland cement, quartz sand, granite screening, silica, metacaolin, quartz flour, microcalcite, shrinkage compensators, hyperplasticizer and reinforcing microfiber. The hydrodynamic properties were investigated by methods of free and forced oscillations.A laboratory complex of vibrodynamic tests has been developed that provides automated processing of the amplitudes of bending damping vibrations of the first mode of concrete samples to calculate the dynamic modulus of elasticity and the logarithmic decrement of attenuation. The high accuracy of the results obtained made it possible to identify the nature of the influence of various prescription factors (consumption of cement, pozzolan additives, microfiber, shrinkage compensators) on the dynamic modulus of elasticity and damping of concrete. An increase in the value of concrete damping (by 1.22 times) was established with an increase in cement consumption from 300 to 734 kg/m3. The introduction of shrinkage compensators, differing in the mechanism of action, made it possible to obtain non-shrinkable injection molding compositions and favorably affects the vibrodynamic parameters correlating with the magnitude of the overall heterogeneity of the microstructure of concrete.The results of the research have been tested in the manufacture of prototypes of concrete and reinforced concrete cutting machines (small-sized milling machine), as well as laboratory testing equipment.
I.Yu. LAVROV, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. BEREGOVOY, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Penza State University of Architecture and Construction (28, Titova Street, Penza, 440028, Russian Federation)

1. Калашников В.И., Володин В.М., Ерофеева И.В., Абрамов Д.А. Высокоэффективные самоуплотняющиеся порошково-активированные песчаные бетоны и фибробетоны // Современные проблемы науки и образования. 2015. № 1–2. С. 110–117. EDN: TXUWOL
1. Kalashnikov V.I., Volodin V.M., Erofeeva I.V., Abramov D.A. Highly efficient self-compacting powder-activated sand concretes and fiber-reinforced concretes. Sovremennye problemy nauki i obrazovaniya. 2015. No. 1–2, pp. 110–117. (In Russian). EDN: TXUWOL
2. Калашников В.И. Эволюция развития составов и изменение прочности бетонов. Бетоны настоящего и будущего. Ч. 1. Изменение составов и прочности бетонов // Строительные материалы. 2016. № 1. С. 96–103. EDN: VPWHMH
2. Kalashnikov V.I. Evolution of compositions and strength changes in concretes. Concretes of the present and future. Part 1. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1, pp. 96–103. (In Russian). EDN: VPWHMH
3. Möhring H.C., Brecher C., Abele E., Fleischer J., Bleicher F. Materials in machine tool structures. CIRP Annals. 2015. Vol. 64, Iss. 2, pp. 725–748. https://doi.org/10.1016/j.cirp.2015.05.005
4. Калашников В.И., Москвин Р.Н., Белякова Е.А. Применение бетона нового поколения в машиностроении. X Международная конференция «Механика, ресурс и диагностика материалов и конструкций»: Сборник материалов. Екатеринбург. 16–20 мая 2016. С. 173–174. EDN: VXMBCX
4. Kalashnikov V.I., Moskvin R.N., Belyakova E.A. Application of new generation concrete in mechanical engineering. X International Conference «Mechanics, Resource and Diagnostics of Materials and Structures» collection of materials. Ekaterinburg. May 16–20, 2016, pp. 173–174. (In Russian). EDN: VXMBCX
5. Liang C., Xiao J., Wang Y., Wang C., Mei S. Relationship between internal viscous damping and stiffness of concrete material and structure. Structural Concrete. 2021. Vol. 22. No. 3, pp. 1410–1428. https://doi.org/10.1002/suco.202000628
6. Ashby M.F. Materials selection in mechanical design. 3rd ed. Oxford (Conn.): Elsevier/Butterworth Heinemann. 2005. 602 p. https://doi.org/10.1016/C2009-0-25539-5
7. Ansari M., Tartaglione F., Koenke C. Experimental validation of dynamic response of small-scale metaconcrete beams at resonance vibration. Materials. 2023. Vol. 16. Iss. 14, pp. 5029–5045. https://doi.org/10.3390/ma16145029
8. Carbajo J., Poveda P., Segovia E., Rincón E., Ramis J. Determination of dynamic elastic modulus of materials under a state of simple stresses by using electrodynamic actuators in beam-type mechanical elements. Materials Letters. 2022. Vol. 320. 132383. https://doi.org/10.1016/j.matlet.2022.132383
9. Macioski G., de Oliveira V., Medeiros M. Strain, natural frequency, damping coefficient and elastic modulus of mortar beams determined by fiber Bragg grating (FBG) sensors. Revista IBRACON de Estruturas e Materiais. 2021. Vol. 14, pp. 1–17. https://doi.org/10.1590/S1983-41952021000300012
10. Kaewunruen S., Li D., Chen Y., Xiang Z. Enhancement of dynamic damping in eco-friendly railway concrete sleepers using waste-tyre crumb rubber. Materials. 2018. Vol. 11. Iss. 7, pp. 1169–1189. https://doi.org/10.3390/ma11071169
11. Zhang W., Zeng W., Zhang Y., Yang F., Wu P., Xu G., Gao Y. Investigating the influence of multi-walled carbon nanotubes on the mechanical and damping properties of ultra-high performance concrete. Science and Engineering of Composite Materials. 2020. Vol. 27, pp. 433–444. https://doi.org/10.1515/secm-2020-0046
12. Травуш В.И., Ерофеев В.Т., Черкасов В.Д., Емельянов Д.В., Ерофеева И.В. Демпфирующие свойства цементных композитов // Промышленное и гражданское строительство. 2018. № 5. С. 34–39. EDN: XQZTBB
12. Travush V.I., Erofeev V.T., Cherkasov V.D., Emelyanov D.V., Erofeeva I.V. Damping properties of cement composites. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 5, pp. 34–39. (In Russian). EDN: XQZTBB
13. Лавров И.Ю., Береговой В.А. Лабораторный комплекс для исследования вибродинамических показателей конструкционных бетонов // Региональная архитектура и строительство. 2023. № 4 (57). С. 56–65. EDN: FKWUAY.
https://doi.org/10.54734/20722958_2023_4_56
13. Lavrov I.Yu., Beregovoy V.A. Laboratory complex for studying vibration dynamic parameters of structural concretes. Regional’naya arkhitektura i stroitel’stvo. 2023. No. 4 (57), pp. 56–65. (In Russian). EDN: FKWUAY. https://doi.org/10.54734/20722958_2023_4_56
14. Кольский Г. Волны напряжения в твердых телах. М.: Издательство иностранной литературы, 1955. 192 с.
14. Kol’skiy G. Volny napryazheniya v tverdykh telakh [Stress waves in solids]. Moscow: Publishing house of foreign literature. 1955. 192 p.
15. Лавров И.Ю., Береговой В.А. Компенсация усадочных деформаций мелкозернистых бетонов для монолитных вибронагруженных конструкций // Цемент и его применение. 2024. № 3. С. 70–75. EDN: UPWBTS
15. Lavrov I.Yu., Beregovoy V.A. Compensation of shrinkage deformations of fine-grained concretes for monolithic vibration-loaded structures. Tsement i ego primenenie. 2024. No. 3, pp. 70–75. (In Russian). EDN: UPWBTS

For citation: Lavrov I.Yu., Beregovoy V.A. Highly functional concretes for industrial construction and mechanical engineering. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 42–48. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-42-48

Model of High-Strength Lightweight Concrete

Number of journal: 12-2024
Autors:

Inozemtcev A.S.,
Korolev E.V.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-34-41
УДК: 666.973

 

AbstractAbout AuthorsReferences
Modeling is a tool of scientific cognition that makes it possible, by replacing the object under study with its representation (model), to explore it and interpret the results on the object itself. Obviously, the material model should allow for the study of the influence of prescription factors on its properties (direct task) or, with established requirements for the material, determine the parameters of the model (values of factors) that ensure the achievement of established requirements (inverse task). In the course of the study, a compounding and structural model of high-strength lightweight concrete was developed, which is a system of equations that establish the relationship of structural parameters (geometric characteristics, compounding factors (component content) with the sedimentation rate and viscosity of the concrete mixture and the specific strength of concrete. The conducted modeling makes it possible to predict the properties of the concrete mixture and concrete on a hollow aggregate and establish boundary conditions to achieve the target values of key quality indicators. It has been established that an urgent task in the production of high-strength lightweight concretes is the development of compounding and technical solutions that provide a combination of high mobility and uniformity, which is explained by the value of I/C as a key control factor located in opposite optimization areas, and in order to achieve high specific strength of high-strength lightweight concrete, it is additionally necessary to regulate the adhesion of cement stone to a hollow filler.
A.S. INOZEMTCEV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOROLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research University Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 400074, Russian Federation)
2 Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Smirnov V.A., Korolev E.V. Building materials as disperse systems: multiscale modeling with dedicated software. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 43–53. (In Russian). EDN: YYFQXZ. https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53
2. Danilov V.E., Korolev E.V., Ayzenshtadt A.M., Strokova V.V. Features of the calculation of free energy of the surface based on the model for interfacial interaction of Owens–Wendt–Rabel–Kaelble. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 66–72. (In Russian). EDN: LHMOAH. https://doi.org/10.31659/0585-430X-2019-776-11-66-72
3. Garkina I.A., Danilov A.M. Experience in the development of composite materials: some aspects of mathematical modeling. Izvestiya of higher educational institutions. Construction. 2013. No. 8 (656), pp. 28–33. (In Russian). EDN: RUPEAN
4. Budylina E.A., Garkina I.A., Danilov A.M., Sorokin D.S. Synthesis of composites: logical and methodological models. Sovremennye problemy nauki i obrazovaniya. 2014. No. 5, p. 149. (In Russian). EDN: SZVJUV
5. Danilov A.M., Garkina I.A., Kiselev A.A. Modeling and processing of experimental data in the preparation of masters and postgraduate students. Regional’naya arhitektura i stroitel’stvo. 2015. No. 3 (24), pp. 73–77. (In Russian). EDN: UXRSDX
6. Korolev E.V., Belentsov Yu.A. Application of information theory in solving problems of construction materials science. Regional’naya arhitektura i stroitel’stvo. 2023. No. 3 (56), pp. 13–28. (In Russian). EDN: NDKOJM
7. Korolev E.V., Kiselev D.G., Albakasov A.I. Evaluation of the efficiency of the technology of nanomodification of sulfur binders by indicators of operational properties. Nanotekhnologii v stroitel’stve: scientific online journal. 2013. Vol. 5. No. 3, pp. 60–70. (In Russian). EDN: QBMUNH
8. Korolev E.V. Technical and economic efficiency of new technological solutions. Analysis and improvement. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 85–89. (In Russian). EDN: YHZYLN
9. Inozemtsev A.S., Korolev E.V. Vysokoprochnye legkie betony [High-strength lightweight concrete]. St. Petersburg: SPbGASU. 2022. 192 p. EDN: UCJRAZ
10. Makridin N.I., Maksimova I.N. Iskusstvennye poristye zapolniteli i lyogkie betony [Artificial porous fillers and lightweight concrete: textbook. Manual]. Penza: PGUAS. 2013. 324 p.
11. Petrov V.P., Makridin N.I., Yarmakovsky V.N. Poristye zapolniteli i lyogkie betony. Materialovedenie. Tekhnologiya proizvodstva: uchebnoe posobie [Porous fillers and lightweight concrete. Materials Science. Production Technology: a tutorial]. Samara: SGASU, ASV. 2009. 436 p.
12. Bychkov M.V., Udovov S.A. Features of the development of lightweight self-compacting concrete on porous fillers. Inzhenernyj vestnik Dona. 2013. No. 3 (26), p. 25. (In Russian). EDN: RZEFZN
13. Inozemtcev A.S., Korolev E.V. Lightweight concretes on hollow and porous aggregates. Stroitel’nye Materialy [Construction Materials]. 2024. No. 7, pp. 41–47. (In Russian). EDN: UNEDCX. https://doi.org/10.31659/0585-430X-2024-826-7-41-47
14. Uryev N.B., Potanin A.N. Tekuchest’ suspenziy i poroshkov [Flowability of suspensions and powders]. Moscow: Khimiya. 1992. 256 p.
15. Powell M.J. Site percolation in randomly packed spheres. Physical Review B. 1979. Vol. 20. Iss. 10. 4194. https://doi.org/10.1103/PhysRevB.20.4194
16. Pivinsky Yu.E. Reologiya dilatantnyh i tiksotropnyh dispersnyh sistem [Rheology of dilatant and thixotropic disperse systems]. St. Petersburg: St. Petersburg State Technological Institute. 2001. 174 p.
17. Korolev E.V., Bazhenov Yu.M., Albakasov A.I. Radiacionno-zashchitnye i himicheski stojkie sernye stroitel’nye materialy [Radiation-protective and chemically resistant sulfur building materials]. Orenburg: OSU. 2010. 364 p. EDN: PYONOJ
18. Kogan B.Yu. Razmernost’ fizicheskoj velichiny [Dimensionality of a physical quantity]. Moscow: Nauka. 1968. 72 p.
19. Sedov L.I. Metody podobiya i razmernostey v mekhanike [Methods of similarity and dimensions in mechanics]. Moscow: Nauka. 1972. 330 p.
20. Inozemtcev S.S., Korolev E.V., Le H.T., Do Ch. T.Methods for assessing the self-healing properties of asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2024. No. 10, pp. 37–46. (In Russian). EDN: JZAHYB. https://doi.org/10.31659/0585-430X-2024-829-10-37-46
21. Sheikin A.E., Chekhovsky Yu.V., Brusser M.I. Struktura i svojstva cementnyh betonov [Structure and properties of cement concretes]. Moscow: Stroyizdat. 1979. 344 p.
22. Zhuravlev V.F., Shteyert N.P. Adhesion of cement stone with various materials. Cement. 1952. No. 5, pp. 17–19. (In Russian).
23. Babitsky V.V. Prediction of the degree of hydration of cement with chemical additives. Materialy, tekhnologii, instrumenty. 2005. No. 1, p. 76. (In Russian).
24. Nesvetaev G.V., Wu L.K. Model for assessing the adhesion of cement stone to aggregate based on the value of the ultimate strength of concrete under axial tension. Naukovedenie Internet journal. 2017. Vol. 9. No. 3. (In Russian). EDN: ZEIRHN

For citation: Inozemtcev A.S., Korolev E.V. Lightweight concretes on hollow and porous aggregates. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 34–41. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-34-41

Conceptual Aspects of Designing Mineral Powder Compositions from Raw Materials of Natural and Technogenic Origin

Number of journal: 12-2024
Autors:

Frolova M.A.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-28-33
УДК: 666.9.031

 

AbstractAbout AuthorsReferences
Research related to the development of the criteria for optimizing the composition of building mixtures based on mineral powders is currently still relevant and is one of the priority issues in the industry. Based on the fact that the processes of disintegration of raw material of rocks are predominantly used in preparation for its further technological processing, this paper proposes to use the parameter of the surface activity of the resulting powder system to assess the process of mechanical activation during material crushing, and to use the analog value of the Hamaker constant to optimize the composition of the mixture based on the principles of maximum dispersion interaction of powder particles. Using the example of rocks of various genetic groups of natural and technogenic origin (basalt, quartz and polymineral silica-containing sands, saponite-containing waste from the enrichment process of kimberlite ores), the algorithm for calculating the above-mentioned characteristics is shown. It has been established that with the same duration of grinding (and comparable values of the dimensional characteristics of the resulting powders), the surface activity increases in the following series: polymineral sand, quartz sand, saponite-containing material. The dispersion obtained by mechanical grinding of serpentine is characterized by the maximum dispersion interaction of the particles of the studied mineral powders (basalt, saponite-containing waste, serpentine), estimated by the values of the analog Hamaker constant.
M.A. FROLOVA, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnaya Dvina Emb., Arkhangelsk, 163002, Russian Federation)

1. Shiryaev A.O., Vysotskaya M.A. Mineral powder in the modern system of designing asphalt concrete mixtures. Vestnik BGTU named after V.G. Shukhov. 2022. No. 2, pp. 8–19. (In Russian). EDN: CLKVKE. https://doi.org/10.34031/2071-7318-2021-7-2-8-19
2. Yadykina V.V., Kuznetsova E.V., Lebedev M.S. Effect of mineral filler modification on the intensity of bitumen aging. Lecture Notes in Civil Engineering. 2021. Vol. 147, pp. 189–194. https://doi.org/10.1007/978-3-030-68984-1_28
3. Patent RF No. 2016145039. Sposob polucheniya aktivirovannogo mineral`nogo poroshka dlya asfal`tobetona i krovel`nyx materialov iz kvarczevogo peska i aktivirovannyj mineral`nyj poroshok dlya asfal`tobetona i krovel`nyx materialov [Method for producing activated mineral powder for asphalt concrete and roofing materials from quartz sand and activated mineral powder for asphalt concrete and roofing materials] / Mikhailov A.V., Nurislamov A.A., Rodionov D.N., Shchepelev A.V. Declared 2016.11.17. Published 17.05.2018. Bulletin No. 14. (In Russian).
4. Kalashnikov V.I., Tarakanov O.V., Kuznetsov Yu.S., Volodin V.M., Belyakova E.A. New generation concretes based on dry fine-grained powder mixtures. Magazine of Civil Engineering. 2012. No. 8, pp. 47–53. (In Russian). EDN: PJWLHF. https://doi.org/10.5862/MCE.34.7
5. Sokolova Yu.V., Nelyubova V.V., Aizenshtadt A.M., Strokova V.V. Rheology of soil concrete mixtures based on a polymer-organic binder with a mineral modifier. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 26–32. (In Russian). EDN: ADWNLR. https://doi.org/10.31659/0585-430X-2022-809-12-26-32
6. Danilov V., Ayzenshtadt A., Kilyusheva N., Belyav A. Wood surface modification with an arabinogalactan–silica composition. Journal of Wood Chemistry and Technology. 2021. Vol. 41. Iss. 6, pp. 1–13. https://doi.org/10.1080/02773813.2021.1977828
7. Zuev V.V., Potseluev L.N., Goncharov Yu.D. Kristallojenergetika kak osnova ocenki magnezial’nyh svojstv tverdotelyh materialov (vkljuchaja magnezial’nye cementy) [Crystal energetics as a basis for assessing the magnesia properties of solid materials (including magnesia cements)] Saint Petersburg: ALFAPOL. 2006. 119 p.
8. Zuev V.V., Denisov G.A., Mochalov N.A., et al. Jenergoplotnost’ kak kriterij ocenki svojstv mineral’nyh i drugih kristallicheskih veshhestv [Energy density as a criterion for assessing the properties of mineral and other crystalline substances] Moscow: Polimedia. 2000. 352 p.
9. Abramovskaya I.R., Aizenshtadt A.M., Lesovik V.S., Veshnyakova L.A., Frolova M.A., Kazlitin S.A. Calculation of energy intensity of rocks as raw material for production of building materials. Promyshlennoe i grazhdanskoe stroitel’stvo. 2012. No. 10, pp. 23–25. (In Russian). EDN: PFGICX
10. Lesovik V.S. Povyshenie jeffektivnosti proizvodstva stroitel’nyh materialov s uchetom genezisa gornyh porod [Improving the efficiency of production of building materials taking into account the genesis of rocks] Moscow: ASV. 2006. 526 p.
11. Nelyubova V.V., Strokova V.V., Danilov V.E., Aizenshtadt A.M. Comprehensive activity analysis of silicacontaining raw materials for use in mechanical activation efficiency evaluations. Obogashchenie rud. 2022. No. 2, pp. 18–26. (In Russian). EDN: GTUQRF. https://doi.org/10.17580/or.2022.02.03
12. Shamanina A.V., Kononova V.M., Danilov V.E., Frolova M.A., Aizenshtadt A.M. Aspects of determining the surface activity of disperse systems based on mineral powders. Materialovedenie. 2021. No. 7, pp. 30–36. (In Russian). EDN: ASLHNO. https://doi.org/10.31044/1684-579X-2021-0-7-30-36
13. Frolova M.A. Methodical features of determining the specific surface energy of mineral quartz-containing powders. Vestnik BGTU named after V.G. Shukhov. 2022. No. 8, pp. 17–26. (In Russian). EDN: MYKOPA https://doi.org/10.34031/2071-7318-2022-7-8-17-26
14. Frolova M.A., Lesovik V.S., Aizenshtadt A.M. Surface activity of rocks. Stroitel’nye Materialy [Construction Materials]. 2013. No. 11, pp. 71–74. (In Russian). EDN: RKXZQX
15. Veshnyakova L.A., Aizenshtadt A.M., Frolova M.A. Assessment of surface activity of highly dispersed raw materials for composite building materials. Fizika i himija obrabotki materialov. 2015. No. 2, pp. 68–72. (In Russian). EDN: TQUWST
16. Morozova M.V., Akulova M.V., Frolova M.A., Shchepochkina Yu.A. Determination of energy parameters of sands using the example of deposits in the Arkhangelsk region. Materialovedenie. 2020. No. 9, pp. 45–48. (In Russian). EDN: ATJJQE. https://doi.org/10.31044/1684-579X-2020-0-9-45-48
17. Ayzenshtadt A.M., Drozdyuk T.A., Danilov V.E., Frolova M.A., Garamov G.A. Surface activity of concrete waste powders. Nanotehnologii v stroitel’stve. 2021. Vol. 13. No. 2, pp. 108–116. (In Russian). EDN: OQSFFR. https://doi.org/10.15828/2075-8545-2021-13-2-108-116
18. Morozova M.V., Ayzenshtadt A.M., Akulova M.V., Frolova M.A. Phase-structural heterogeneity and activity of the surface of polymineral sand powders. Nanotehnologii v stroitel’stve. 2022. Vol. 14. No. 2, pp. 89–95. (In Russian). EDN: MRZQKR. https://doi.org/10.15828/2075-8545-2022-14-2-89-95
19. Deryagin B.V., Churaev N.V., Muller V.M. Poverhnostnye sily [Surface forces]. Moscow: Nauka, 1985. 368 p.
20. Deryagin B.V., Abrikosov E.M., Lifshits E.M. Molecular attraction of condensed bodies. Uspekhi fizicheskix nauk. 2015. Vol. 185. No. 9, pp. 982–1001. (In Russian). EDN: UHHNQB. https://doi.org/10.3367/UFNr.0185.201509i.0981
21. Boynovich L.B. Long-range surface forces and their role in the development of nanotechnology. Uspehi himii. 2007. Vol. 76. No. 5, pp. 510–528. (In Russian). EDN: HZCBQD
22. Boinovich L., Emelyanenko A. Wetting and surface forces. Advances in Colloid and Interface Science. 2011. Vol. 165. No. 2, pp. 60–69. https://doi.org/10.1016/j.cis.2011.03.002
23. Ayzenshtadt A.M., Korolev E.V., Drozdyuk T.A., Danilov V.E., Frolova M.A. Possible Approach to Estimating the Dispersion Interaction in Powder Systems. Inorganic Materials: Applied Research. 2022. Vol. 13. No. 3, pp. 793–799. EDN: CMYWQR. https://doi.org/10.1134/S2075113322030029
24. Guozhong C., Wang Y. Nanostruktury i nanomaterialy. Sintez, svojstva i primenenie. [Nanostructures and nanomaterials. Synthesis, properties and application]. Trans. from English by A.I. Efimov, S.I. Kargov. Moscow: Scientific World. 2012, 520 p.
25. Frolova M.A., Tutygin A.S., Aizenshtadt A.M., Lesovik V.S., Makhova T.A., Pospelova T.A. Criterion for assessing the energy properties of a surface. Nanosistemy: fizika, himiya, matematika. 2011. Vol. 2. No. 4, pp. 120–125. (In Russian). EDN: OWOOPZ

For citation: Frolova M.A. Conceptual aspects of designing mineral powder compositions from raw materials of natural and technogenic origin. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 28–33. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-28-33

Characteristics of Hardening of Mechanically Activated Composite Cements

Number of journal: 12-2024
Autors:

Garkavi M.S.,
Artamonov A.V.,
Kolodezhnaya E.V.,
Dergunov S.A.,
Serikov S.V.,
Khamidulina D.D.,
Nekrasova S.A.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-21-27
УДК: 666.974.6

 

AbstractAbout AuthorsReferences
Composite cement is a binder system containing a mineral component that improves the construction and technical properties of cement. During separate and combined grinding of composite cement components in a high-energy centrifugal impact mill the mechanical activation of the mineral additive is carried out and mechanocomposites are formed, affecting the hardening and properties of the finished product. Hydration schemes for composite cements of separate and combined grinding are proposed. It is shown that during the hydration of composite cements, X-ray amorphous calcium hydrosilicates and hydroaluminates are formed, which crystallize under nonequilibrium conditions according to the non-classical kvataron mechanism. This leads to the formation of a fractal structure of cement stone with high early strength.
M.S. GARKAVI1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. ARTAMONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOLODEZHNAYA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. DERGUNOV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SERIKOV3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.D. KHAMIDULINA4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. NEKRASOVA4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural-Omega CJSC (89, building 7, Lenin Avenue, Magnitogorsk, 455037, Russian Federation)
2 Institute for Integrated Development of Mineral Resources of the Russian Academy of Sciences (4, Kryukovsky Tupik, Moscow, 111020, Russian Federation)
3 Orenburg State University (13, Pobedy Avenue, Orenburg, 460018, Russian Federation)
4 Magnitogorsk State Technical University (38, Lenina Avenue, Magnitogorsk, 455000, Russian Federation)

1. Cimermanis L.-H.B. Termodinamika vlazhnostnogo sostoyaniya i tverdeniya stroitel’nykh materialov [Thermodynamics of moisture state and hardening of building materials]. Riga: Zinatne. 1985. 247 p.
2. Garkavi M. Termodinamika tverdeniya vyazhushchikh sistem. Teoreticheskie printsipy i tekhnologicheskie prilozheniya [Thermodynamics of hardening of binder systems. Theoretical principles and technological applications]. Berlin: Palmarium Academic Publishing. 2013. 247 p.
3. Sychev M.M. Tverdenie vyazhushchikh veshchestv [Hardening of binders]. Moscow: Stroyizdat. 1974. 80 p.
4. Garkavi M.S., Dergunov S.A., Serikov S.V. Formation of the structure of composite cement in the grinding process. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 65–68. (In Russian). EDN: GRLVEG. https://doi.org/10.31659/0585-430X-2021-796-10-65-68
5. Garkavi M.S., Artamonov A.V., Stavtseva A.V., Kolodezhnaya E.V., Dergunov S.A., Serikov S.V. Modeling of structural transformations when grinding composite cement. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 41–46. (In Russian). EDN: DSZFNY. https://doi.org/10.31659/0585-430X-2021-797-11-41-46
6. De Weerdt K. Comparison of separate and combined grinding of cements and additives. Tsement i ego primenenie. 2010. No. 6, pp. 82–87. (In Russian). EDN: NUXAVH
7. Khripacheva I.S., Garkavi M.S., Artamonova A.V., Voronin K.M., Artamonova A.V. Cements of centrifugal impact grinding. Tsement i ego primenenie. 2013. No. 4, pp. 106–109. (In Russian). EDN: TIRUDH
8. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Dergunov S.A., Serikov S.V. Formation of nanosystems during hardening of composite cements of centrifugal-impact grinding. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 39–42. (In Russian). EDN: VUQDCK. https://doi.org/10.31659/0585-430X-2023-811-3-39-42
9. Boldyrev V.V., et al. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii [Fundamental principles of mechanical activation, mechanosynthesis and mechanochemical technologies]. Novosibirsk, Publishing House of the Siberian Branch of the Russian Academy of Sciences. 2009. 343 p.
10. Lapshin O.V., Boldyreva E.V., Boldyrev V.V. The role of mixing and dispersion in mechanochemical synthesis (review). Zhurnal neorganicheskoi khimii. 2012. Vol. 66. No. 3, pp. 402–424. EDN: MSTTZH. https://doi.org/10.31857/S0044457X21030119
11. Mekhanokompozity-prekursory dlya sozdaniya materialov s novymi svoistvami [Mechanocomposites – precursors for creating materials with new properties]. Novosibirsk: Publishing house of the Siberian Branch of the Russian Academy of Sciences. 2010. 424 p.
12. Lapshin O.V., Smolyakov V.K. Formation of a layered structure of mechanocomposites during grinding of a binary mixture. Khimicheskaya fizika i mezoskopiya. 2013. Vol. 15. No. 2, pp. 278–284. (In Russian). EDN: QIQTSH
13. Garkavi M., Hripacheva I. Processing and use of metallurgical slags in construction. 17 International Baustofftagung. Weimar. 2009, pp. 1-0609-0612.
14. Garkavi M.S., Khripacheva I.S. Mixed cements of centrifugal impact grinding based on blast furnace waste slag. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 40–41. (In Russian). EDN: MTHGPZ
15. Garkavi M.S., Khripacheva I.S. Optimization of mixed binder compositions using waste electric steelmaking slags. Stroitel’nye Materialy [Construction Materials]. 2010. No. 2, pp. 56–57. (In Russian). EDN: MBCIAB
16. Vernigorova V.N. Fiziko-khimicheskie osnovy obrazovaniya modifitsirovannykh gidrosilikatov kal’tsiya v kompozitsionnykh materialakh na osnove sistemy CaO–SiO2–H2O. [Physicochemical foundations of the formation of modified calcium hydrosilicates in composite materials based on the CaO–SiO2–H2O system]. Penza: Publishing house of the Central Scientific and Technical Institute. 2001. 394 p.
17. Tyukavkina V.V., Kasikov A.G., Gurevich B.I. Structure formation of cement stone modified with additive of nano-disperse silicon dioxide. Stroitel’nye Materialy [Construction Materials]. 2018. No. 11, pp. 31–35. (In Russian). EDN: YROOSL. https://doi.org/10.31659/0585-430X-2018-765-11-31-35
18. Vishnevskaya Ya.Yu., Lesovik V.S., Alfimova N.I. Energy intensity of the processes of synthesis of composite binders depending on the genesis of the silica-containing component. Bulletin of BSTU named after V.G. Shukhova. 2010. No. 3, pp. 53–56. (In Russian). EDN: OAKGRH
19. Bondarenko S.N., Markova I.Yu., Yakovlev E.A., Lebedev M.S., Potapov D.Yu. Study of the processes of structure formation of composite cement stone for soil strengthening. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 15–21. (In Russian). EDN: MDRTZV. https://doi.org/10.31659/0585-430X-2022-809-12-15-21
20. Askhabov A.M. Quataron concept: main ideas and some applications. Izvestiya of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2011. Iss. 3, pp. 70–77. (In Russian). EDN: OKDUHZ
21. Askhabov A.M. On the properties of pre-embryonic (protomineral) clusters. Dolady of the Academy of Sciences. 2019. Vol. 487. No. 5, pp. 47–50. (In Russian).

For citation: Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Dergunov S.A., Serikov S.V., Khamidulina D.D., Nekrasova S.A. Features of hardening of mechanically activated composite cements. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 21–27. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-21-27

Biocidal Cements with Active Mineral Additive: Production and Properties

Number of journal: 12-2024
Autors:

Erofeev V.T.,
Rodin A.I.,
Karpushin S.N.,
Samchenko S.V.,
Tomilin O.B.,
Gladkin S.S.,
Erofeeva I.V.,
Sanyagina Ya.A.

DOI: https://doi.org/10.31659/0585-430X-2024-831-12-4-18
УДК: 666.949

 

AbstractAbout AuthorsReferences
Concrete and reinforced concrete structures are susceptible to the negative effects of bacteria, mycelial fungi, and actinomycetes. The purpose of this research is development of compositions of cement binders with active mineral additives for biocidal concretes creation. For biocidal cements with an active additive manufacture following components were used: Portland cement clinker produced by JSC Mordovcement, two-water gypsum of the Poretsky deposit, fly ash of the Krasnoyarsk CHP-3 and biocidal ingredients: sodium sulfate, sodium fluoride. Biocidal cements were obtained by joint grinding of mineral components and biocidal additives, then an active mineral additive was added. The physico-chemical, physico-mechanical and technological properties of the cements with an active mineral additive and composites based on them were determined in accordance with current regulatory documents. X-ray phase analysis, thermogravimetric analysis, differential thermogravimetry, calorimetry and other methods were used in this work. The features of phase transformations in cement stone are revealed depending on the type and content of biocidal ingredients, active mineral additives and hydration time. The absence of ettringite formation during hydration of cements modified with sodium fluoride and the presence of a new hydroaluminate phase have been established. The curves of TG, DTG and DTA for hydrated biocidal cement with the addition of fly ash modified with sodium sulfate are almost identical to the curves of hydrated ordinary cement. The largest amount of C-S-H gel (40 wt. %) was recorded in formulations with an active mineral additive. Based on the results of the study of normal density and setting time of the cement dough, the strength of samples of biocidal cement stone during compression and bending, regression equations were obtained, graphical dependencies were built and optimal compositions of biocidal cements were determined. Compositions of biocidal cements superior in physical and mechanical properties to ordinary Portland cements, which are recommended for the manufacture of biostable building products, have been obtained.
V.Т. EROFEEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.I. RODIN3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.N. KARPUSHIN2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.V. SAMCHENKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.B. TOMILIN3, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.S. GLADKIN2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. EROFEEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Ya.A. SANYAGINA2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Scientific-Research Institute of Building Physics of the Russian Academy architecture and construction sciences (21, Lokomotivniy Driveway, Moscow,127238, Russian Federation)
3 National Research Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 430005, Republic of Mordovia, Russian)

1. Sharafutdinov K., Saraikina K., Kashevarova G., Sanyagina Y., Erofeev V., Vatin N. Strength and durability of concrete with superabsorbent polymer admixture. International Journal for Computational Civil and Structural Engineering. 2023. Vol. 19. No. 2, pp. 120–135.EDN: QZLHLL. https://doi.org/10.22337/2587-9618-2023-19-2-120-135
2. Erofeev V., Vatin N., Maximova I., Tarakanov O., Sanyagina Y., Erofeeva I., Suzdaltsev O. Powder-activated concrete with a granular surface texture. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18. No. 4, pp. 49–61.EDN: HODYXP. https://doi.org/10.22337/2587-9618-2022-18-4-49-61
3. Burg R.G., Ost B.W. Engineering Properties of commercially аvailable High-Strength concretes. Pottland cement Associacion. Bulletin RDID 4TSNI.914.1992, pp. 56–57.
4. Ерофеев В.Т., Родин А.И., Якунин В.В., Тувин М.Н. Структура, состав и свойства геополимеров из отходов минеральной ваты // Инженерно-строительный журнал. 2019. № 6 (90). С. 3–14. EDN: XBXALK
https://doi.org/10.18720/MCE.90.1
4. Erofeev V.T., Rodin A.I., Yakunin V.V., Tuvin M.N. Structure, composition and properties of geopolymers from mineral wool waste. Magazine of Civil Engineering. 2019. No. 6 (90), pp. 3–14. (In Russian). EDN: XBXALK. https://doi.org/10.18720/MCE.90.1
5. Buil M., Paillere A.M., Roussel B. High strength mortars containing condensed silica fume. Cement and concrete research. 1984. Vol. 14. No. 5, pp. 639–704.
6. Aitcin P-C., Lachemi M., Adeline R., Richard P. The Sherbooke Reactive Powder Concrete Footbridge. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE). 1998. Vol. 8. Iss. 2, pp. 140–144. https://doi.org/10.2749/101686698780489243
7. Muller C., Sahroder P., Shlissl P. Hochleistungbetonmit Stlinkohlenflugasche. Essen VGB Fechmische Vereinigung Bundesverband Kraftwerksnelenprodukte. Flugasche in Beton. 1998. Vortag 4. 25 p.
8. Wei S., Jiang Z., Liu H., Zhou D., Sanchez-Silva M. Microbiologically induced deterioration of concrete. A review. Brazilian Journal of Microbiology. 2013. Vol. 44 (4), pp. 1001–1007.
https://doi.org/10.1590/S1517-83822014005000006
9. Moradian M., Shekarchi M., Pargar F., Bonakdar A., Valipour M. Deterioration of concrete caused by complex attack in sewage treatment plant environment. Journal of Performance of Constructed Facilities. 2012. Vol. 26. No. 1, pp. 124–134.
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000189
10. Erbektas A.R., Isgor O.B., Weiss W.J. An accelerated testing protocol for assessing microbially induced concrete deterioration during the bacterial attachment phase. Cement and Concrete Composites. 2019. Vol. 104, Art. 103339. https://doi.org/10.1016/j.cemconcomp.2019.103339
11. Dyer T. Biodeterioration of concrete. Boca Raton: CRC Press. 2017. 210 p. https://doi.org/10.1201/9781315119557
12. Erofeev V.T., Smirnov V.F., Dergunova A.V., Bogatov A.D., Letkina N.V. Development and Research of Methods to Improve the Biosistability of Building Materials. Materials Science Forum. 2019. Vol. 974, pp. 305–311. EDN: WDGNMC. https://doi.org/10.4028/www.scientific.net/MSF.974.305
13. Erofeev V., Myshkin A., Smirnov V. The study of polyester-acrylate composite’s stability in the humid maritime operating conditions. Materials Today: Proceedings. 2019. Vol. 19. Part 5, pp. 2255–2257. https://doi.org/10.1016/j.matpr.2019.07.547
14. Erofeev V. Frame construction composites for buildings and structures in aggressive environments. Procedia Engineering. 2016. Vol. 165, pp. 1444–1447. EDN: YUXOWB. https://doi.org/10.1016/j.proeng.2016.11.877
15. Stanić N., De Haan C., Tirion M., Langeveld J.G., Clemens F.H.L.R. Comparison of core sampling and visual inspection for assessment of concrete sewer pipe condition. Water Science and Technology. 2013. Vol. 67. Iss. 11, pp. 2458–2466.
https://doi.org/10.2166/wst.2013.138
16. Sanches Junior F., Venturini W.S. Damage modelling of reinforced concrete beams. Advances in Engineering Software. 2007. Vol. 38. Iss. 8–9, pp. 538–546.
https://doi.org/10.1016/j.advengsoft.2006.08.025
17. Dergunova A., Piksaykina A., Bogatov A., Salman A.D.S.D., Erofeev V. The economic damage from biodeterioration in building sector. IOP Conference Series: Materials Science and Engineering. International Scientific Conference «Construction and Architecture: Theory and Practice of Innovative Development» – Construction of Roads, Bridges, Tunnels and Airfields. 2019. Vol. 698. Iss. 7, p. 077020. EDN: TMKPRD. https://doi.org/10.1088/1757-899X/698/7/077020
18. Zeng X., Li Y., Ran Y., Yang K., Qu F., Wang P. Deterioration mechanism of CA mortar due to simulated acid rain. Construction and Building Materials. 2018. Vol. 168, pp. 1008–1015.
https://doi.org/10.1016/j.conbuildmat.2018.03.033
19. Brown G.D., Denning D.W., Gow N.A.R., Levitz S.M., Netea M.G., White T.C. Hidden killers: Human fungal infections. Science Translational Medicine. 2012. Vol. 4. No. 165, p.165rv13.
https://doi.org/10.1126/scitranslmed.3004404
20. Latgé J.-P. Aspergillus fumigatus and Aspergillosis. Clinical Microbiology Reviews. 1999. Vol. 12. No. 2, pp. 310–350. https://doi.org/10.1128/cmr.12.2.310
21. Person A.K., Kontoyiannis D.P., Alexander B.D. Fungal Infections in Transplant and Oncology Patients. Hematology/Oncology Clinics of North America. 2011. Vol. 25. Iss. 1, pp. 193–213.
https://doi.org/10.1016/j.idc.2010.01.002
22. Travush V.I., Karpenko N.I., Erofeev V.T., Rodin A.I., Rodina N.G., Smirnov V.F. Development of biocidal cements for buildings and structures with biologically active environmen. Power Technology and Engineering. 2017. Vol. 51, pp. 377–384.
https://doi.org/10.1007/s10749-017-0842-8
23. Erofeev V., Rodin A., Rodina N., Kalashnikov V., Erofeeva I. Biocidal Binders for the Concretes of Unerground Constructions. 15TH Internetional Sientific Conference «Undergrjund Urbanisation as a Prerequisite for Sustainable Development». Procedia Engineering. 2016. Vol. 165, pp. 1448–1454. EDN: YUWOXB. https://doi.org/10.1016/j.proeng.2016.11.878
24. Smoláková M., Eštoková A., Václavík V. Antifungal efficiency of slag based cement composites. International Multidisciplinary Scientific Geoconference Surveying Geology and Mining Ecology Management. 2018. Vol. 18 (6.3), pp. 27–34. EDN: LMCCYE. https://doi.org/10.5593/sgem2018/6.3/S26.004
25. Bertron A. Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Materials and Structures. 2014. Vol. 47. No. 11, pp. 1787–1806. EDN: YFBAAJ. https://doi.org/10.1617/s11527-014-0433-1
26. Liu Y., Wang J., Peng Z., Xiong Z., Zeng Y., Fu X., Zhang R., Hu S., Liu H., Liu Q. Advanced coal fly ash modification by using corrosive microorganisms as alternative filler-reinforcing fluororubbers. Materials Letters. 2019. Vol. 246, pp. 32–35. https://doi.org/10.1016/j.matlet.2019.03.036
27. Liu W., Tan H., Ni C., Chen Z., Luo T., Yu L. Effect of silica fume and fly ash on compressive strength and weight loss of high strength concrete material in sulfuric and acetic acid attack. Key Engineering Materials. 2017. Vol. 748, pp. 301–310. EDN: YGSKIY. https://doi.org/10.4028/www.scientific.net/KEM.748.301
28. Strigác J., Martauz P. Fungistatic properties of granulated blastfurnace slag and related slag-containing cements. Ceramics – Silikaty. 2016. Vol. 60 (1), pp. 19–26. https://doi.org/10.13168/cs.2016.0003
29. ŽivicaV., Krizma M. Acidic-resistant slag cement. Magazine of Concrete Research. 2013. Vol. 65. Iss. 18, pp. 1073–1080.
https://doi.org/10.1680/macr.12.00019
30. Senhadji Y., Escadeillas G., Mouli M., Khelafi H., Benosman. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology. 2014. Vol. 254, pp. 314–323.
https://doi.org/10.1016/j.powtec.2014.01.046
31. Gruyaert E., Van Den Heede P., Maes M., De Belie N. Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cement and Concrete Research. 2012. Vol. 42. Iss. 1, pp. 173–185. https://doi.org/10.1016/j.cemconres.2011.09.009
32. Siad H., Mesbah H.A., Bernard S.K., Khelafi H., Mouli M. Influence Of Natural Pozzolan On The Behavior Of Self-Compacting Concrete Under Sulphuric And Hydrochloric Acid Attacks. Comparative Study. Arabian Journal for Science and Engineering. 2010. Vol. 35 (1), pp. 183–195.
33. Parande A.K., Babu B.R., Pandi K., Karthikeyan M.S., Palaniswamy N. Environmental effects on concrete using Ordinary and Pozzolana Portland cement.Construction and Building Materials. 2011. Vol. 25. Iss. 1, pp. 288–297. https://doi.org/10.1016/j.conbuildmat.2010.06.027
34. Olivia M., Pradana T., Sitompul I.R. Properties of Plain and Blended Cement Concrete Immersed in Acidic Peat Water Canal. Procedia Engineering. 2017. Vol. 171, pp. 557–563. https://doi.org/10.1016/j.proeng.2017.01.372

For citation: Erofeev V.T., Rodin A.I., Karpushin S.N., Samchenko S.V., Tomilin O.B., Gladkin S.S., Erofeeva I.V., Sanyagina Ya.A. Biocidal cements with an active mineral additive: preparation and properties. Stroitel'nye Materialy [Construction Materials]. 2024. No. 12, pp. 4–18. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-4-18

Cellular Concrete with Variable Density from Vietnam Raw Materials

Number of journal: 11-2024
Autors:

Tang Van Lam,
Pham Duc Luong,
Vo Dinh Trong,
Bulgakov B.I.,
Bazhenova S.I.

DOI: https://doi.org/10.31659/0585-430X-2024-830-11-79-86
УДК: 666.973.6

 

AbstractAbout AuthorsReferences
The existing methods of obtaining cellular concrete products with a variatropic structure are analyzed. It is revealed that each of them has its own advantages and disadvantages. A new technology for the production of cellular concretes of variable density has been developed, which makes it possible to manufacture construction products in Vietnam from local raw materials with high performance characteristics and meeting modern requirements for energy efficiency and durability.According to the test results, it was found that at the hardening age of 28 days, the average density in the dry state and in the state of normal humidity is in the range of 1085–1608 and 960–1517 kg/m3, respectively. Strength tests have shown that the developed concrete reaches an average compressive strength of 13.5–25.4 MPa on the 28th day of hardening. It can be concluded that the combination of foam and gas-forming components used in the formulation made it possible to obtain cellular concrete with an anisotropic structure, having the required indicators of compressive strength and average density in a wet state, which will be in demand in Vietnam during the construction of facilities for various purposes.
TANG VAN LAM1, Candidate of Sciences (Engineering), Lecturer-Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.),
PHAM DUC LUONG1, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.),
VO DINH TRONG1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.I. BULGAKOV2, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.I. BAZHENOVA2, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Hanoi University of Mining and Geology (18, Pho Vien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Большаков В.И., Мартыненко В.А. Технологические аспекты производства мелкоштучных ячеисто-бетонных изделий из ячеистого бетона неавтоклавного твердения. Киев: НИИСМИ. Строительные материалы и изделия, 2002. С. 13–15.
1. Bolshakov V.I., Martynenko V.A. Tekhnologicheskie aspekty proizvodstva melkoshtuchnykh yacheistobetonnykh izdelii iz yacheistogo betona neavtoklavnogo tverdeniya [Technological aspects of the production of small-piece cellular concrete products from non-autoclaved cellular concrete]. Kyiv. NIISMI. Construction materials and products. 2002, pp. 13–15. (In Russian).
2. Патент RU 2243190. Способ изготовления вариатропных ячеисто-бетонных изделий / Королев А.С., Волошин Е.А., Трофимов Б.Я., Шаимов М.Х., Кузьменко С.А. Заявл. 02.06.2003. Опубл. 27.12.2004.
2. Patent RU 2243190. Sposob izgotovleniya variatropnykh yacheistobetonnykh izdelii [Method of manufacturing variatropic cellular concrete products]. Korolev A.S., Voloshin E.A., Trofimov B.Ya., Shaimov M.H., Kuzmenko S.A. Applicated 06.02.2003. Published 12.27.2004. (In Russian).
3. Tăng Văn Lâm, Nguyễn Đình Trinh, Vũ Kim Diến, Nguyễn Bá Bình (2023), Bê tông bọt-khí dị hướng, Hội Nghị khoa học thường niên năm 2023 – Trường Đại học Thủy lơi, Hà Nội, tháng 11 năm 2023. Tr. 99–101. (Foam concrete-anisotropic gas, Annual Scientific Conference 2023. Thuy Lê University, Ha Noi, November 2023, pp. 99–101). (In Vietnamese).
4. Ву Ким Зиен. Ячеистые бетоны с использованием плазмомодифицированного доменного шлака: Дис. … канд. техн. наук. М., 2023. 168 с.
4. Wu Kim Zien. Cellular concrete using plasma-modified blast furnace slag. Dis. Candidate of Sciences (Engineering). Moscow. 2023. 168 p. (In Russian).
5. Ткаченко Т.Ф., Перцев В.Т. Совершенствование технологии неавтоклавных пенобетонов. Научный вестник Воронежского государственного архитектурно-строительного университета. Строительство и архитектура. 2011. № 4. C. 243–250.
6. Tkachenko T.F., Pertsev V.T. Improving the technology of non-autoclaved foam concrete. Nauchniy vestnik of the Voronezh State University of Architecture and Civil Engineering. Construction and architecture. 2011. No. 4, pp. 243–250. (In Russian).
6. Miryuk O. Formation of structure magnesium foamed concrete. International Journal of Civil Engineering. 2017. Vol. 6. Iss. 2, pp. 1–10.
7. Чернов А.Н. Ячеистый бетон переменной плотности. М.: Стройиздат, 1972. 128 с.
7. Chernov A.N. Yacheistyi beton peremennoi plotnosti [Cellular concrete of variable density]. Moscow: Stroyizdat. 1972. 128 p.
8. Кара К.А., Шорстов Р.А. Приемы создания газобетона с вариатропной струтурой. Cб. докладов Международной научно-практической конференции, посвященной 65-летию БГТУ им. В.Г. Шухова. 2019. Белгород. С. 23–28.
8. Kara K.A., Shorstov R.A. Techniques for creating aerated concrete with a variable structure. Сollection reports of the International Scientific and Practical Conference dedicated to the 65th anniversary of BSTU named after V.G. Shukhov. Belgorod. 2019, pp. 23–28. (In Russian).
9. Баженова С.И., Ву Ким Зиен, Во Фу Тоан. Способы производства вариатропных ячеистых бетонов. Cб. докладов научно-технической конференции по итогам научно-исследовательских работ студентов Института строительства и архитектуры НИУ МГСУ. М., 2022. C. 545–549.
9. Bazhenova S.I., Vu Kim Zien, Vo Phu Toan. Methods for the production of variable cellular concrete. Collection reports of a scientific and technical conference on the results of research work of students of the Institute of Construction and Architecture of the National Research Moscow State University of Civil Engineering. Moscow. 2022, pp. 545–549. (In Russian).
10. Патент RU2626092C1. Способ изготовления вариатропного ячеистого бетона / Бруяко М.Г., Ушков В.А., Торосян Д.В., Григорьева А.И., Волов А.Д., Ергенян А.М., Творогова Е.А.. Заявл. 14.04.2016. Опубл. 21.07.2017.
10. Patent RU2626092C1 Method for producing variable cellular concrete. Bruyako M.G., Ushkov V.A., Torosyan D.V., Grigoryeva A.I., Volov A.D., Ergenyan A.M., Tvorogova E.A. Declared 04/14/2016. Published 07/21/2017. (In Russian).
11. Đào Văn Đông. Giáo trình công nghệ vật liệu mới trong xây dựng (Textbook on the technology of new materials in construction). Nhà xuất bản xây dựng. 2021. (In Vietnamese).
12. Танг Ван Лам, Фам Дык Лыонг, Нгуен Ба Бинь, Булгаков Б.И., Баженова С.И. Газобетоны на геополимерном вяжущем из техногенных отходов // Строительные материалы. 2023. № 11. С. 63–69. https://doi.org/10.31659/0585-430X-2023-819-11-63-69
12. Tang Van Lam, Pham Duc Luong, Nguyen Ba Binh, Bulgakov B.I., Bazhenova S.I. Aerated concrete with geopolymer binder from technogenic waste. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 63–69. (In Russian).
https://doi.org/10.31659/0585-430X-2023-819-11-63-69
13. Nguyễn Duy Hiếu. Công nghệ bê tông nhẹ cốt liệu rỗng chất lượng cao. Nhà xuất bản xây dựng. 2016. (Technology for the production of high-quality lightweight concrete with hollow aggregate) (In Vietnamese).
14. Vilches, J. The development of novel infill materials for composite structural assemblies. Doctoral dissertation. Auckland University of Technology. 2014. 122 p.
15. Lâm N., Hanh P. Research to improve the quality of autoclaved aerated concrete used for super high - rise building in Vietnam. Tạp Chí Khoa Học Công Nghệ Xây Dựng (TCKHCNXD). ĐHXDHN, 8 (4), 75–80. (Research on improving the quality of autoclaved aerated concrete used for super-tall buildings in Vietnam. Journal of Construction Sciences and Technologies. 2014. Vol. 8. No. 4, pp. 75–80). (In Vietnamese).
16. Tang Van Lam, Dien Vu Kim, Hung Ngo Xuan, Tho Vu Dinh, Boris Bulgakov, and Sophia Bazhenova. Effect of aluminium powder on light-weight aerated concrete properties. E3S Web of Conferences. Vol. 97. 2019. 02005. XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019). https://doi.org/10.1051/e3sconf/20199702005
17. Tiêu chuẩn Quốc gia TCVN 9029:2017 - Bê tông nhẹ - Sản phẩm bê tông bọt và bê tông khí không chưng áp – Yêu cầu kỹ thuật. (Vietnam National Standard TCVN 9029:2017 – Lightweight concrete. Products made of non-autoclaved foam and aerated concrete. Technical requirements). (In Vietnamese).
18. Tăng Văn Lâm, Võ Đình Trọng, Vũ Kim Diến, Nguyễn Bá Bình (2023), Nghiên cứu khả năng chế tạo bê tông nhẹ tạo khí từ bột nhôm, phụ gia khoáng và chất kết dính không xi măng, Hội Nghị khoa học quốc tế Kỷ niệm 60 năm thành lập Viện KHCN Xây dựng, tháng 11 năm 2023 (Study of the possibility of producing lightweight foam concrete from aluminum powder, mineral additives and cementless binders. In the collection of reports of the National Scientific Conference dedicated to the 60th anniversary of the establishment of the Institute of Construction Sciences and Technologies, November 2023). (In Vietnamese).
19. Kim D.V., Cong L.N., Van L.T., Bazhenova S.I. Foamed concrete containing various amounts of organic-mineral additives. Journal of Physics: Conference Series. Vol. 1425. Modelling and Methods of Structural Analysis 13–15 November 2019. Moscow, Russian Federation.
https://doi.org/10.1088/1742-6596/1425/1/012199

For citation: Tang Van Lam, Pham Duc Luong, Vo Dinh Trong, Bulgakov B.I., Bazhenova S.I. Cellular concrete with variable density from Vietnam raw materials. Stroitel'nye Materialy [Construction Materials]. 2024. No. 11, pp. 79–86. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-830-11-79-86

Analysis of Formulas for Determination of Snow Cover Density

Number of journal: 11-2024
Autors:

Galkin A.F.,
Pankov V.Yu.,
Adamov A.A.

DOI: https://doi.org/10.31659/0585-430X-2024-830-11-73-78
УДК: 551.578.46

 

AbstractAbout AuthorsReferences
When snow is used as a building material and to control the thermal regime of soils in the permafrost zone, it is important to be able to predict the snow density depending on the thickness (depth) of the snow cover. The paper compares the basic formulas used to calculate snow density depending on the depth of the snow cover and estimates the differences between the results obtained in a given interval (range) of calculation accuracy. The most popular formulas of Abe, Defant, Kotlyakov and other domestic and foreign scientists are included in the comparison. A comparative analysis of the results of theoretical calculations showed that the discrepancy between the results can be significant. At the same time, taking into account the large variability of the initial data determining the existing functions of snow density on its depth, the calculation results for almost all of the formulas considered fall within the range of acceptable accuracy of ± 25%. An assessment is also made of the possibility and expediency of replacing the defining power functions in the considered formulas with linear ones. It is shown that the linearization error, for example, for the classical Abe formula, does not exceed 5%. It is established that Kotlyakov’s linear formulas show the greatest degree of disagreement with other analyzed formulas. For example, the degree of disagreement between one of Kotlyakov’s formulas and Abe’s linear formula varies from 35 to 45%. The results of variant calculations using the formulas are presented in the form of graphs, which allows for a visual verification of the main quantitative patterns obtained as a result of the conducted research.
A.F. GALKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.Yu. PANKOV2, Candidate of Sciences (Geology) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
А.А. ADAMOV2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Melnikov Permafrost Institute SB RAS (36, Merzlotnaya Street, Yakutsk, 677010, Russian Federation)
2 North-Eastern Federal University (58, Belinsky Street, Yakutsk, 677027, Russian Federation)

1. Voytkovsky K.F. Raschet sooruzhenii iz l’da i snega [Calculation of structures made of ice and snow]. Moscow: Publishing House of the USSR Academy of Sciences. 1954. 136 p.
2. Shulgin A.M. Snezhnyi pokrov i ego ispol’zovanie v sel’skom khozyaistve [Snow cover and its use in agriculture]. Leningrad: Hydrometeoizdat. 1962. 84 p.
3. Richter G.D. Snezhnyi pokrov, ego formirovanie i svoistva [Snow cover, its formation and properties]. Moscow: Publishing House of the USSR Academy of Sciences. 1945. 120 p.
4. Pavlov A.V. Monitoring kryolitozony [Monitoring of the cryolithozone]. Novosibirsk: GEO. 2008. 230 p.
5. Kruchinin I.N., Burmistrov D.V. Requirements for the transport and operational condition of winter logging roads. Modernizatsiya i nauchnye issledovaniya v transportnom komplekse. 2017. Vol. 1, pp. 209–212. (In Russian). EDN: ZULMIN
6. Kruchinin I. N. Formation of snow rolling with specified properties on logging roads. Izvestiya of higher educational institutions. Forest magazine. 2012. No. 1 (325), pp. 38–41. (In Russian). EDN: OXBMCH
7. Kuzmin P.P. Fizicheskie svoistva snezhnogo pokrova [Physical properties of snow cover]. Leningrad: Hydrometeoizdat. 1957. 179 p.
8. Kirillin A.R., Zheleznyak M.N., Zhirkov A.F., Misailov I.E., Verkhoturov A.G., Sivtsev M.A. Features of snow accumulation and parameters of snow cover on the Elkon mountain range. Vestnik of the Transbaikal State University. 2020. Vol. 26. No. 7, pp. 62–76. (In Russian). https://doi.org/10.21209/2227-9245-2020-26-7-62-76
9. Osokin N.I., Sosnovsky A.V., Chernov R.A. Influence of snow cover stratigraphy on its thermal resistance. Led i sneg. 2013. No. 3 (123), pp. 63–70. (In Russian). EDN: THBIWU
10. Osokin N.I., Sosnovsky A.V. The influence of thermal resistance of snow cover on the stability of permafrost rocks. Kriosfera Zemli. 2016. Vol. 20. No. 3, pp. 105–112. (In Russian). EDN: WTHOLB
11. Kotlyakov V.M., Sosnovsky A.V. Assessment of thermal resistance of snow cover by ground temperature. Led i sneg. 2021. Vol. 61. No. 2, pp. 195–205. (In Russian). EDN: XPBXXL.
https://doi.org/10.31857/S2076673421020081
12. Osokin N.I., Sosnovsky A.V., Chernov R.A. Thermal resistance of snow cover and its variability. Kriosfera Zemli. 2017. Vol. 21. No. 3, pp. 60–68. (In Russian).EDN: YPTHAJ
13. Zhirkov A., Sivtsev M., Lytkin V., Séjourné A., Wen Z. An assessment of the possibility of restoration and protection of territories disturbed by thermokarst in Central Yakutia, Eastern Siberia. Land. 2023. Vol. 12 (1), 197. https://doi.org/10.3390/land12010197
14. Patent RF 2813665. Sposob melioratsii zemel’ v kriolitozone [Method of land reclamation in the cryolithozone] / Galkin A.F., Zhirkov A.F., Zheleznyak M.N., Sivtsev M.A., Plotnikov N.A. Declared 22.04.2023. Published 14.02.2024. Bulletin No. 5. (In Russian).
15. Vinnikov S.D., Viktorova N.V. Fizika vod sushi.[Physics of land waters]. St. Petersburg: RGGMU. 2009. 430 p. (In Russian).
16. Oleinikov A.I., Skachkov M.N. Model of compacted bulk solids and some of its applications. Informatika i sistemy upravleniya. 2011. No. 4 (30), pp. 48–57. (In Russian). EDN: OJOJCL
17. Borisov V.A., Akinin D.V., Payul A.D. Changes in snow density under compressive load. Resources and Technology. 2021. Vol. 18  (3), pp. 77–91. (In Russian). https://doi.org/10.15393/j2.art.2021.5843
18. Tabler R.D., Furnish R.P. In-depth study of snow fences. Public Works. 1982. Vol. 113. No. 8, pp. 42–44.

For citation: Galkin A.F., Pankov V.Yu., Adamov A.A. Analysis of formulas for determination of snow cover density. Stroitel'nye Materialy [Construction Materials]. 2024. No. 11, pp. 73–78. (In Russian). https://doi.org/10.31659/0585-430X-2024-830-11-73-78

Comparative Effectiveness of Hydrophobizing and Crystallizing Additives Effects on the Properties of Gypsum-Cement-Pozzolanic Binder and Concrete Based on it

Number of journal: 11-2024
Autors:

Qais H.A.,Qais H.A.,
Morozova N.N.,
Khokhryakov O.V.

DOI: https://doi.org/10.31659/0585-430X-2024-830-11-63-72
УДК: 691.32

 

AbstractAbout AuthorsReferences
The water resistance of concrete based on gypsum-cement-pozzolanic binder (GCPB) plays a critical role in ensuring the durability of products and structures, so finding new ways to increase it is one of the key tasks for these materials. Today, the most widespread method of modifying GCPB concrete with chemical additives that belong to the class of water-repellent according to GOST 24211–2008, giving it water-repellent properties. However, recently, especially abroad, so-called hydrophilic crystalline additives have become in demand, which are used to increase the water resistance grade of concrete. It is achieved by clogging its microstructure with needle-shaped new formations formed during the chemical interaction of the components of the additive with the hydration products of clinker minerals of the cement binder. The work carried out a comparative assessment of the effectiveness of six types of foreign chemical additives belonging to the class of hydrophobic and hydrophilic on such properties of GCPB concrete as strength, density, water absorption, water resistance according to the softening coefficient. It was established that the hydrophilic crystalline additive “Flocrete WP Crystal” showed the greatest efficiency for GCPB concrete, which, at a dosage of 2% by weight of the binder, significantly increased the softening coefficient (1.09) and reduced water absorption (3.2%) in comparison with non-additive GCPB-concrete (0.89 and 7.2%, respectively). Obviously, this will increase the durability of GCPB concrete and open up new possibilities for practical application in construction.
H.A. QAIS1, Postgraduate Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.N. MOROZOVA2, Candidate of Sciences (Engineering),
O.V. KHOKHRYAKOV2, Doctor of Sciences (Engineering)

1 University of Sana’a (13064, Sana’a, Republic of Yemen)
2 Kazan State University of Architecture and Civil Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)

1. Хозин В.Г. Перспективы развития отрасли строительных материалов в свете использования вторичных ресурсов // Полимеры в строительстве: научный интернет-журнал. 2023. № 1 (11). С. 22–29. EDN: NEVNVS
1. Khozin V.G.Prospects for the development of the building materials industry in the light of the use of recycled resources. Polimery v stroitel’stve: scientific online journal. 2023. No. 1 (11), pp. 22–29. (In Russian). EDN: NEVNVS
2. Коновалов Н.В., Вдовин Е.А. Дорожные модифицированные минеральные материалы, укрепленные портландцементом // Автомобильные дороги и транспортная инфраструктура. 2023. № 4 (4). С. 14–22. EDN: QOIDGD
2. Konovalov N.V., Vdovin E.A. Road modified mineral materials reinforced with Portland cement. Avtomobil’nye dorogi i transportnaya infrastruktura. 2023. No. 4 (4), pp. 14–22. (In Russian). EDN: QOIDGD.
3. Lim S., Kawashima S. Mechanisms underlying crystalline waterproofing through microstructural and phase characterization. Journal of Materials in Civil Engineering. 2019. Vol. 31. 04019175. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002752
4. Chakraborty S., Mandal R., Chakraborty S., Guadagnini M., Pilakoutas K. Chemical attack and corrosion resistance of concrete prepared with electrolyzed water. Journal of Materials Research and Technology. 2021. Vol. 11, pp. 1193–1205. https://doi.org/10.1016/j.jmrt.2021.01.101
5. Smitha M.P., Suji D., Shanthi M., Adesina A. Application of bacterial biomass in biocementation process to enhance the mechanical and durability properties of concrete. Cleaner Materials. 2022. Vol. 3. 100050. https://doi.org/10.1016/j.clema.2022.100050
6. Ферронская А.В., Коровяков В.Ф., Баранов И.М., Бурьянов А.Ф., Лосев Ю.Г., Поплавский В.В., Шишин А.В. Гипс в малоэтажном строительстве. М.: АСВ. 2008. 240 с.
6. Ferronskaya A.V., Korovyakov V.F., Baranov I.M., Buryanov A.F., Losev Yu.G., Poplavsky V.V., Shishin A.V. Gips v maloetazhnom stroitel’stve [Gypsum in low-rise construction]. Moscow: ASV. 2008. 240 p.
7. Бабков В.В., Латыпов В.М., Ломакина Л.Н., Шигапов Р.И. Модифицированные гипсовые вяжущие повышенной водостойкости и гипсокерамзито-бетонные стеновые блоки для малоэтажного жилищного строительства на их основе // Строительные материалы. 2012. № 7. С. 4–8.
7. Babkov V.V., Latypov V.M., Lomakina L.N., Shigapov R.I. Modified gypsum binders with increased water resistance and gypsum expanded clay concrete wall blocks for low-rise housing construction based on them. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 4–8. (In Russian).
8. Пуценко К.Н., Балабанов В.Б. Перспективы развития и применения сухих строительных смесей на основе гипса // Вестник иркутского государственного технического университета. 2015. № 7 (102). С. 148–154.
8. Putsenko K.N., Balabanov V.B. Prospects for the development and application of dry building mixtures based on gypsum. Vestnik of the Irkutsk State Technical University. 2015. No. 7 (102), pp. 148–154. (In Russian).
9. Изотов В.С., Мухаметрахимов Р.Х., Галаутдинов А.Р. Исследование влияния активных минеральных добавок на реологические и физико-механические свойства гипсоцементно-пуццоланового вяжущего // Строительные материалы. 2015. № 5. С. 20–24.
9. Izotov V.S., Mukhametrahimov R.Kh., Galautdinov A.R. Study of the influence of active mineral additives on the rheological and physical-mechanical properties of gypsum-cement-pozzolanic binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 20–24. (In Russian).
10. Чернышева Н.В. Водостойкие гипсовые композиционные материалы с применением техногенного сырья: Дис. … канд. техн. наук. Белгород. 2014. 434 с.
10. Chernysheva N.V. Waterproof gypsum composite materials using technogenic raw materials. Diss… Candidate of Sciences (Enginering). Belgorod. 2014. 434 p. (In Russian).
11. Сагдатуллин Д.Г., Морозова Н.Н., Хозин В.Г. Реологические характеристики водных суспензий композиционного гипсового вяжущего и его компонентов // Известия КГАСУ. 2009. № 2 (12). С. 263–268. EDN: KZHGWT
11. Sagdatullin D.G., Morozova N.N., Khozin V.G. Rheological characteristics of aqueous suspensions of composite gypsum binder and its components. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2009. No. 2 (12), pp. 263–268. (In Russian). EDN: KZHGWT
12. Ибрагимов Р.А., Потапова Л.И., Королев Е.В. Исследование структурообразования активированного наномодифицированного цементного камня методом ИК-спектроскопия // Известия КГАСУ. 2021. № 3 (57). С. 41–49. EDN: XHUPYY. https://doi.org/10.52409/20731523_2021_3_41
12. Ibragimov R.A., Potapova L.I., Korolev E.V.Study of structure formation of activated nanomodified cement stone using IR spectroscopy. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2021. No. 3 (57), pp. 41–49. (In Russian). EDN: XHUPYY. https://doi.org/10.52409/20731523_2021_3_41
13. Халиуллин М.И., Нуриев М.И., Рахимов Р.З., Гайфуллин А.Р. Влияние пластифицирующих добавок на свойства гипсоцементнопуццоланового вяжущего // Вестник Казанского технологического университета. 2015. Т. 18. № 6. С. 119–122.
13. Khaliullin M.I., Nuriyev M.I., Rakhimov R.Z., Gaifullin A.R. Influence of plasticizing additives on the properties of gypsum-cement-pozzolanic binder. Vestnik of Kazan Technological University. 2015. Vol. 18. No. 6, pp. 119–122. (In Russian).
14. Мухаметрахимов Р.Х., Галаутдинов А.Р. Влияния пластифицирующих добавок на основные свойства гипсоцементно-пуццоланового вяжущего на основе низкомарочного и техногенного сырья // Известия КГАСУ. 2016. № 4 (38). C. 382–387.
14. Mukhametrahimov R.Kh., Galautdinov A.R. Influence of plasticizing additives on the main properties of gypsum-cement-pozzolanic binder based on low-grade and technogenic raw materials. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2016. No. 4 (38), pp. 382–387. (In Russian).
15. Ермилова Е.Ю., Камалова З.А. Композиционные портландцементы с комплексными минеральными добавками как решение проблемы утилизации техногенных отходов промышленности // Строительные конструкции, здания и сооружения. 2023. № 2 (3). С. 4–10. EDN: KANWFM
15. Ermilova E.Yu., Kamalova Z.A.Composite Portland cements with complex mineral additives as a solution to the problem of recycling industrial waste. Stroitel’nye konstruktsii, zdaniya i sooruzheniya. 2023. No. 2 (3), pp. 4–10. (In Russian). EDN: KANWFM
16. Мухаметрахимов Р.Х., Галаутдинов А.Р., Потапова Л.И., Гарафиев А.М. Исследование структурообразования модифицированного шунгитсодержащего цементного камня методом ИК-спектроскопии // Известия КГАСУ. 2021. № 4 (58). С. 70–81. EDN: NXFXLA.
https://doi.org/10.52409/20731523_2021_4_70
16. Mukhametrakhimov R.Kh., Galautdinov A.R., Potapova L.I., Garafiev A.M. Study of structure formation of modified shungite-containing cement stone using IR spectroscopy. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2021. No. 4 (58), pp. 70–81. (In Russian). EDN: NXFXLA. https://doi.org/10.52409/20731523_2021_4_70
17. Потапова Л.И., Хамза Абдулмалек Кайс, Галиев Т.Ф. Влияние добавок поликарбоксилатного типа на технологические свойства ГЦПВ // Влияние науки на инновационное развитие. 2016. № 6. С. 134–137.
17. Potapova L.I., Hamza Abdulmalek Kais, Galiev T.F. Influence of polycarboxylate additives on the technological properties of GCPB. Vliyaniye nauki na innovatsionnoye razvitiye. 2016. No. 6, pp. 134–137. (In Russian).
18. Sideris K.K., Chatzopoulos A., Tassos C., Manita P. Durability of concretes prepared with crystalline admixtures. MATEC Web of Conferences. 2019. Vol. 289. 09003. https://doi.org/10.1051/matecconf/201928909003
19. Cuenca E., Messene A., Ferrara L. Synergy between crystalline admixtures and nano-constituents in enhancing autogenous healing capacity of cementitious composites under cracking and healing cycles in aggressive waters. Construction and Building Materials. 2021. Vol. 266. 121447.
https://doi.org/10.1016/j.conbuildmat.2020.121447.
20. Pazderka J., Hájková E. The speed of the crystalline admixture’s waterproofing effect in concrete. Key Engineering Materials. 2016. Vol. 722, pp. 108–112. https://doi.org/10.4028/www.scientific.net/KEM.722.108
21. Смирнов Д.С., Мавлиев Л.Ф., Хузиахметова К.Р., Мотыгуллин И.Р. Влияние минеральной добавки на основе молотого доменного шлака на свойства бетона и бетонных смесей // Известия КГАСУ. 2022. № 4 (62). C. 61–69. EDN: KQDLZR. https://doi.org/10.52409/20731523_2022_4_61
21. Smirnov D.S., Mavliev L.F., Khuziakhmetova K.R., Motygullin I.R. The influence of a mineral additive based on ground blast furnace slag on the properties of concreteand concrete mixtures. Vestnik of the Kazan State University of Architecture and Civil Engineering. 2022 No. 4 (62), pp. 61–69. (In Russian). EDN: KQDLZR. https://doi.org/10.52409/20731523_2022_4_61
22. Reiterman P., Pazderka, J. Crystalline coating and its influence on the water transport in concrete. Advances in Civil Engineering. 2016. Vol. 11–12. 2513514. https://doi.org/10.1155/2016/2513514
23. Ferrara L., Krelani V., Moretti F. On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self-healing. Smart Materials and Structures. 2016. Vol. 25. No. 8. 084002. http://dx.doi.org/10.1088/0964-1726/25/8/084002
24. Yildirim M.,. Özhan H.B. Effect of permeability-reducing admixtures on concrete properties at different cement dosages. Journal of Innovative Science and Engineering (JISE). 2023. No. 7 (1), рр. 48–59. https://doi.org/10.38088/jise.1174927
25. Hassani M.E., Vessalas K., Sirivivatnanon V., Baweja D. Influence of permeability-reducing admixtures on water penetration in concrete. ACI Materials Journal. 2017. No. 114 (6), рр. 911–922. https://doi.org/10.1016/j.cement.2021.100016
26. Кожухова М.И., Чулкова И.Л., Хархардин А.Н., Соболев К.Г. Оценка эффективности применения гидрофобных водных эмульсий с содержанием нано- и микроразмерных частиц для модификации мелкозернистого бетона // Строительные материалы. 2017. № 5. С. 92–97. https://doi.org/10.31659/0585-430X-2017-748-5-92-97
26. Kozhukhova M.I., Chulkova I.L., Kharkhardin A.N., Sobolev K.G. Estimation of application efficiency of hydrophobic water-based emulsions containing nano- and micro-sized particles for modification of fine grained concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 92–97. (In Russian). https://doi.org/10.31659/0585-430X-2017-748-5-92-97
27. Вдовин Е.А., Строганов В.Ф., Мавлиев Л.Ф., Буланов П.Е. Исследование влияния кремнийорганических соединений на показатели стандартного уплотнения и физико-механические свойства цементогрунта // Известия КГАСУ. 2014. № 4 (30). С. 255–261.
27. Vdovin E.A., Stroganov V.F., Mavliev L.F., Bulanov P.E. Study of the influence of organosilicon compounds on the performance of standard compaction and physical and mechanical properties of cement soil. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2014. No. 4 (30), pp. 255–261.
28. Khatib J.M, Clay R.M. Absorption characteristics of metakaolin concrete. Cement and Concrete Research. 2004. Vol. 34, pp. 19–29. https://doi.org/10.1016/S0008-8846(03)00188-1
29. García Calvo J.L., Moreno M.S., Carballosa P., Pedrosa F., Tavares F. Improvement of the concrete permeability by using hydrophilic blended additive. Materials (Basel). 2019. Vol. 12. No. 15. 2384. https://doi.org/10.3390/ma12152384
30. Al-Kheetan M.J., Rahman M.M., Chamberlain D.A. A novel approach of introducing crystalline protection material and curing agent in fresh concrete for enhancing hydrophobicity. Construction and Building Materials. 2018. Vol. 160, pp. 644–652. https://doi.org/10.1016/j.conbuildmat.2017.11.108
31. Leemann A., Shi Z., Wyrzykowski M, Winnefeld F. Moisture stability of crystalline alkali-silica reaction products formed in concrete exposed to natural environment. Materials&Design. 2020. Vol. 195. 109066 (26 p). https://doi.org/10.1016/j.matdes.2020.109066
32. Zheng K., Yang X., Chen R.; Xu L. Application of capillary crystalline material to enhance cement grout for sealing tunnel leakage. Construction and Building Materials. 2019. Vol. 214, pp. 497–505. https://doi.org/10.1016/j.conbuildmat.2019.04.095
33. Zhang Y., Du X., Li Y.,Yang F., and Li Z. Research on cementitious capillary crystalline waterproofing coating for underground concrete works. Advanced Materials Research. 2012. Vol. 450–451, pp. 286–290. http://dx.doi.org/10.4028/scientific5/AMR.450-451.286
34. Pazderka J. Crystalline coating or crystalline admixture? Concrete. 2014. No. 48 (3), pp. 20–21. https://doi.org/10.14311/AP.2016.56.0306
35. Wang K., Hu T., Xu S. Influence of permeated crystalline waterproof materials on impermeability of concrete. Advanced Materials Research. 2012. Vol. 446–449, pp. 954–960. https://doi.org/10.4028/www.scientific.net/AMR.446-449.954
36. Кожухова М.И., Строкова В.В., Соболев К.С. Особенности гидрофобизации мелкозернистых бетонных поверхностей // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2014. № 4. С. 33–35.
36. Kozhukhova M.I., Strokova V.V., Sobolev K.S. Features of hydrophobization of fine-grained concrete surfaces. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2014. No. 4, pp. 33–35. (In Russian).
37. Массалимов И.А. и др. Гидрофобизация плотного и мелкозернистого бетонов полисульфидными растворами // Нанотехнологии в строительстве: научный интернет-журнал. 2016. Т. 8. № 5. С. 85–99.
37. Massalimov I.A. et al. Hydrophobization of dense and fine-grained concrete with polysulfide solutions. Nanotekhnologii v stroitel’stve: scientific online journal. 2016. Vol. 8. No. 5, pp. 85–99. (In Russian).
38. Соловьев В.Г., Швецова В.А. Объемная гидрофобизация растворных смесей. Актуальные проблемы строительной отрасли и образования – 2021: Cборник докладов II Национальной научной конференции. Москва. 2022. С. 313–317.
38. Soloviev V.G., Shvetsova V.A. Volumetric hydrophobization of mortar mixtures. Actual problems of the construction industry and education – 2021: Collection of reports of the II National Scientific Conference. Moscow. 2022, pp. 313–317. (In Russian).
39. Huo J., Wang Z., Guo H., Wei Y. Hydrophobicity improvement of cement-based materials incorporated with ionic paraffin emulsions (IPEs). Journal Materials. 2020. No. 13. 3230. https://doi.org/10.1016/j.conbuildmat.2021.123951
40. Oliveira A., Gomes O., Ferrara L., Fairbairn E., Filho R. An overview of a twofold effect of crystalline admixtures in cement-based materials: From permeability-reducers to self-healing stimulators. Journal of Building Engineering. 2021. Vol. 41. 102400. https://doi.org/10.1016/j.jobe.2021.102400
41. Talero R., Pedrajas C., Gonz M.,´ Alez Aramburo C., Blazquez A., ´ Rahhal V. Role of the filler on Portland cement hydration at very early ages: rheological behaviour of their fresh cement pastes. Construction and Building Materials. 2017. Vol. 151, pp. 939–949. https://doi.org/10.1016/j.conbuildmat.2017.06.006
42. Teng L.W., Lin W.T., Chen J., and Cheng A., Hsu H.M. The component analysis of penetration sealer materials. Advanced Materials Research. 2013. Vol. 842, pp. 74–77. https://doi.org/10.4028/www.scientific.net/AMR.842.74
43. de Belie N., Gruyaert E., Al-Tabbaa A., Antonaci P., Baera C., Bajare D., Darquennes A., Davies R., Ferrara L., Jefferson T., et al. A review of self-healing concrete for damage management of structures. Advanced Materials Interfaces. 2018. No. 5 (17). 1800074. https://doi.org/10.1002/admi.201800074
44. Хамза Абдулмалек Кайс, Морозова Н.Н. Влияние пластифицирущих добавок различного состава на свойства комплексного гипсоцементно-пуццоланового вяжущего // Известия высших учебных заведений. Строительство. 2024. № 8–24. С. 35–43.
44. Hamza Abdulmalek Qais, Morozova N.N. Influence of plastifying additives of different origin on the properties of complex gypsum-cement-pozzolanic binder. Izvestiya of Higher Education Institution. Construction. 2024. No. 8–24, pp. 35–43. (In Russian).
45. Morozova N., Kais K., Gilfanov R. Influence of the fractional composition of the aggregate on the technological and strength properties of HCPV concrete. AIP Conference Proceedings. 2022. Vol. 32434. Iss. 1. https://doi.org/10.1063/5.0091723

For citation: Qais H.A., Morozova N.N., Khokhryakov O.V. Comparative effectiveness of hydrophobizing and crystallizing additives effects on the properties of gypsum-cement-pozzolanic binder and concrete based on it. Stroitel'nye Materialy [Construction Materials]. 2024. No. 11, pp. 63–72. (In Russian). https://doi.org/10.31659/0585-430X-2024-830-11-63-72

https://www.traditionrolex.com/10