Водостойкость бетонов на основе гипсоцементно-пуццоланового вяжущего (ГЦПВ) играет важнейшую роль в обеспечении долговечности изделий и конструкций, поэтому поиск новых способов ее повышения является одной из ключевых задач для этих материалов. Сегодня наибольшее распространение получил способ модификации ГЦПВ-бетона химическими добавками, которые относятся к классу гидрофобизирующих по ГОСТ 24211–2008 «Добавки для бетонов и строительных растворов. Общие технические условия», придающие ему водоотталкивающие свойства. Однако в последнее время, особенно за рубежом, становятся востребованными так называемые гидрофильные кристаллические добавки, которые применяют для повышения марки по водонепроницаемости бетона. Оно достигается кольматацией его микроструктуры игольчатыми новообразованиями, образующимися при химическом взаимодействии компонентов добавки с продуктами гидратации клинкерных минералов цементного вяжущего. В работе проведена сравнительная оценка эффективности шести видов зарубежных химических добавок, относящихся к классу гидрофобных и гидрофильных, на такие свойства ГЦПВ-бетона как прочность, плотность, водопоглощение, водостойкость по коэффициенту размягчения. Установлено, что наибольшую эффективность для ГЦПВ-бетона показала гидрофильная кристаллическая добавка «Flocrete WP Crystal», которая при дозировке 2% от массы вяжущего существенно повысила коэффициент размягчения (1,09) и снизила водопоглощение (3,2%) в сравнении с бездобавочным ГЦПВ-бетоном (0,89 и 7,2%, соответственно). Очевидно, это позволит повысить долговечность ГЦПВ-бетона и открыть для него новые возможности практического применения в строительстве.
1. Хозин В.Г. Перспективы развития отрасли строительных материалов в свете использования вторичных ресурсов // Полимеры в строительстве: научный интернет-журнал. 2023. № 1 (11). С. 22–29. EDN: NEVNVS
1. Khozin V.G.Prospects for the development of the building materials industry in the light of the use of recycled resources. Polimery v stroitel’stve: scientific online journal. 2023. No. 1 (11), pp. 22–29. (In Russian). EDN: NEVNVS
2. Коновалов Н.В., Вдовин Е.А. Дорожные модифицированные минеральные материалы, укрепленные портландцементом // Автомобильные дороги и транспортная инфраструктура. 2023. № 4 (4). С. 14–22. EDN: QOIDGD
2. Konovalov N.V., Vdovin E.A. Road modified mineral materials reinforced with Portland cement. Avtomobil’nye dorogi i transportnaya infrastruktura. 2023. No. 4 (4), pp. 14–22. (In Russian). EDN: QOIDGD.
3. Lim S., Kawashima S. Mechanisms underlying crystalline waterproofing through microstructural and phase characterization. Journal of Materials in Civil Engineering. 2019. Vol. 31. 04019175.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002752
4. Chakraborty S., Mandal R., Chakraborty S., Guadagnini M., Pilakoutas K. Chemical attack and corrosion resistance of concrete prepared with electrolyzed water. Journal of Materials Research and Technology. 2021. Vol. 11, pp. 1193–1205.
https://doi.org/10.1016/j.jmrt.2021.01.101 5. Smitha M.P., Suji D., Shanthi M., Adesina A. Application of bacterial biomass in biocementation process to enhance the mechanical and durability properties of concrete. Cleaner Materials. 2022. Vol. 3. 100050.
https://doi.org/10.1016/j.clema.2022.100050 6. Ферронская А.В., Коровяков В.Ф., Баранов И.М., Бурьянов А.Ф., Лосев Ю.Г., Поплавский В.В., Шишин А.В. Гипс в малоэтажном строительстве. М.: АСВ. 2008. 240 с.
6. Ferronskaya A.V., Korovyakov V.F., Baranov I.M., Buryanov A.F., Losev Yu.G., Poplavsky V.V., Shishin A.V. Gips v maloetazhnom stroitel’stve [Gypsum in low-rise construction]. Moscow: ASV. 2008. 240 p.
7. Бабков В.В., Латыпов В.М., Ломакина Л.Н., Шигапов Р.И. Модифицированные гипсовые вяжущие повышенной водостойкости и гипсокерамзито-бетонные стеновые блоки для малоэтажного жилищного строительства на их основе // Строительные материалы. 2012. № 7. С. 4–8.
7. Babkov V.V., Latypov V.M., Lomakina L.N., Shigapov R.I. Modified gypsum binders with increased water resistance and gypsum expanded clay concrete wall blocks for low-rise housing construction based on them. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 4–8. (In Russian).
8. Пуценко К.Н., Балабанов В.Б. Перспективы развития и применения сухих строительных смесей на основе гипса // Вестник иркутского государственного технического университета. 2015. № 7 (102). С. 148–154.
8. Putsenko K.N., Balabanov V.B. Prospects for the development and application of dry building mixtures based on gypsum. Vestnik of the Irkutsk State Technical University. 2015. No. 7 (102), pp. 148–154. (In Russian).
9. Изотов В.С., Мухаметрахимов Р.Х., Галаутдинов А.Р. Исследование влияния активных минеральных добавок на реологические и физико-механические свойства гипсоцементно-пуццоланового вяжущего // Строительные материалы. 2015. № 5. С. 20–24.
9. Izotov V.S., Mukhametrahimov R.Kh., Galautdinov A.R. Study of the influence of active mineral additives on the rheological and physical-mechanical properties of gypsum-cement-pozzolanic binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 20–24. (In Russian).
10. Чернышева Н.В. Водостойкие гипсовые композиционные материалы с применением техногенного сырья: Дис. … канд. техн. наук. Белгород. 2014. 434 с.
10. Chernysheva N.V. Waterproof gypsum composite materials using technogenic raw materials. Diss… Candidate of Sciences (Enginering). Belgorod. 2014. 434 p. (In Russian).
11. Сагдатуллин Д.Г., Морозова Н.Н., Хозин В.Г. Реологические характеристики водных суспензий композиционного гипсового вяжущего и его компонентов // Известия КГАСУ. 2009. № 2 (12). С. 263–268. EDN: KZHGWT
11. Sagdatullin D.G., Morozova N.N., Khozin V.G. Rheological characteristics of aqueous suspensions of composite gypsum binder and its components. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2009. No. 2 (12), pp. 263–268. (In Russian). EDN: KZHGWT
12. Ибрагимов Р.А., Потапова Л.И., Королев Е.В. Исследование структурообразования активированного наномодифицированного цементного камня методом ИК-спектроскопия // Известия КГАСУ. 2021. № 3 (57). С. 41–49. EDN: XHUPYY.
https://doi.org/10.52409/20731523_2021_3_41 12. Ibragimov R.A., Potapova L.I., Korolev E.V.Study of structure formation of activated nanomodified cement stone using IR spectroscopy. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2021. No. 3 (57), pp. 41–49. (In Russian). EDN: XHUPYY.
https://doi.org/10.52409/20731523_2021_3_41 13. Халиуллин М.И., Нуриев М.И., Рахимов Р.З., Гайфуллин А.Р. Влияние пластифицирующих добавок на свойства гипсоцементнопуццоланового вяжущего // Вестник Казанского технологического университета. 2015. Т. 18. № 6. С. 119–122.
13. Khaliullin M.I., Nuriyev M.I., Rakhimov R.Z., Gaifullin A.R. Influence of plasticizing additives on the properties of gypsum-cement-pozzolanic binder. Vestnik of Kazan Technological University. 2015. Vol. 18. No. 6, pp. 119–122. (In Russian).
14. Мухаметрахимов Р.Х., Галаутдинов А.Р. Влияния пластифицирующих добавок на основные свойства гипсоцементно-пуццоланового вяжущего на основе низкомарочного и техногенного сырья // Известия КГАСУ. 2016. № 4 (38). C. 382–387.
14. Mukhametrahimov R.Kh., Galautdinov A.R. Influence of plasticizing additives on the main properties of gypsum-cement-pozzolanic binder based on low-grade and technogenic raw materials. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2016. No. 4 (38), pp. 382–387. (In Russian).
15. Ермилова Е.Ю., Камалова З.А. Композиционные портландцементы с комплексными минеральными добавками как решение проблемы утилизации техногенных отходов промышленности // Строительные конструкции, здания и сооружения. 2023. № 2 (3). С. 4–10. EDN: KANWFM
15. Ermilova E.Yu., Kamalova Z.A.Composite Portland cements with complex mineral additives as a solution to the problem of recycling industrial waste. Stroitel’nye konstruktsii, zdaniya i sooruzheniya. 2023. No. 2 (3), pp. 4–10. (In Russian). EDN: KANWFM
16. Мухаметрахимов Р.Х., Галаутдинов А.Р., Потапова Л.И., Гарафиев А.М. Исследование структурообразования модифицированного шунгитсодержащего цементного камня методом ИК-спектроскопии // Известия КГАСУ. 2021. № 4 (58). С. 70–81. EDN: NXFXLA.
https://doi.org/10.52409/20731523_2021_4_70 16. Mukhametrakhimov R.Kh., Galautdinov A.R., Potapova L.I., Garafiev A.M. Study of structure formation of modified shungite-containing cement stone using IR spectroscopy. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2021. No. 4 (58), pp. 70–81. (In Russian). EDN: NXFXLA.
https://doi.org/10.52409/20731523_2021_4_70 17. Потапова Л.И., Хамза Абдулмалек Кайс, Галиев Т.Ф. Влияние добавок поликарбоксилатного типа на технологические свойства ГЦПВ // Влияние науки на инновационное развитие. 2016. № 6. С. 134–137.
17. Potapova L.I., Hamza Abdulmalek Kais, Galiev T.F. Influence of polycarboxylate additives on the technological properties of GCPB. Vliyaniye nauki na innovatsionnoye razvitiye. 2016. No. 6, pp. 134–137. (In Russian).
18. Sideris K.K., Chatzopoulos A., Tassos C., Manita P. Durability of concretes prepared with crystalline admixtures. MATEC Web of Conferences. 2019. Vol. 289. 09003.
https://doi.org/10.1051/matecconf/20192890900319. Cuenca E., Messene A., Ferrara L. Synergy between crystalline admixtures and nano-constituents in enhancing autogenous healing capacity of cementitious composites under cracking and healing cycles in aggressive waters. Construction and Building Materials. 2021. Vol. 266. 121447.
https://doi.org/10.1016/j.conbuildmat.2020.121447. 20. Pazderka J., Hájková E. The speed of the crystalline admixture’s waterproofing effect in concrete. Key Engineering Materials. 2016. Vol. 722, pp. 108–112.
https://doi.org/10.4028/www.scientific.net/KEM.722.108 21. Смирнов Д.С., Мавлиев Л.Ф., Хузиахметова К.Р., Мотыгуллин И.Р. Влияние минеральной добавки на основе молотого доменного шлака на свойства бетона и бетонных смесей // Известия КГАСУ. 2022. № 4 (62). C. 61–69. EDN: KQDLZR.
https://doi.org/10.52409/20731523_2022_4_61 21. Smirnov D.S., Mavliev L.F., Khuziakhmetova K.R., Motygullin I.R. The influence of a mineral additive based on ground blast furnace slag on the properties of concreteand concrete mixtures. Vestnik of the Kazan State University of Architecture and Civil Engineering. 2022 No. 4 (62), pp. 61–69. (In Russian). EDN: KQDLZR.
https://doi.org/10.52409/20731523_2022_4_61 22. Reiterman P., Pazderka, J. Crystalline coating and its influence on the water transport in concrete. Advances in Civil Engineering. 2016. Vol. 11–12. 2513514.
https://doi.org/10.1155/2016/2513514 23. Ferrara L., Krelani V., Moretti F. On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self-healing. Smart Materials and Structures. 2016. Vol. 25. No. 8. 084002.
http://dx.doi.org/10.1088/0964-1726/25/8/084002 24. Yildirim M.,. Özhan H.B. Effect of permeability-reducing admixtures on concrete properties at different cement dosages. Journal of Innovative Science and Engineering (JISE). 2023. No. 7 (1), рр. 48–59.
https://doi.org/10.38088/jise.1174927 25. Hassani M.E., Vessalas K., Sirivivatnanon V., Baweja D. Influence of permeability-reducing admixtures on water penetration in concrete. ACI Materials Journal. 2017. No. 114 (6), рр. 911–922.
https://doi.org/10.1016/j.cement.2021.100016 26. Кожухова М.И., Чулкова И.Л., Хархардин А.Н., Соболев К.Г. Оценка эффективности применения гидрофобных водных эмульсий с содержанием нано- и микроразмерных частиц для модификации мелкозернистого бетона // Строительные материалы. 2017. № 5. С. 92–97.
https://doi.org/10.31659/0585-430X-2017-748-5-92-97 26. Kozhukhova M.I., Chulkova I.L., Kharkhardin A.N., Sobolev K.G. Estimation of application efficiency of hydrophobic water-based emulsions containing nano- and micro-sized particles for modification of fine grained concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 92–97. (In Russian).
https://doi.org/10.31659/0585-430X-2017-748-5-92-97 27. Вдовин Е.А., Строганов В.Ф., Мавлиев Л.Ф., Буланов П.Е. Исследование влияния кремнийорганических соединений на показатели стандартного уплотнения и физико-механические свойства цементогрунта // Известия КГАСУ. 2014. № 4 (30). С. 255–261.
27. Vdovin E.A., Stroganov V.F., Mavliev L.F., Bulanov P.E. Study of the influence of organosilicon compounds on the performance of standard compaction and physical and mechanical properties of cement soil. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2014. No. 4 (30), pp. 255–261.
28. Khatib J.M, Clay R.M. Absorption characteristics of metakaolin concrete. Cement and Concrete Research. 2004. Vol. 34, pp. 19–29.
https://doi.org/10.1016/S0008-8846(03)00188-1
29. García Calvo J.L., Moreno M.S., Carballosa P., Pedrosa F., Tavares F. Improvement of the concrete permeability by using hydrophilic blended additive. Materials (Basel). 2019. Vol. 12. No. 15. 2384.
https://doi.org/10.3390/ma12152384 30. Al-Kheetan M.J., Rahman M.M., Chamberlain D.A. A novel approach of introducing crystalline protection material and curing agent in fresh concrete for enhancing hydrophobicity. Construction and Building Materials. 2018. Vol. 160, pp. 644–652.
https://doi.org/10.1016/j.conbuildmat.2017.11.108 31. Leemann A., Shi Z., Wyrzykowski M, Winnefeld F. Moisture stability of crystalline alkali-silica reaction products formed in concrete exposed to natural environment. Materials&Design. 2020. Vol. 195. 109066 (26 p).
https://doi.org/10.1016/j.matdes.2020.109066 32. Zheng K., Yang X., Chen R.; Xu L. Application of capillary crystalline material to enhance cement grout for sealing tunnel leakage. Construction and Building Materials. 2019. Vol. 214, pp. 497–505.
https://doi.org/10.1016/j.conbuildmat.2019.04.095 33. Zhang Y., Du X., Li Y.,Yang F., and Li Z. Research on cementitious capillary crystalline waterproofing coating for underground concrete works. Advanced Materials Research. 2012. Vol. 450–451, pp. 286–290.
http://dx.doi.org/10.4028/scientific5/AMR.450-451.286 34. Pazderka J. Crystalline coating or crystalline admixture? Concrete. 2014. No. 48 (3), pp. 20–21.
https://doi.org/10.14311/AP.2016.56.0306 35. Wang K., Hu T., Xu S. Influence of permeated crystalline waterproof materials on impermeability of concrete. Advanced Materials Research. 2012. Vol. 446–449, pp. 954–960.
https://doi.org/10.4028/www.scientific.net/AMR.446-449.954 36. Кожухова М.И., Строкова В.В., Соболев К.С. Особенности гидрофобизации мелкозернистых бетонных поверхностей // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2014. № 4. С. 33–35.
36. Kozhukhova M.I., Strokova V.V., Sobolev K.S. Features of hydrophobization of fine-grained concrete surfaces. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2014. No. 4, pp. 33–35. (In Russian).
37. Массалимов И.А. и др. Гидрофобизация плотного и мелкозернистого бетонов полисульфидными растворами // Нанотехнологии в строительстве: научный интернет-журнал. 2016. Т. 8. № 5. С. 85–99.
37. Massalimov I.A. et al. Hydrophobization of dense and fine-grained concrete with polysulfide solutions. Nanotekhnologii v stroitel’stve: scientific online journal. 2016. Vol. 8. No. 5, pp. 85–99. (In Russian).
38. Соловьев В.Г., Швецова В.А. Объемная гидрофобизация растворных смесей. Актуальные проблемы строительной отрасли и образования – 2021: Cборник докладов II Национальной научной конференции. Москва. 2022. С. 313–317.
38. Soloviev V.G., Shvetsova V.A. Volumetric hydrophobization of mortar mixtures. Actual problems of the construction industry and education – 2021: Collection of reports of the II National Scientific Conference. Moscow. 2022, pp. 313–317. (In Russian).
39. Huo J., Wang Z., Guo H., Wei Y. Hydrophobicity improvement of cement-based materials incorporated with ionic paraffin emulsions (IPEs). Journal Materials. 2020. No. 13. 3230.
https://doi.org/10.1016/j.conbuildmat.2021.123951 40. Oliveira A., Gomes O., Ferrara L., Fairbairn E., Filho R. An overview of a twofold effect of crystalline admixtures in cement-based materials: From permeability-reducers to self-healing stimulators. Journal of Building Engineering. 2021. Vol. 41. 102400.
https://doi.org/10.1016/j.jobe.2021.102400 41. Talero R., Pedrajas C., Gonz M.,´ Alez Aramburo C., Blazquez A., ´ Rahhal V. Role of the filler on Portland cement hydration at very early ages: rheological behaviour of their fresh cement pastes. Construction and Building Materials. 2017. Vol. 151, pp. 939–949.
https://doi.org/10.1016/j.conbuildmat.2017.06.006 42. Teng L.W., Lin W.T., Chen J., and Cheng A., Hsu H.M. The component analysis of penetration sealer materials. Advanced Materials Research. 2013. Vol. 842, pp. 74–77.
https://doi.org/10.4028/www.scientific.net/AMR.842.74 43. de Belie N., Gruyaert E., Al-Tabbaa A., Antonaci P., Baera C., Bajare D., Darquennes A., Davies R., Ferrara L., Jefferson T., et al. A review of self-healing concrete for damage management of structures. Advanced Materials Interfaces. 2018. No. 5 (17). 1800074.
https://doi.org/10.1002/admi.201800074 44. Хамза Абдулмалек Кайс, Морозова Н.Н. Влияние пластифицирущих добавок различного состава на свойства комплексного гипсоцементно-пуццоланового вяжущего // Известия высших учебных заведений. Строительство. 2024. № 8–24. С. 35–43.
44. Hamza Abdulmalek Qais, Morozova N.N. Influence of plastifying additives of different origin on the properties of complex gypsum-cement-pozzolanic binder. Izvestiya of Higher Education Institution. Construction. 2024. No. 8–24, pp. 35–43. (In Russian).
45. Morozova N., Kais K., Gilfanov R. Influence of the fractional composition of the aggregate on the technological and strength properties of HCPV concrete. AIP Conference Proceedings. 2022. Vol. 32434. Iss. 1.
https://doi.org/10.1063/5.0091723