Analysis of Properties of Polymer Composites with Various Types of Fillers

Number of journal: 1-2-2024
Autors:

Erofeev V.T.,
Afonin V.V.,
Zotkina M.M.,
Stenechkina K.S,
Tyuryakhina T.P.,
Lazarev A.V.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-100-109
УДК: 678.83

 

AbstractAbout AuthorsReferences
The processes of structure formation of composite building materials (KSM) on different polymer binders are presented. It is shown that one of the most significant components of KSM are fillers, which help to improve their structural and operational characteristics. This work is devoted to the analysis of the results of an experimental study of the properties of epoxy composites with fillers having various elastic-plastic and strength properties. The research was carried out in three stages: at the first stage, studies were conducted aimed at assessing the influence of the nature of the filler on the curing processes of KSM; at the second, the influence of the type of filler and its quantitative content on the strength of composites was established, at the third, compositions were optimized using fillers with different indicators of grain composition and elastic-plastic properties. Powders of glass, dolomite, thermolite, and diatomite were considered as fillers at the first and second stages of the research, and powders of glass, ceramics, and chalk were considered at the second stage. The research at the third stage was carried out using mathematical methods of experiment planning with the construction of a planning matrix for a complete factor experiment and the determination of the values of the response functions relative to the encoded factors. The physico-mechanical properties, degree of curing, and chemical resistance of filled epoxy CCM have been established. On the basis of artificial neural networks, the maximum properties of the studied composites with fillers were determined. An assessment of structural properties based on rank correlation is also proposed. The results of the research can be used to predict the properties of KSM, as well as to clarify the extreme parameters of the properties. The dependences of changes in the properties of polymer composites on the surface characteristics, the dispersion of fillers and the degree of filling were established; preferred fillers for epoxy composites were determined; fillers were determined to assess the effect of elastic surface properties of composites, allowing to improve the strength and deformability of polymer composites; regression models were obtained based on a complete factorial experiment; an assessment of the «structural stability» of the studied composites using Pearson, Kendall, Spearman rank correlation; On the basis of artificial neural networks, the extreme properties of the studied composites with fillers were determined, neural networks.
V.T. YEROFEYEV1,3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
V.V. AFONIN2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
M.M. ZOTKINA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
K.S. STENECHKIN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
T.P. TYURYAKHINA3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. LAZAREV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 National Research Mordovia State University (430000, Saransk, Bolshevistskaya Street, 68/1)
3 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Карпенко Н.И., Карпенко С.Н., Ярмаковский В.Н., Ерофеев В.Т. О современных методах обеспечения долговечности железобетонных конструкций. ACADEMIA. Архитектура и строительство. 2015. № 1. С. 93–102.
1. Karpenko N.I., Karpenko S.N., Yarmakovsky V.N., Erofeev V.T. On modern methods of ensuring the durability of reinforced concrete structures. ACADEMIA. Arhitektura i stroitel’stvo. 2015. No. 1, pp. 93–102. (In Russian).
2. Бобрышев А.Н., Ерофеев В.Т., Козомазов В.Н. Полимерные композиционные материалы: Учеб. пособие. М.: АСВ, 2013. 480 с.
2. Bobryshev A.N., Erofeev V.T., Kozomazov V.N. Polimernye kompozicionnye materialy [Polymer composite materials: textbook]. Moscow: ASV, 2013. 480 p.
3. Соколова Ю.А. Эпоксидные полимербетоны, модифицированные нефтяными битумами, каменноугольной и карбамидной смолами и аминопроизводными соединениями / Под ред. Ю.А. Соколовой, В.Т. Ерофеева. М.: Палеотип, 2008. 244 с.
3. Sokolova Yu.A. Epoksidnyye polimerbetony, modifitsirovannyye neftyanymi bitumami, kamennougol’noy i karbamidnoy smolami i aminoproizvodnymi soyedineniyami / pod. red. Yu.A. Sokolovoi, V.T. Yerofeyeva [Epoxy polymer concretes modified with petroleum bitumen, coal and urea resins and amino derivatives / under. ed. by V.T. Erofeev]. Moscow: Paleotype, 2008. 244 p.
4. Erofeev V., Tyuryakhin A., Tyuryakhina T. Flat space of values of volume module of grain composite with spherical fill-lem. International Journal of Civial Engineering and Technology (IJCIET). 2019. Vol. 10 (8), pp. 333–342.
5. Ma P.C., Mo S.Y., Tang B.Z., Kim J.K. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. 2010. Carbon. Vol. 48. Iss. 6, pp. 1824–1834. DOI: 10.1016/j.carbon.2010.01.028
6. Rahmat M., Hubert P. Carbon nanotube-polymer interactions in nanocomposites: A review. Composites Science and Technology. 2011. Vol. 72. Iss. 1,pp. 72–84. DOI: 10.1016/j.compscitech.2011.10.002
7. Kathi J., Rhee K.Y., Lee J.H. Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Composites. Part A. Applied Science and Manufacturing. 2009. Vol. 40. Iss. 6, pp. 800–809. DOI: 10.1016/j.compositesa.2009.04.001
8. Rafiee M., Rafiee J., Srivastava I. Fracture and fatigue in graphene nanocomposites. Nano. Micro. Small. 2010. Vol. 6. Iss. 2, pp. 179–183. https://doi.org/10.1002/smll.200901480
9. Sun L., Gibson R.F., Gordaninejad F., Suhr J. Energy absorption capability of nanocomposites: a review. Composites Science and Technology. 2009. Vol. 69. Iss. 14, pp. 2392–2409. DOI: 10.1016/j.compscitech.2009.06.020
10. Tang L.Ch., Zhang H., Han J. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Composites Science and Technology. 2011. Vol. 72, pp. 7–13. DOI: 10.1016/j.compscitech.2011.07.016
11 Ni Y., Chen L., Teng K., Shi J. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Applied Materials & Interfaces. 2015. Vol. 7. Iss. 21,pp. 11583–11591. DOI: 10.1021/acsami.5b02552
12. Rahman R., Haque A. Molecular modeling of crosslinkedgraphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties. Engineering. Composites Part B: Engineering. 2013. Vol. 54, pp. 353–364. DOI: 10.1016/J.COMPOSITESB.2013.05.034
13. Qiao R., Brinson L.C. Simulation of interphase percolation and gradients in polymer nanocomposites. Composites Science and Technology. Composites Science and Technology. 2009. Vol. 69. Iss. 3–4, pp. 491–499. DOI: 10.1016/j.compscitech. 2008.11.022
14. Ayatollahi M.R., Shadlou S., Shokrieh M., Chitsazzadeh M. Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polymer Testing. 2011. Vol. 30. Iss. 5, pp. 548–556. DOI: 10.1016/j.polymertesting.2011.04.008
15. Hamming L., Qiao R., Messersmith P., Brinson L.C. Effects of dispersion and interfacial modification on the macroscale properties of TiO2 polymer-matrix nanocomposites. Composites Science and Technology. 2009. Vol. 69, Iss. 11–12, pp. 1880–1886. DOI: 10.1016/j.compscitech.2009.04.005
16. Yang S., Yu S., Woomin K., Do-Suck H.,Maenghyo C. Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer. 2012. Vol. 53. Iss. 2, pp. 623–6332012. DOI: 10.1016/j.polymer.2011.11.052
17. Ерофеев В.Т., Афонин В.В., Ельчищева Т.Ф., Зоткина М.М., Ерофеева И.В. Использование отсканированных изображений для оценки солеобразования на поверхности цементных композитов. Вестник МГСУ. 2020. Вып. 15.№ 11. С. 1523–1533. DOI: 10.22227/1997-0935.2020.11.1523-1533
17. Erofeev V.T., Afonin V.V., El’chishheva T.F., Zotkina M.M., Erofeeva I.V. Using scanned images to assess salt formation on the surface of cementitious composites. Vestnik MSUCE. 2020. Vol. 15. No. 11, pp. 1523–1533. (In Russian). DOI: 10.22227/1997-0935.2020.11.1523-1533
18. Erofeev T., Likomaskina M., Afonin V., Likomaskin A., Tolmacheva V., Kotlyarskaya I. Microbiological resistance of sand-bitumen concrete. AlfaBuild. 2022. Vol. 25. Iss. 5. 2503. doi: 10.57728/ALF.25.3
19. Максимова И.Н., Ерофеева И.В., Афонин В.В., Емельянов Д.В. Оценка качества цементных композитов, подвергнутых воздействию температурно-агрессивной среды, с использованием интерполяции и корреляции // Вестник МГСУ. 2021. Вып. 16. № 11. С. 1473–1482. DOI: 10.22227/1997-0935.2021.11.1473-1482
19. Maksimova I.N., Erofeeva I.V., Afonin V.V., Emelyanov D.V. Assessing the quality of cement composites exposed to a temperature-aggressive environment using interpolation and correlation. Vestnik MSUCE. 2021. Vol. 16. Iss. 11, pp. 1473–1482. (In Russian). DOI: 10.22227/1997-0935.2021.11.1473-1482
20. Erofeeva I.V, Afonin V.V., Fedortsov V.A., Emelyanov D.V. Research of behavior of cement composites in conditions of high humidity and variable positive temperatures. IOP Conference Series Materials Science and Engineering. 2020. Vol. 972 (1). 012052. DOI:10.1088/1757-899X/972/1/012052
21. Тарасюк И.А., Кравчук А.С. Сужение «Вилки» Фойгта–Рейсса в теории упругих структурно-неоднородных в среднем изотропных композиционных тел без применения вариационных принципов. APRIORI. Сер.: Естественные и технические науки. 2014. № 3. С. 8.
21 Tarasyuk I.A., Kravchuk A.S. Narrowing of the Voigt-Reuss «Fork» in the theory of elastic, structurally inhomogeneous, on average, isotropic composite bodies without the use of variational principles. APRIORI. Series: Natural and technical sciences. 2014. No. 3, p. 8. (In Russian).
22. Гуменюк А.Н., Полянских И.С., Петрунин С.М., Шевченко Ф.Е., Первушин Г.Н. Многофункцио-нальный слоистый композиционный материал, используемый в строительстве. Вестник МГСУ. 2021. Вып. 16. № 6. С. 688–697. DOI: 10.22227/1997-0935.2021.6.688-697
22. Gumenyuk A.N., Polyanskikh I.S., Petrunin S.M., Shevchenko F.E., Pervushin G.N. Multifunctional layered composite material used in construction. Vestnik MSUCE. 2021. Vol. 16. No. 6, pp. 688–697. (In Russian). DOI: 10.22227/1997-0935.2021.6.688-697
23. Сафаров А.Р., Дорожинский В.Б., Андреев В.И. Реализация численной модели бетона CSCM для отечественных классов бетона. Вестник МГСУ. 2023. Вып. 18. № 4. С. 545–555. DOI: 10.22227/1997-0935.2023.4.545-555
23. Safarov A.R., Dorozhinsky V.B., Andreev V.I. Implementation of a numerical model of concrete CSCM for domestic classes of concrete. Vestnik MSUCE. 2023. Vol. 18. No. 4, pp. 545–555. (In Russian). DOI: 10.22227/1997-0935.2023.4.545-555
24. Urkhanova L.A., Buyantuev S.L., Urkhanova A.A., Lkhasaranov S.A., Ardashova G.R., Fediuk R.S. et al. Mechanical and electrical properties of concrete modified by carbon nanoparticles. Magazine of Civil Engineering. 2019. Vol. 8. No. 92, pp. 163–172. DOI: 10.18720/MCE.92.14
25 Yakovlev G., Vít Č., Polyanskikh I., Gordina A., Pudov I., Gumenyuk A., Smirnova O. The effect of complex modification on the impedance of cement matrices. Materials. 2021. Vol. 14. Iss. 3. 557.DOI: 10.3390/ma14030557
26. Лам Н.Д.Т., Самченко С.В., Лам Т.В., Швецова В.А. Оптимизация пропорций композиционного вяжущего, содержащего многокомпонентные добавки. Вестник МГСУ. 2023. Вып. 18. № 3. С. 427–437. DOI: 10.22227/1997-0935.2023.3.427-437
26. Lam N.D.T., Samchenko S.V., Lam T.V., Shvetsova V.A. Optimization of the proportions of a composite binder containing multicomponent additives. Vestnik MSUCE. 2023. Iss. 18. No. 3, pp. 427–437. (In Russian). DOI: 10.22227/1997-0935.2023.3.427-437
27. Omidi M., Milani A.S., Seethaler R., Arasteh R. Prediction of the mechanical characteristics of mul-
ti-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon. 2010. Vol. 48. Iss. 11, pp. 3218–3228. DOI: 10.1016/j.carbon.2010.05.007
28. Лазарев А.В., Казначеев С.В., Ерофеев В.Т., Бредихин В.В., Худяков В.А. Оптимизация составов наполненных эпоксидных композитов по прочностным показателям. Известия Юго-Западного государственного университета. Сер.: Техника и технологии. 2012. № 2–3. С. 235–239.
28. Lazarev A.V., Kaznacheev S.V., Erofeev V.T., Bredikhin V.V., Khudyakov V.A. Optimization of compositions of filled epoxy composites in terms of strength indicators. Izvestiya of the Southwestern State University. Series: Equipment and technology. 2012. No. 2–3, pp. 235–239. (In Russian).
29. Ерофеев В.Т., Волгина Е.В., Казначеев С.В., Кретова В.М. Исследование прочности винил-эфирных композитов. Известия Юго-Западного государственного университета. Сер.: Техника и технологии. 2013. № 4. С. 81–88.
29. Erofeev V.T., Volgina E.V., Kaznacheev S.V., Kretova V.M. Research on the strength of vinylester composites. Izvestiya of the Southwestern State University. Series: Equipment and technology. 2013. No. 4, pp. 81–88. (In Russian).
30. Бобрышев А.Н., Ерофеев В.Т., Козомазов В.Н. Физика и синергетика дисперсно-неупорядоченных конденсированных композитных систем. СПб.: Наука, 2012. 473 с.
30. Bobryshev A.N., Erofeev V.T., Kozomazov V.N. Fizika i sinergetika dispersno-neuporyadochennykh kondensirovannykh kompozitnykh sistem [Physics and synergetics of dispersed disordered condensed composite systems]. St. Petersburg: Nauka. 2012. 473 p.
31. Gibbons J.D. Nonparametric Statistical Inference. New York. Basel: CRC Press. 2010. 652 p.
32. Kim I., Balakrishnan S., Wasserman L. Robust multivariate nonparametric tests via projection averaging. Annals of Statistics. 2020. Vol. 48. Iss. 6, pp. 3417–3441. https://doi.org/10.48550/arXiv.1803.00715
33. Pan W., Tian Y., Wang X., Zhang H. Ball divergence: nonparametric two sample test. Annals of Statistics. 2018. Vol. 46. Iss. 3, pp. 1109–1137. DOI: 10.1214/17-AOS1579
34. Kotlyar M., Fuhrman S., Ableson A., Somogyi R. Spearman correlation identifies statistically significant gene expression clusters in spinal cord development and injury. Neurochemical Research. 2004, pp. 1133–1140. DOI: 10.1023/a:1020969208033
35. Кобзарь А.И. Прикладная математическая статистика. Для инженеров и научных работников. М.: Физматлит, 2006. 816 с.
35. Kobzar A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov [Applied mathematical statistics. For engineers and scientists]. Moscow: Fizmatlit. 2006. 816 p.

For citation: Erofeev V.T., Afonin V.V., Zotkina M.M., Stenechkina K.S, Tyuryakhina T.P., Lazarev A.V. Analysis of properties of polymer composites with various types of fillers. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 100–109. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-100-109


Print   Email